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I.  Introduction

This document describes the procedures and results of the air quality modeling analyses
used to support the Nonroad Land-based Diesel Engine (NLDE) proposed rulemaking.  The air
quality modeling was conducted to support several components of the rulemaking including: 

(a) an assessment of the need for the NLDE program, 
(b) an assessment of the costs and benefits associated with the rulemaking, and 
(c) an assessment of the expected impact of the program on ozone and PM levels.

The air quality model applications include episodic regional scale ozone modeling for the
eastern and western U.S. and annual particulate matter (PM) modeling on a continental scale
covering the 48 contiguous States.  For both ozone and PM, 1996 Base Year simulations were
made to examine the ability of the modeling systems to replicate observed concentrations of these
pollutants.  This was followed by simulations for several future-year Base Case scenarios (i.e.,
2020 and 2030).  The results of the future base case model runs were used to support the need for
the NLDE emissions reductions to help mitigate unhealthy concentrations of ozone and PM.  In
this regard, the predictions from these model runs were used to determine the extent of future
ozone and PM nonattainment.  Additional simulations were performed for 2020 and 2030 to
quantify the impacts of the NLDE controls on air quality.  The outputs of the base and control
case model runs were also used to calculate portions of the monetized benefits of the rule as part
of the cost-benefits analysis.

The remainder of this report includes a description of the ozone and PM modeling
systems, the time periods modeled, the Base Year model performance evaluations, and the results
of the future Base Case and Control Case model simulations.  The air quality modeling input and
output data sets can be obtained upon request by sending an email to ASDinfo@epa.gov or by
calling (734) 214-4636.

II.  Emissions Inventory Estimates

In order to complete the requisite ozone and PM modeling, it was necessary to first
develop a national mass emissions inventory.  This mass emissions inventory was then used as the
basis for developing input files for the air quality modeling.  The development and details of these
inventories for each of the scenarios (i.e., 1996 Base Year, 2020 Base Case, 2020 Control Case,
2030 Base Case, and 2030 Control Case) are described elsewhere (EPA, 2003a). 

The mass inventories were prepared at the county-level for on-highway mobile, stationary
area sources, and nonroad sources.  Emissions for electric generating units (EGUs) and large
industrial sources (non-EGUs) were prepared as individual point sources.  These inventories
contain annual and typical summer season day  emissions for the following pollutants: oxides of
nitrogen (NOx), volatile organic compounds (VOC), carbon monoxide (CO), sulfur dioxide (SO2),
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primary particulate matter with an aerodynamic diameter less than or equal to 10 micrometers and
2.5 micrometers (PM10 and PM2.5), and ammonia (NH3).  The 2020 and 2030 Base Case
inventories were prepared by applying growth and control assumptions to the 1996 Base Year
inventory.  The 2020 and 2030 Control Case inventories are developed from the 2020 and 2030
Base Case inventories, respectively, by applying NLDE control and fuel measures to the nonroad
emission source sector. 

The annual and summer day mass emissions inventories for each scenario were processed
using the SMOKE (Houyoux, 2000) to create the appropriate emissions inputs for REMSAD and
CAMx model runs, respectively.  The emissions processing produced hourly, gridded, speciated
emissions.  For PM modeling the annual emissions for stationary area, point, and nonroad sources
were processed to generate separate sets of emissions representing typical weekday, Saturday,
and Sunday emissions for each season.  For ozone modeling the summer day emissions were
process to generate typical summer weekday, Saturday, and Sunday emissions.  On-highway
emissions were obtained in model-ready form from the Heavy-Duty Diesel Rule modeling
exercise.  Hourly biogenic emissions were calculated using the Biogenic Emissions Inventory
System (BEIS3.09) model.   Biogenic emissions were not altered for any of the scenarios
modeled.

III.  Episodic Ozone Modeling

Air quality modeling analyses for ozone were conducted with the Comprehensive Air
Quality Model with Extensions (CAMx).  CAMx is non-proprietary computer modeling tool that
can be used to evaluate the impacts of proposed emissions reductions on future air quality levels. 
For more information on the CAMx model, please see the model user’s guide (Environ, 2002)1. 
Version 3.10 of the CAMx model was employed for these analyses.

The modeling analyses were completed for two separate 36/12 km resolution domains,
one covering the eastern U.S. and the other covering the western U.S. as shown in Figures III-1
and III-2, respectively.  For the eastern U.S. domain, the model was applied and evaluated over
three episodes that occurred during the summer of 1995 Base Year.  For the western U.S.
modeling, two episodes that occurred during the summer of 1996 were modeled using Base Year
emissions.  Subsequently, episodic ozone model runs were made for 2020 and 2030 Base and
Control Case scenarios for both domains and all episodes.

The model outputs from the 1996 Base Year and 2020 and 2030 Base Cases, combined
with current air quality data, were used to identify areas expected to exceed the ozone National
Ambient Air Quality Standards (NAAQS) in 2020 and 2030.  These “nonattainment” areas will
require additional emission reductions to attain and maintain the ozone NAAQS.  The costs,
benefits, and expected impacts of the proposed controls were determined by comparing the model
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results in the future year control runs against the baseline simulations of the same year. 
Ultimately, the modeling supports the conclusions that there will potentially be several
metropolitan areas with predicted ozone concentrations at or above the NAAQS in the 2020 and
2030 Base Case scenarios without additional emission reductions; and that the proposed nonroad
emissions reductions are expected to substantially improve ozone levels in the future.

A.  Model Configuration

1.  Episodic Meteorologyand Ambient Air Quality

 There are several considerations involved in selecting episodes for an ozone modeling
analysis (EPA, 1999a).  In general, the goal should be to model several differing sets of
meteorological conditions leading to ambient ozone levels similar to an area’s design value. 
Warm temperatures, light winds, cloud-free skies, and stable boundary layers are some of the
typical characteristics of ozone episodes.  On a synoptic scale, these conditions usually result from
a combination of high pressure aloft (e.g., at the 500 millibar pressure level) and at the surface. 
Of course at a smaller scale, the conditions that lead to local ozone exceedances can vary from
location to location based on factors such as wind direction, sea/lake breezes, etc.  The
meteorological and resultant ozone patterns for the five separate modeling episodes used in this
analysis are listed in Table III-1 and are discussed in more detail in previous technical support
documents for the Tier-2/Low Sulfur rule (EPA, 1999b) and the Heavy-Duty Engine rule (EPA,
2000).  These previous discussions conclude that the selected episodes contain measured ozone
concentrations that are representative of design values over most of the U.S.  The first three days
of each period are considered ramp-up days and the results from these days were not used in the
analyses.  In all, 49 episode days were modeled; 30 days in the eastern simulations and 19 days in
the western simulations.

Table III-1.  Dates of CAMx Modeling Episodes.

Eastern U.S. Modeling Western U.S. Modeling

Episode 1 June 12-24, 1995 July 5-15, 1996

Episode 2 July 5-15, 1995 July 18-31, 1996

Episode 3 August 7-21, 1995

2.  Domain and Grid Configuration

As with episode selection, there are also several considerations involved in selecting the
domain and grid configuration to be used in the ozone modeling analysis.  The modeling domain
should encompass the area of intended analysis with an additional buffer of grid cells to minimize
the effects of uncertain boundary condition inputs.  When possible, grid resolution should be
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equivalent to the resolution of the primary model inputs (emissions, winds, etc.) and equivalent to
the scale of the air quality issue being addressed.  The CAMx modeling was performed for each of
two domains of varying extent and resolution as described and shown below.

Table III-2.  Details of the CAMx  Modeling Domains.

Eastern US Domain Western US Domain

Coarse Grid Fine Grid Coarse Grid Fine Grid

Map Projection latitude/longitude latitude/longitude latitude/longitude latitude/longitude

Grid Resolution 1/2/ longitude,
1/3/ latitude 
(~ 36 km)

1/6/ longitude,
1/9/ latitude 
(~ 12 km)

1/2/ longitude, 
1/3/ latitude 
(~ 36 km)

1/6/ longitude, 
1/9/ latitude 
(~ 12 km)

East/West extent -99 W to -67 W -92 W to -69.5 W -127W to -99 W -125 W to -103 W

North/South
extent

26 N to 47 N 32 N to 44 N 26 N to 52 N 31 N to 49 N

Vertical extent Surface to 4 km Surface to 4 km Surface to 4.8 km Surface to 4.8 km

Dimensions 64 by 63 by 9 137 by 110 by 9 56 by 78 by 11 132 by 162 by 11

Figure III-1.  Map of the Eastern U.S. modeling domain.  The outer box denotes the entire
modeling domain (36 km) and the inner box shaded indicates the fine grid location (12 km). 
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Figure III-2.  Map of the Western U.S. modeling domain.  The outer box denotes the entire
modeling domain (36 km) and the inner shaded box indicates the fine grid location (12 km).

3.  Meteorological and Other Model Inputs

The air quality model requires certain meteorological inputs that, in part, govern the
formation, transport, and destruction of pollutant material.  In particular, the CAMx model used
in these analyses requires seven meteorological input files: wind (u- and v-vector wind
components), temperature, water vapor mixing ratio, atmospheric air pressure, cloud cover,
rainfall, and vertical diffusion coefficient.  Fine grid values of wind, pressure, and vertical
diffusivity are used; the other fine grid meteorological inputs are interpolated from the coarse grid
files.

Eastern U.S. Domain:    The gridded meteorological data for the three historical 1995 episodes
were developed by the New York Department of Environment and Conservation using the
Regional Atmospheric Modeling System (RAMS), version 3b.   RAMS (Pielke et. al., 1992) is a
numerical meteorological model that solves the full set of physical and thermodynamic equations
which govern atmospheric motions.  The output data from RAMS, which was run in a polar
stereographic projection and a sigma-p coordinate system, was then mapped to the CAMx grid. 
Two separate meteorological CAMx inputs, cloud fractions and rainfall rates, were developed
based on observed data.
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RAMS was run in a nested-grid mode with three levels of resolution: 108 km, 36 km, and
12 km with 28-342 vertical layers.  The top of the surface layer was 16.7 m in the 36 and 12km
grids.  The two finer grids were at least as large as their CAMx counterparts.  In order to keep the
model results in line with reality, the simulated fields were nudged to an European Center for
Medium-Range Weather Forecasting analysis field every six hours.  This assimilation data set was
bolstered by every four-hourly special soundings regularly collected as part of the North American
Research Strategy on Tropospheric Ozone field study in the northeast U.S.

A limited model performance evaluation (Sistla, 1999) was completed for a portion of the
1995 meteorological modeling (July 12-15).  Observed data not used in the assimilation procedure
were compared against modeled data at the surface and aloft.  In general, there were no
widespread biases in temperatures and winds.  Furthermore, the meteorological fields were
compared before and after being processed into CAMx inputs.  It was concluded that this
preprocessing did not distort the meteorological fields. 

Western U.S. Domain:   The gridded meteorological data for the two historical 1996 episodes
were developed using the Fifth-Generation NCAR / Penn State Mesoscale Model (MM5).  MM5
(Grell et. al., 1995) is a numerical meteorological model that solves the full set of physical and
thermodynamic equations which govern atmospheric motions.  MM5 was run in a nested-grid
mode with three levels of resolution: 108 km, 36km, and 12 km with 23 vertical layers.  The
model was simulated in five day segments with an eight hour ramp-up period.  The MM5 runs
were started at 0)Z, which is 4:00 p.m. PST.  The first eight hours of each five day period were
removed before being input into CAMx.  The CAMx runs start at midnight, and each day runs
from midnight to midnight (PST).

MM5 is a terrain-following sigma-pressure coordinate model and was run using a Lambert
conformal map projection, therefore the data were processed to match the CAMx grid structure. 
There was also an issue in that several of the CAMx grid boundaries extended slightly beyond
their counterpart MM5 12 km and 36 km domain boundaries (mostly over the Pacific Ocean).  In
these cases, data from the next outer grid were mapped to these areas.  A preprocessor generates
model-ready CAMx files for wind, temperature, water vapor, pressure, and vertical diffusion from
the MM5 output.

The standard version of MM5 was revised for this project to output the internally-
calculated vertical diffusivities generated as part of the MRF boundary layer scheme.  When the
MRF boundary layer option is employed these Kv values represent non-local vertical exchanges. 
This approach should provide the most representative mixing field; one that captures both large-
and small-scale vertical diffusive fluxes.

Unlike the eastern ozone modeling, the cloud fraction and rainfall rate inputs were derived
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from the meteorological model as opposed to interpolating observed data to the model grid.  This
alternative procedure was used because of the relatively sparse meteorological observation
network in the West.  Cloud fractions were diagnosed from the MM5 results based on the
assignment of a critical relative humidity, which if exceeded, indicated the presence of a cloud. 
The fractional extent of the cloud was a function of the amount the model humidity exceeds the
threshold value.  Rainfall rates are extracted directly from MM5.

Other Model Inputs:   In addition to the meteorological data, the photochemical grid model
requires several other types of data.  In general, most of these miscellaneous model files were
taken from existing regional modeling applications.   Clean conditions were used to initialize the
model and as lateral and top boundary conditions as in previous regional modeling applications. 
The model also requires information regarding land use type and surface albedo for all layer 1 grid
cells in the domain.  Existing regional data obtained from OTAG were used for these non-day-
specific files.  Photolysis rates were developed using the JCALC preprocessor (SAI, 1996). 
Turbidity values were set equal to a constant thought to be representative of regional conditions.

B.  Model Performance Evaluation

The goal of the Base Year modeling was to reproduce the atmospheric processes resulting
in high ozone concentrations over the eastern United States during the three 1995 episodes
selected for modeling.  Note that the Base Year of the emissions was 1996 while the eastern U.S.
episodes are for 1995.   The effects on model performance of using 1996 Base Year emissions for
the 1995 episodes are not known, but are not expected to be major.

An operational model performance evaluation for surface ozone for the five episodes was
performed in order to estimate the ability of the modeling system to replicate Base Year ozone
concentrations.  This evaluation is comprised principally of statistical assessments of model versus
observed pairs.  The robustness of an operational evaluation is directly proportional to the amount
and quality of the ambient data available for comparison.

1.  Statistical Definitions

Below are the definitions of those statistics used for the evaluation.  The format of all the
statistics is such that negative values indicate model ozone predictions that were less than their
observed counterparts.  Positively-valued statistics indicate model overestimation of surface
ozone.  Statistics were not generated for the first three days of an episode to avoid the
initialization period.  The operational statistics were principally generated on a regional basis in
accordance with the primary purpose of the modeling which is to assess the need for, and impacts
of, a national emissions control program.  However, a local assessment of model performance was
also completed to ensure that the model did not significantly overestimate the need for controls in
individual areas.  The statistics were calculated for (a) the entire domain, (b) four quadrants (i.e.,
Midwest, Northeast, Southeast, Southwest), and (c) 47 local areas.  The statistics calculated for
each of these sets of areas are described below.
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Domainwide unpaired peak prediction accuracy: This metric simply compares the peak
concentration modeled anywhere in the selected area against the peak ambient concentration
anywhere in the same area.  The difference of the peaks (model - observed) is then normalized by
the peak observed concentration.

Peak prediction accuracy: This metric averages the paired peak prediction accuracy calculated for
each monitor in the subregion.  It characterizes the ability of the model to replicate peak
(afternoon) ozone over a subregion.  The daily peak model versus daily peak observed residuals
are paired in space but not by hour.

Mean normalized bias: This performance statistic averages the normalized (by observation)
difference (model - observed) over all pairs in which the observed values were greater than 60
ppb.  A value of zero would indicate that the model over predictions and model under predictions
exactly cancel each other out.

Mean normalized gross error: The last metric used to assess the performance is similar to the
above statistic, except in this case it is the absolute value of the residual which is normalized by
the observation, and then averaged over all sites.  A zero gross error value would indicate that all
model concentrations (in which their observed counterpart was greater than 60 ppb) exactly
matched the ambient values.

2.  Domainwide Model Performance (Eastern U.S.)

As with previous regional photochemical modeling studies, the degree that model
predictions replicate observed concentrations varies by day and location over the large eastern
U.S. modeling domain.  From a qualitative standpoint, there appears to be considerable similarity
on most days between the observed and simulated ozone patterns.  Additionally, where possible
to discern, the model appears to follow the day-to-day variations in synoptic-scale ozone fairly
closely.  More quantitative comparisons of the model predictions and ambient data are provided
below.

When all hourly observed ozone values (greater than 60 ppb) are compared to their
modeled counterparts for the thirty episode modeling days for the eastern U.S., the mean
normalized bias is -1.1 percent and the mean normalized gross error is 20.5 percent  As shown in
Table III-3, the model generally underestimates observed ozone values for the June and July
episodes, but predicts higher than observed amounts for the August episode.
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Table III-3.  Performance statistics for hourly ozone in the Eastern U.S. CAMx simulations.

Average Accuracy of the Peak Mean Normalized Bias Mean Normalized Gross
Error

June 1995 -7.3 -8.8 19.6

July 1995 -3.3 -5.0 19.1

August 1995 9.6 8.6 23.3

Depending on the episode and region, the normalized biases can range from an
underestimation of 18 percent to an overestimation of 16 percent. Gross errors tend to average
between 17 and 25 percent.  As shown in Table III-4, when the model domain is subdivided into
four quadrants, it is found that most of the underestimations in the June and July episodes are
driven by the Northeast and Midwest quadrants (i.e., the two northern ones).  Conversely, most
of the overestimated ozone in the August episode is due to the Midwest, Southeast and
Southwest quadrants.  Hourly ozone is consistently underestimated in the Northeast quadrant. 
The model does slightly better in replicating the peak values for each monitoring site than it does
at replicating the mean values, especially in the Northeast where the underpredictions are not as
large for the highest ozone observations.

Table III-4.  Regional/Episodic performance statistics for NLDE hourly ozone predictions.

Average Accuracy of the
Peak

Mean Normalized Bias Mean Normalized Gross
Error

June July August June July August June July August

Whole Grid -7.3 -3.3 9.6 -8.8 -5.0 8.6 19.6 19.1 23.3

Northeast -14.7 -5.0 -4.3 -18.4 -7.2 -6.0 24.7 19.1 22.6

Midwest -7.3 -6.2 15.5 -8.7 -7.2 15.5 18.0 19.4 23.7

Southeast -2.9 1.9 15.1 -3.0 1.3 14.7 17.4 19.1 24.1

Southwest -0.9 1.3 7.0 0.7 3.1 10.3 19.0 20.0 22.6

At present, there are no generally accepted set of numerical criteria by which one can
judge the adequacy of model performance for regional applications.   In view of this, EPA
determined the acceptability of modeling for this rule by comparison against the performance
results of regional models from previous analyses.  For instance, the Heavy Duty Engine (HDE)
simulations were determined to be appropriate for use based on comparisons to previously
accepted modeling analyses (e.g., OTAG and Tier-2).  As shown in Table III-5, model
performance in the Base Year NLDE simulations is generally similar or better than other regional
ozone modeling efforts.  In particular, the gross error metric is almost universally improved in the
more recent NLDE modeling.  In general, the NLDE/CAMx modeling results are approximately
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3-6 ppb higher on average than what was generated in the HDE/UAM-V modeling.  In some
previous regional modeling applications, there had been a tendency in some regions for the model
to underestimate ozone in the early parts of an episode and then overestimate ozone at the end of
an episode.  However, in general, there does not appear to be any such bias trend in the NLDE
BaseYear modeling.

Table III-5.  Regional/Episodic performance statistics for HDE hourly ozone predictions.  Bold
numbers indicate HDE statistics that have improved in the NLDE simulations (see Table III-4).

Average Accuracy of the
Peak

Mean Normalized Bias Mean Normalized Gross
Error

June July August June July August June July August

Whole Grid -10.5 -5.8 7.7 -13.2 -9.6 5.0 22.3 22.3 23.6

Northeast -15.1 -6.6 -5.2 -20.3 -12.1 -8.8 27.0 21.2 24.2

Midwest -13.1 -11.1 11.4 -15.4 -14.2 9.6 21.6 23.6 22.1

Southeast -5.4 0.6 14.7 -7.2 -2.8 12.1 18.4 21.0 24.6

Southwest 0.2 3.9 8.8 1.0 4.9 10.5 21.6 23.4 26.5

Table III-6 presents the results from the eight-8-hour ozone evaluation.  In general, the
gross error is noticeably less for the eight-hour ambient versus observed ozone comparisons. 
However, model estimates during the August episode clearly over predict the observed values in
regions outside the Northeast.

Table III-6.  Regional/Episodic performance statistics for NLDE 8-hour ozone predictions.  

Average Accuracy of the
Peak

Mean Normalized Bias Mean Normalized Gross
Error

June July August June July August June July August

Whole Grid -3.9 0.9 13.9 -5.7 -2.1 11.0 17.5 16.4 22.6

Northeast -13.5 -2.4 -1.6 -15.4 -4.9 -3.8 21.3 14.6 20.8

Midwest -4.0 -0.9 20.6 -5.8 -4.4 17.6 16.0 16.7 23.7

Southeast 1.3 5.3 20.5 0.9 4.0 18.4 16.4 17.5 24.1

Southwest 5.0 8.2 16.2 3.9 3.6 12.4 17.8 18.1 21.1

3.  Local-scale Model Performance (Eastern U.S.)

The CAMx modeling results were also evaluated at a “local” level.  The purpose of this
analysis was to ensure that areas determined to need the nonroad engine emissions reductions
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based on projected exceedances of the ozone standard were not unduly influenced by local
overestimation of ozone in the model Base Year.  For this analysis, the modeling domain was
broken up into 51 local subregions as shown in Figure III-3.  The primary statistics for each of the
51 subregions is shown in Table III-7.

As noted above, there is no set of established statistical benchmarks to determine the
adequacy of a regional modeling operation evaluation.  However, the performance statistics for
the eastern U.S. modeling were compared to the recommended performance ranges for urban
attainment modeling (EPA, 1991).   The results indicate that model performance for the June
episode was within the recommended ranges for 69% of the local areas examined.  For the July
and August episodes, the percent of local areas with performance within the recommended ranges
was 80% and 61%, respectively.  This is an improvement from the HDE model performance
where the numbers were 57%, 45%, and 55% for the June, July, and August episodes,
respectively.

Local scale model performance is poorest in the southeastern U.S. in the August episode
where over predictions occurred.  In fact, areas along the Gulf Coast (New Orleans,
Beaumont/Port Arthur, Baton Rouge, etc.) tend to be universally overestimated.  This is likely
due to the model tendency to generate large amounts of ozone along coastal areas where low
stability and high emissions densities can coexist.

With the exception of the July episode, the model tends to underestimate observed ozone
by approximately 15% in the local areas of the Northeast (e.g., New York City, Philadelphia,
Boston).  The local 8-hour metrics (not shown) generally do not greatly differ from their hourly
counterparts.  There is a slight tendency toward greater overprediction of the 8-hour values.

Table III-7.  Local performance statistics for NLDE hourly ozone predictions.

Average Accuracy of
the Peak

Mean Normalized
Bias

Mean Normalized
Gross Error

June July August June July August June July August

Dallas -9.6 -12.3 2.2 -10.6 -11.5 3.2 16.6 18.7 15.7

Houston/Galveston -3.0 -5.1 0.3 -3.5 -3.9 2.2 20.8 19.0 25.7

Beaumont/Port Arthur 14.0 16.7 8.8 16.0 19.3 12.9 20.4 24.5 24.6

Baton Rouge 15.6 24.7 31.4 22.6 26.6 37.4 26.1 31.0 40.5

New Orleans 15.6 29.1 42.1 15.9 28.9 48.9 21.9 32.0 50.2

St. Louis -0.5 -4.0 8.4 -0.6 0.6 10.5 17.0 18.4 18.2

Memphis -7.7 -4.9 13.7 -5.9 -0.3 13.6 15.5 19.3 22.0

Alabama 5.2 -1.7 16.0 6.5 6.7 23.1 14.4 16.6 25.2

Atlanta -3.1 5.4 19.0 -3.4 6.8 26.1 16.7 20.1 31.0
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Nashville -2.9 7.8 31.5 -2.4 9.1 36.1 18.1 24.7 37.4

Eastern TN -14.2 -16.0 -2.7 -21.0 -17.1 -5.9 22.7 20.7 18.3

Charlotte 8.3 -2.1 6.0 5.8 4.1 14.5 13.0 16.3 18.2

Greensboro -1.7 -1.1 17.2 -4.2 1.2 18.2 14.1 15.3 21.7

Raleigh-Durham -11.8 1.3 -2.3 -10.7 4.2 -1.9 14.6 13.9 16.9

Evansville/Owensboro 1.2 -0.9 28.3 4.5 5.4 32.8 15.1 21.2 33.9

Indianapolis -8.3 -13.5 15.9 -3.6 -14.4 18.0 13.1 19.3 19.7

Louisville 2.8 4.2 36.6 4.8 6.1 42.1 14.7 17.9 42.5

Cincinnati/Dayton -4.7 -8.5 29.0 0.1 -5.6 32.7 12.8 19.1 33.5

Columbus -8.5 -14.5 9.2 -6.2 -11.0 14.2 14.6 17.3 18.7

West Virginia -8.8 -5.7 12.7 -7.5 -3.2 13.7 15.7 16.6 24.5

Chicago -9.9 -4.3 10.4 -17.1 -11.1 3.5 24.5 23.5 22.3

Milwaukee -14.8 -12.9 21.5 -16.5 -16.9 12.3 19.1 23.3 18.2

Muskegon/Grand
Rapids

-10.8 -12.3 3.1 -11.6 -12.9 1.7 17.7 20.4 16.4

Gary/South Bend -13.0 -10.0 11.8 -15.0 -14.5 9.3 19.2 24.4 20.7

Detroit -17.2 -5.8 3.9 -20.1 -13.2 -3.2 25.1 22.5 23.4

Pittsburgh -10.0 -3.2 9.2 -9.2 -2.1 7.9 23.1 16.1 20.4

Central PA -6.0 -7.6 1.0 -8.5 -6.0 1.1 21.9 15.5 18.6

Norfolk -9.0 0.0 8.3 -13.4 -5.6 5.7 19.1 18.6 24.7

Richmond -1.2 4.8 2.6 -1.3 10.7 4.5 8.4 18.3 20.3

Baltimore/Washington -4.7 -3.1 1.7 -6.8 -5.2 0.7 18.6 15.6 23.4

Delaware -6.1 -5.2 2.3 -6.3 -0.2 7.5 12.9 11.6 16.2

Philadelphia -14.1 -1.8 -8.7 -22.0 -10.5 -13.9 26.4 19.5 28.9

New York City -16.2 -3.9 -12.2 -24.6 -14.1 -17.9 31.3 22.5 29.8

Hartford -16.9 -5.0 -9.9 -18.5 -4.0 -7.7 23.6 18.2 20.1

Boston -13.7 -4.7 -15.6 -19.6 -9.2 -19.6 25.9 20.9 26.5

Maine -20.4 -4.7 -6.9 -25.0 -9.4 -6.9 25.3 19.0 15.5

Longview/Shreveport -2.1 11.3 7.7 0.8 11.1 11.4 16.2 16.5 17.9

Kansas City -8.5 -7.8 -4.3 -7.9 -1.5 -8.3 15.7 13.0 12.4

Western NY -23.1 -20.6 -9.0 -25.6 -20.5 -12.1 28.1 23.8 19.0

Northeast OH -4.0 -6.5 6.9 -6.6 -6.8 7.7 20.4 15.5 16.5

South Carolina -2.5 1.3 11.4 -3.4 1.5 15.7 12.5 17.7 19.4

Gulf Coast 0.5 23.1 29.3 4.5 30.0 33.7 15.4 31.6 34.9



3 Although the modeling was at 36/12km, nearly all of the model/ambient pairs were in the 12km fine
grid.
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FL West Coast -6.4 22.8 41.2 -7.3 11.9 42.8 11.3 22.7 43.7

FL East Coast -15.9 16.2 23.3 -16.8 16.6 26.3 18.0 18.4 29.4

Jackson 0.6 10.9 21.0 1.8 10.0 24.0 16.0 16.0 24.9

Central MI -6.9 -10.4 12.0 -9.6 -14.8 6.6 18.1 18.7 17.5

Macon/Columbus -9.5 -11.1 21.6 -8.8 -5.7 26.4 10.9 13.0 26.9

Austin/San Antonio -14.1 -19.6 -1.9 -11.0 -15.5 4.1 14.1 17.2 12.4

Oklahoma City/Tulsa -12.3 -5.6 -5.2 -12.9 -3.2 -2.8 17.2 14.6 12.6

Ft. Wayne/Lima -9.1 -13.1 3.9 -8.3 -14.1 5.1 16.0 18.2 10.6

Bangor/Hancock Co. -17.8 -6.9 -17.7 -24.4 -8.5 -19.9 25.2 15.3 21.0

4.  Domainwide Model Performance (Western U.S.)

Model performance statistics for the western U.S. NLDE Base Year simulations were also
calculated for the two 1996 ozone episodes.  The first three days of each simulation were
considered ramp-up days and were not used in the statistical calculations.  Thus, there were 19
episode days used in the model performance evaluation.  The statistics were calculated for the
entire model domain3 and for nine subregions.  Again, the model performance evaluation consists
solely of comparisons against ambient surface ozone data.  There is insufficient available data in
terms of ozone precursors or ozone aloft to allow for a more complete assessment of model
performance.

When all hourly observed ozone values (greater than 60 ppb) are compared to their model
counterparts for the 19 episode modeling days, the mean normalized bias is -21.4 percent and the
mean normalized gross error is 26.1 percent.  The eight-hour model ozone averages are also
biased low (-19.2%) with a mean normalized gross error of 23.5%.  In general, the daily peak
values were not as underestimated as the mean values.
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Figure III-3.  Map of the 51 local-scale evaluation zones.

Table III-8.  Domainwide ozone performance statistics for the July 1996 CAMx  Base Year.

Average Accuracy of the Peak Mean Normalized Bias Mean Normalized Gross Error

1-hour ozone -20.5 -21.4 26.1

8-hour ozone -17.3 -19.2 23.5

The EPA determined the adequacy of model performance for the western U.S. by
comparison to performance results from the only comparable set of regional modeling for ozone
in the western U.S. which was done for the Tier-2/Low Sulfur rulemaking.  As shown in Table
III-9, model performance in the Base Year NLDE simulations is better than what was exhibited in
the Tier-2 UAM-V modeling.  The improvements in Base Year performance from the Tier-2
modeling are attributable to the use of more representative on-road mobile emissions estimates
from the State of California and improved biogenic estimates from the BEIS-3 model.
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Table III-9.  Domainwide model performance statistics for hourly ozone predictions for two sets
of western U.S. modeling.

Average Accuracy of
the Peak

Mean Normalized
Bias

Mean Normalized
Gross Error

Tier-2 NLDE Tier-2 NLDE Tier-2 NLDE

Domainwide -38.3 -20.5 -39.5 -21.4 39.9 26.1

5.  Local-Scale Model Performance (Western U.S.)

The local-scale model performance areas in the western U.S. are shown in Figure III-4 and
the performance statistics are given in Table III-10.  A comparison of performance in the local-
scale areas of the western U.S. against the recommended ranges for accuracy, bias, and error for
attainment demonstration modeling indicates that three of the nine regions exhibit performance
within these ranges. 

Table III-10.  Local performance statistics for NLDE hourly ozone predictions. 

Average Accuracy of
the Peak

Mean Normalized
Bias

Mean Normalized
Gross Error

Seattle -11.4 -11.6 23.5

Portland -20.2 -25.1 26.9

San Francisco / Sacramento -23.8 -25.4 26.6

San Joaquin Valley -20.7 -20.0 23.3

Los Angeles -25.2 -23.1 33.2

Phoenix / Tucson -6.4 -9.9 22.5

Salt Lake City -21.1 -19.9 21.7

 Denver -12.2 -14.5 17.9

El Paso -23.8 -26.5 27.1

The model underestimates observed ozone in all nine local areas, ranging from 10 to 27
percent.  Based on gross error values, local scale model performance is poorest in the local
performance areas in southern California.  The local 8-hour statistics (not shown) generally do not
greatly differ from their hourly counterparts.  There is a slight tendency toward less
underestimation of the 8-hour values.  While the Base Year model performance is considerably
better than in the previously-used Tier-2 rulemaking, the modeling still generally underestimates
observed ozone (greater than 60 ppb) by about 20 percent.  However, it was determined that the
use of these modeling simulations was the best approach for assessing the need for, and the effects
of, the proposed rule.  
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Figure III-4.  Map of the nine local-scale performance evaluation areas in the western U.S.

C.  Ozone Modeling Results

The NLDE CAMx modeling output was analyzed to provide information to (a) support
the determination of the need for NLDE, and (b) examine the air quality impacts of the
rulemaking.  The procedures and results of each of these analyses are described below.

1.  Projected Future Ozone Design Values

The CAMx simulations were performed for Base Cases in 1996, 2020, and 2030
considering growth and expected emissions controls that will affect future air quality.  The effects
of the nonroad engine reductions (i.e., Control Cases) were modeled for the two future years.  As
a means of assessing the future levels of air quality with regard to the ozone NAAQS, future-year
estimates of ozone design values were calculated using relative reduction factors (RRFs) applied
to 1999-2001 ozone design values (EPA, 2003b).  The procedures for determining the RRFs are
similar to those in EPA’s draft guidance for modeling for an 8-hour ozone standard (EPA,
1999a).  Hourly model predictions were processed to determine daily maximum 8-hour
concentrations for each grid cell for each non-ramp-up day modeled.  The RRF for a monitoring



4For the one-hour NAAQS we used a cut-off of 80 ppb.  Please see the Tier 2 Air Quality Modeling TSD
for more details (EPA 1999b).

17

site was determined by first calculating the multi-day mean of the 8-hour daily maximum
predictions in the nine grid cells surrounding the site using only those predictions greater than or
equal to 70 ppb4, as recommended in the guidance.  This calculation was performed for the Base
Year scenario and each of the future-year baselines.  The RRF for a site is the ratio of the mean
prediction in the future-year scenario to the mean prediction in the Base Year scenario.  RRFs
were calculated on a site-by-site basis.  The future-year design value projections were then
calculated by county, based on the highest resultant design values for a site within that county
from the RRF application.  The current and future Base and Control 8-hour county maximum
ozone design values are provided in Appendix A.   County population for 2000, 2020, and 2030
are also included in this appendix. 

As shown in Table III-11, the modeling projects that 30 counties across the U.S. will have
design values greater than the 8-hour NAAQS in 2020.  By 2030 that number is expected to rise
to 32 counties as a result of projected emissions growth.  In all, based on present-day population
figures, over 39 million people live in areas that are projected to be violating the NAAQS in 2020
and/or 2030.  While this projection reflects a need for additional ozone precursor emissions
controls, it should be noted that this reflects a considerable improvement from the 111 million
people in 289 counties residing in counties that currently exceed the 8-hour NAAQS.  Table III-
12 indicates that 15 counties with a total population over 24 million are projected to have design
values greater than the 1-hour NAAQS in 2020 and 2030.  Appendix B contains maps of the
projected design values across the U.S. for the 1- and 8-hour standards for the 2020 and 2030
Control Cases

Table III-11.  Current and estimated future 8-hour ozone design values for counties projected to
exceed the standard in 2020 and/or 2030. 

State County 1999-2001
Design Value

2020  Base 2030  Base 2000 Population

California Los Angeles 105 121 123 9,519,338
Illinois Cook 88 85 86 5,376,741
Texas Harris 110 104 106 3,400,578
California Orange 77 101 101 2,846,289
Michigan Wayne 88 86 88 2,061,162
California San Bernardino 129 133 135 1,709,434
California Riverside 111 107 108 1,545,387
New York Westchester 92 86 87 923,459
Connecticut Fairfield 97 92 93 882,567
Connecticut New Haven 97 87 89 824,008
Georgia Fulton 107 88 88 816,006
California Fresno 108 93 93 799,407
Michigan Macomb 88 84 85 788,149
California Ventura 101 94 94 753,197
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New Jersey Middlesex 103 92 93 750,162
Pennsylvania Montgomery 100 89 90 750,097
California Kern 109 94 94 661,645
New Jersey Hudson 93 87 88 608,975
Pennsylvania Bucks 105 94 95 597,635
New Jersey Ocean 109 94 95 510,916
New Jersey Camden 103 87 88 508,932
Indiana Lake 90 84 85 484,564
New York Richmond 98 87 88 443,728
New Jersey Mercer 105 94 95 350,761
New Jersey Gloucester 101 88 88 254,673
Texas Galveston 98 90 91 250,158
Maryland Harford 104 86 87 218,590
Connecticut Middlesex 99 88 90 155,071
Georgia Bibb 98 85 85 153,887
Wisconsin Kenosha 95 87 89 149,577
New Jersey Hunterdon 100 88 89 121,989
Georgia Henry 107 85 85 119,341

Table III-12.  Current and estimated future 1-hour ozone design values for counties projected to
exceed the standard in 2020 and/or 2030.

State County 1999-2001
Design Value

2020  Base 2030 Base  2000 Population

California Los Angeles 169 184 185 9,519,338
Texas Harris 182 171 175 3,400,578
California Orange 114 132 132 2,846,289
California San Bernardino 170 200 202 1,709,434
California Riverside 149 140 141 1,545,387
Connecticut Fairfield 143 133 136 882,567
Connecticut New Haven 146 129 131 824,008
Georgia Fulton 156 126 126 816,006
New Jersey Middlesex 142 126 127 750,162
Pennsylvania Bucks 142 127 128 597,635
New Jersey Mercer 145 126 127 350,761
Texas Galveston 164 150 152 250,158
Texas Brazoria 154 137 139 241,767
Connecticut Middlesex 147 131 133 155,071
California Imperial 166 137 137 142,361



5  For those calculations it was necessary to assign the model grid cells to individual CMSA/MSAs.  The
rules for assigning grid cells to CMSA/MSAs is as follows.  The first step was to assign grid cells to States based
on the fraction of the grid cells’ area in a State.  Next, grid cells were assigned to an individual CMSA/MSAs if: a)
the grid is wholly contained within the CMSA/MSA or b) partially within the area, but not also partially within
another CMSA/MSA.  Grid cells that partially overlap two or more CMSA/MSAs are assigned to the county, and
thereby the corresponding CMSA/MSA, which contains the largest portion of the grid cell.  Each grid cell in the
"coarse" or 36 km grid portion of the domain was divided into nine 12 km grids before applying the preceding
methodology.    
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2.  Impacts of the NLDE Rule on Future Year Ozone

The impacts of the proposed emissions reductions from nonroad engines were examined in
terms of:

• effects on projected future ozone design values; and
• effects on model-predicted ozone levels and the number/duration/extent of predicted  high

ozone events
• ozone increases (i.e., “disbenefits”)

The effects of the NLDE controls on future ozone design values were determined on a
county-by-county basis as well as for consolidated metropolitan statistical areas (CMSAs) or
metropolitan statistical areas (MSAs)5.  The effects of the NLDE controls on model-predicted
ozone concentrations was examined for those CMSAs/MSAs that have a current or projected
future case design value exceeding the 1- hour or 8-hour ozone NAAQS.  In the East there are 84
such areas and in the West there are 10 areas.  The results of nearly all of the analyses indicate
that the proposed NLDE rule will provide an net improvement in ozone air quality nationally.

a.  Effect on projected future ozone design values

The counties with projected 8-hour design values exceeding the NAAQS (i.e.,
nonattainment counties) for the 2020 and 2030 Base and Control Cases are listed in Table III-13.
In 2020, three nonattainment counties are projected to come into attainment as a result of the
NLDE controls.  However, one county, Bronx Co., NY, is currently in attainment but is projected
to violate the standard in 2020 as a result of the rule.  The net effect is a 2.2 percent increase in
the population living in nonattainment counties.  It is important to note that ozone nonattainment
designations are historically based on larger geographical areas than counties.  Bronx Co., NY is
the only county within the New York City CMSA in which increases are detected in 8-hour
violations in 2020.  Considering a larger area, the modeling indicates that projected violations
over the entire New York City CMSA will be reduced by 6.8 percent.  Upon full turnover of the
fleet in 2030, the net impact of the rule on projected 8-hour nonattainment is a 2.0 percent
decrease in the population living in nonattainment counties as two additional counties are no
longer projected to violate the NAAQS. 
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Table III-13.  Lists of counties projected to violate the 8-hour NAAQS in 2020 and 2030 for the
Base Case and NLDE Control Case.

2020 Base 2020 Control 2030 Base 2030 Control
Bibb Bronx Bibb Bronx
Bucks Bucks Bucks Bucks
Camden Camden Camden Camden
Cook Cook Cook Cook
Fairfield Fairfield Fairfield Fairfield
Fresno Fresno Fresno Fresno
Fulton Fulton Fulton Galveston
Galveston Galveston Galveston Gloucester
Gloucester Gloucester Gloucester Harris
Harford Harris Harford Hudson
Harris Hudson Harris Hunterdon
Henry Hunterdon Henry Kenosha
Hudson Kenosha Hudson Kern
Hunterdon Kern Hunterdon Los Angeles
Kenosha Los Angeles Kenosha Macomb
Kern Mercer Kern Mercer
Los Angeles Middlesex (CT) Lake Middlesex (CT)
Mercer Middlesex (NJ) Los Angeles Middlesex (NJ)
Middlesex (CT) Montgomery Macomb Montgomery
Middlesex (NJ) New Haven Mercer New Haven
Montgomery Ocean Middlesex (CT) Ocean
New Haven Orange Middlesex (NJ) Orange
Ocean Richmond Montgomery Richmond
Orange Riverside New Haven Riverside
Richmond San Bernardino Ocean San Bernardino
Riverside Ventura Orange Ventura
San Bernardino Wayne Richmond Wayne
Ventura Westchester Riverside Westchester
Wayne San Bernardino
Westchester Ventura

Wayne
Westchester

30 Total 28 Total 32 Total 28 Total

Another way to assess the impact of the rule on ozone concentrations is to calculate the
effects in all counties with projected future year design values including both attainment and
nonattainment counties.  This approach helps assess the degree to which the rule will not only
help nonattainment counties to attain the NAAQS, but will also help attainment counties maintain
attainment.  In the 1999-2001 ambient design value data set, there were sites in 522 counties for
with valid 8-hour design values and sites in 510 counties with valid 1-hour design values.

Table III-14 shows the average change in future year eight-hour and one-hour ozone



6  Counties whose present-day design values exceeded the 8-hour standard ($ 85 ppb).

7  Counties whose present-day design values were less than but within 10 percent of the 8-hour standard
(77#DV<85 ppb).

8  Counties whose present-day design values exceeded the 1-hour standard ($ 125 ppb).

9  Counties whose present-day design values were less than but within 10 percent of the 1-hour standard
(112#DV<125 ppb) in 1999-2001.
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design values.  Average changes are shown for 1) all counties with design values in 1999-2001, 2)
counties with design values that did not meet the standard in 1999-2001, and 3) counties that met
the standard, but were within 10 percent of it in 1999-2001.  This last category is intended to
reflect counties that meet the standard, but will likely benefit from help in maintaining that status
in the face of growth.  The average and population-weighted average over all counties in Table
III-14 demonstrates a broad improvement in ozone air quality.  The average across nonattainment
counties shows that the rule will certainly help bring these counties into attainment.  The average
over counties within ten percent of the standard shows that the rule will also help those counties
to maintain the standard.  All of these metrics show a decrease in 2020 and a larger decrease in
2030 (due to fleet turnover), indicating the overall improvement in ozone air quality.

Table III-15 presents counts of counties by the size and direction of their change in design
value in 2020 and 2030.  For the 8-hour NAAQS, 96 percent of counties show a decrease in
2020, 97 percent in 2030.  For the 1-hour NAAQS, 97 percent of counties show a decrease in
2020, 98 percent in 2030.

Table III-14.  Average change in projected future year ozone design values (ppb). 

Design Value Average Number of
Counties

2020 Control
minus Base

2030 Control
minus Base

8-Hour All 522 -1.8 -2.8

All, population-weighted 522 -1.6 -2.6

Nonattainment counties6 289 -1.9 -3.0

Counties within 10 percent
of the standard7

130 -1.7 -2.6

1-Hour All 510 -2.4 -3.8

All, population-weighted 510 -2.3 -3.6

Nonattainment counties8 73 -2.9 -4.5

Counties within 10 percent
of the standard9

130 -2.4 -3.8
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Table III-15.  Numbers of counties projected to be in different design value change bins as a
result of the rule in 2020 and 2030.  

Design value
change

2020 2030

8-Hour 1-Hour 8-Hour 1-Hour

$ 2ppb increase 1 1 1 1

1 ppb increase 1 5 3 2

No change 21 10 10 5

1 ppb decrease 140 69 42 22

2-3 ppb decrease 357 356 333 193

4 ppb decrease 2 69 133 287

Total 522 510 522 510

b.  Effects on model-predicted ozone concentrations

The impacts of NLDE controls on model-predicted ozone concentrations were quantified
using a number of metrics (i.e., measures of ozone concentrations).  These metrics include:

(1) peak 8-hour ozone concentrations, 
(2) the number of 8-hour exceedances,
(3) the number of modeled episode days with 8-hour exceedances,
(4) total amount of 8-hour ozone >= 85 ppb,
(5) total amount of 8-hour ozone >= 85 ppb weighted by 2000 population.

(1) The peak 8-hour ozone represents the highest 8-hour average ozone prediction within the area
(i.e., CMSA or MSA) across all episodes modeled.

(2) The number of exceedances is the total number of grid cells with predicted exceedances in the
area across all days modeled.  This exceedance metric counts each grid cell every day there is a
predicted exceedance in that grid.  Thus, an individual grid cell can be counted more than once if
there are multiple days with predicted exceedances in that grid.

(3) The number of exceedance days is simply a count of the total number days with predicted
exceedances in the area.  The count is not a function of the number of cells >= 85 ppb; a single
cell is sufficient to trigger the count.

(4) The total amount of ozone above 85 ppb in an area is determined by taking the difference
between the predicted daily maximum 8-hour average ozone concentration and 85 ppb in each
grid cell and then summing this amount across all grid cells in the area and days modeled.  This
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metric is sometimes referred to as the “amount of nonattainment”.  

(5) This metric is similar to the amount of nonattainment (#4) except that each grid cell value is
weighted by the population in that grid.

The tables with data for each of these metrics are included in Appendices C, D, E, and F
for the 2020 and 2030 eastern and western modeling.  Based on these metrics, the following
conclusions can be made regarding the impacts of the proposed emissions reductions in the NLDE
rule:

• Local peak 8-hour concentrations will be reduced by as much as 6 percent in 2020 and by
as much as 8 percent in 2030.  The average reduction in peak 8-hour ozone is 2.7 percent
in 2020 and 4.1 percent in 2030.  No areas are projected to experience increases in peak
ozone as a result of the rule.

• In terms of the extent of projected exceedances in the future, the rule is expected to result
in a significant reduction in the total area exceedance-level ozone in the future years.  In
2020, the reduction is expected to be 14% and by 203o, the reduction in the total
exceedance increases to 21%..

• The number of exceedance days is expected to drop by 13% due to NLDE in 2020 and
18% in 2030.

• The total amount of nonattainment is expected to be reduced by 16% and 22% in 2020
and 2030, respectively.  When the ozone changes are weighted by population, the overall
reduction is 10% in 2020 and 15% in 2030.  When weighted by population there are some
areas (e.g., Chicago, New York City) that experience small increases in this metric.  This
issue is discussed in more detail in the next section. 

c.  Ozone Increases 

As shown above, the proposed rule will generally reduce ozone levels at the national and
local scales and thereby provide significant ozone-related health benefits.  However, this is not
exclusively the case at the local level, when all times and locations are considered.  Due to the
complex photochemistry of ozone production, emissions of nitrogen oxides (NOx) can lead to
both the formation and destruction of ozone, depending on the relative quantities of NOx, VOC,
and ozone catalysts such as the OH and HO2 radicals.  In areas dominated by fresh emissions of
NOx, ozone catalysts are removed via the production of nitric acid which slows the ozone
formation rate.  Because NOx is generally depleted more rapidly than VOC, this effect is usually
short-lived and the emitted NOx can lead to ozone formation later (i.e., further downwind).  The
terms “NOx disbenefits” or “ozone disbenefits” refer to the ozone increases that can result from
NOx emissions reductions in these localized areas.  According to the NARSTO Ozone
Assessment, these disbenefits are generally limited to small regions within specific urban cores and



10  NARSTO Synthesis Team (2000).  An Assessment of Tropospheric Ozone Pollution: A North
American Perspective.  
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are surrounded by larger regions in which NOx control is beneficial10.

EPA maintains that the most appropriate criteria for determining the value of a particular
emissions reduction strategy is the net air quality change projected to result from the rule,
evaluated on a nationwide basis and for all pollutants that are health and/or welfare concerns.  The
primary tool for assessing the net impacts of this rule is the air quality simulation modeling
discussed here.  

There are several known issues with the modeling with respect to the disbenefit issue. 
First, the future year modeling conducted by EPA does not contain any local governmental
actions beyond the controls proposed in this rule.  It is possible that significant local controls of
VOC and/or NOx  could modify the conclusions regarding ozone changes in some areas.  Second,
as discussed in the Preamble to the proposed rule the modeled NOx reductions are greater than
those actually included in the proposal.  This could lead to an exaggeration of the benefits and
disbenefits expected to result from the rule.  Third, this modeling is subject to the limitations and
uncertainties of photochemical grid modeling.  While the air quality simulations conducted for the
rule represent state-of-the-science analyses, any changes to the underlying chemical mechanisms,
grid resolution, and emissions/meteorological inputs could result in revised conclusions regarding
the strength and frequency of ozone disbenefits.

Based only on the reductions from today’s rule, our modeling predicts that periodic ozone
disbenefits will occur most frequently in New York City, Los Angeles, and Chicago.  Smaller and
even less frequent disbenefits also occur in Boston, Detroit, and San Francisco.  However as
shown in the Appendices C and D, despite these localized increases, the net ozone impact of the
rule nationally is positive for the majority of the analysis metrics.  Tables III-16 and III-17 shows
that even within the few CMSAs/MSAs that experience periodic ozone increases, these
disbenefits are infrequent relative to the benefits accrued at ozone levels above the NAAQS. 
Furthermore, and most importantly the overall air quality impact of the proposed controls is
projected to be strongly positive due to the expected reductions in fine particulate matter (see
section D, below).
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Table III-16.  Comparison of model projected disbenefits resulting from the rule in 2020.

Considered 94
CMSA/MSAs

Cells  > 85 ppb in 2020
Base, 
% that Increase

Cells > 85 ppb in 2020
Control,
% resulting from rule

Cells > 85 in Base or
Control,
Largest increase (ppb)

Percentage reduction in
cells >= 85 ppb

Composite East 3.4% 0.6% 10.7 -13.7%

Composite West 13.1% 1.5% 6.2 -8.3%

Areas w/ disbenefits
New Haven-Bridgeport-
Stamford, CT 29.4% 10.4% 2.2 -5.9%

Chicago 20.1% 3.1% 9.2 -8.5%

New York City 15.1% 3.9% 10.7 -6.7%

Los Angeles 14.4% 1.7% 6.2 -6.5%

Detroit 13.5% 0.0% 3.2 -15.5%

New Orleans, LA 2.2% 0.1% 0.6 -2.4%

Milwaukee 1.8% 0.0% 0.2 -22.8%

Philadelphia 1.4% 0.6% 1.3 -19.6%

Washington-Baltimore 0.4% 0.0% 0.3 -35.9%

Houston 0.4% 0.0% 0.7 -10.6%

Areas w/ no disbenefits
Baton Rouge, LA 0.0% 0.0% 0 -3.1%

Lake Charles, LA 0.0% 0.0% 0 -4.7%

Buffalo-Niagara Falls, NY 0.0% 0.0% 0 -5.9%

Beaumont-Port Arthur, TX 0.0% 0.0% 0 -6.6%

Benton Harbor, MI 0.0% 0.0% 0 -6.8%

Biloxi-Gulfport-Pascagoula, MS 0.0% 0.0% 0 -7.8%

Atlanta, GA 0.0% 0.0% 0 -8.3%

New London - Norwich CT 0.0% 0.0% 0 -9.4%

Barnstable-Yarmouth, MA 0.0% 0.0% 0 -10.7%

Macon, GA 0.0% 0.0% 0 -11.1%

Louisville, KY-IN 0.0% 0.0% 0 -13.2%
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Harrisburg-Lebanon-Carlisle, 0.0% 0.0% 0 -14.0%

Grand Rapids-Muskegon- 0.0% 0.0% 0 -14.0%

Columbus, GA-AL 0.0% 0.0% 0 -15.6%

Memphis, TN-AR-MS 0.0% 0.0% 0 -17.3%

Richmond-Petersburg, VA 0.0% 0.0% 0 -17.9%

Huntington-Ashland, WV-KY- 0.0% 0.0% 0 -20.0%

Pensacola, FL 0.0% 0.0% 0 -21.2%

Bakersfield, CA 0.0% 0.0% 0 -21.4%

Hartford, CT 0.0% 0.0% 0 -21.4%

Phoenix, AZ 0.0% 0.0% 0 -23.9%

Lancaster, PA 0.0% 0.0% 0 -25.0%

Providence, RI 0.0% 0.0% 0 -25.0%

Toledo, OH 0.0% 0.0% 0 -25.0%

Shreveport, LA 0.0% 0.0% 0 -26.7%

Evansville-Henderson, IN-KY 0.0% 0.0% 0 -27.3%

St. Louis, MO-IL 0.0% 0.0% 0 -28.6%

Cincinnati 0.0% 0.0% 0 -29.5%

Chattanooga, TN 0.0% 0.0% 0 -31.8%

Charleston, WV 0.0% 0.0% 0 -33.3%

Pittsburgh, PA 0.0% 0.0% 0 -34.1%

Nashville, TN 0.0% 0.0% 0 -36.7%

Sheboygan, WI 0.0% 0.0% 0 -37.5%

Youngstown-Warren, OH 0.0% 0.0% 0 -37.5%

Columbus, OH 0.0% 0.0% 0 -37.9%

Birmingham, AL 0.0% 0.0% 0 -39.3%

Augusta-Aiken, GA-SC 0.0% 0.0% 0 -40.0%

Reading, PA 0.0% 0.0% 0 -40.0%

Boston 0.0% 0.0% 0 -40.5%

Cleveland 0.0% 0.0% 0 -44.3%

Norfolk-Virginia Beach-Newport 0.0% 0.0% 0 -50.0%

Sarasota-Bradenton, FL 0.0% 0.0% 0 -54.5%

Canton-Massillon, OH 0.0% 0.0% 0 -55.0%

Springfield, MA 0.0% 0.0% 0 -57.1%

Charlotte-Gastonia-Rock Hill, 0.0% 0.0% 0 -63.2%

Jamestown, NY 0.0% 0.0% 0 -66.7%

Little Rock, AR 0.0% 0.0% 0 -66.7%
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Scranton-Wilkes Barre, PA 0.0% 0.0% 0 -69.2%

Allentown-Bethlehem-Easton, 0.0% 0.0% 0 -70.0%

Janesville-Beloit, WI 0.0% 0.0% 0 -72.7%

Dallas 0.0% 0.0% 0 -75.0%

San Diego, CA 0.0% 0.0% 0 -75.0%

Longview-Marshall, TX 0.0% 0.0% 0 -75.0%

Parkersburg-Marietta, WV 0.0% 0.0% 0 -75.0%

Erie, PA 0.0% 0.0% 0 -80.0%

Indianapolis, IN 0.0% 0.0% 0 -80.0%

Areas w/ no exceedances in control
Dayton-Springfield, OH 0.0% 0 -100.0%
Tulsa, OK 0.0% 0 -100.0%
York, PA 0.0% 0 -100.0%

Areas w/ no exceedances in base or control
Austin-San Marcos, TX
Clarksville-Hopkinsville, TN-KY
Columbia, SC
Dover, DE
Fayetteville, NC
Fresno, CA
Fort Wayne, IN
Greensboro-Winston Salem,
NC
Greenville-Spartanburg, SC
Hickory-Morganton, NC
Huntsville, AL
Johnson City, TN
Johnstown, PA
Knoxville, TN
Lima, OH
Merced, CA
Modesto, CA
Montgomery, AL
Raleigh-Durham, NC
Roanoke, VA
Rocky Mount, NC
Sacramento, CA
San Francisco, CA
Sharon, PA

Visalia-Tulare, CA
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Table III-17.  Comparison of model projected disbenefits resulting from the rule in 2030.

Considered 84 CMSA/MSAs over
the Eastern U.S. (2030)

of cells > 85 ppb in
base, % that increase

of cells > 85 ppb in
control, % due to the
rule

Largest Increase
(ppb), cells >   85 in
base or control

percent reduction in
cells >= 85 ppb (8-
hour averages)

Composite Eastern U.S. 3.0% 0.7% 16.1 -20.5%

Composite Western U.S. 11.0% 2.4% 9.3 -13.3%

Areas w/ disbenefits
New Haven-Bridgeport-Stamford, CT 23.1% 1.8% 2.1 -15.4%

Chicago 16.9% 5.2% 14.2 -13.2%

New York City 14.0% 3.1% 16.1 -13.5%

Detroit 9.6% 1.2% 4.2 -21.6%

New Orleans, LA 2.2% 0.0% 0.8 -4.6%

Philadelphia 1.3% 0.0% 1.8 -28.4%

Houston 0.3% 0.2% 0.9 -13.5%

Phoenix 0.0% 5.1% 1.4 -35.0%

Areas w/o disbenefits
Baton Rouge, LA 0.0% 0.0% 0 -4.9%

Lake Charles, LA 0.0% 0.0% 0 -7.7%

Beaumont-Port Arthur, TX 0.0% 0.0% 0 -8.6%

Biloxi-Gulfport-Pascagoula, MS 0.0% 0.0% 0 -8.8%

Buffalo-Niagara Falls, NY 0.0% 0.0% 0 -11.1%

Benton Harbor, MI 0.0% 0.0% 0 -11.3%

Macon, GA 0.0% 0.0% 0 -15.9%

Atlanta, GA 0.0% 0.0% 0 -16.0%

New London - Norwich CT 0.0% 0.0% 0 -22.2%

Grand Rapids-Muskegon-Holland, MI 0.0% 0.0% 0 -23.9%

Louisville, KY-IN 0.0% 0.0% 0 -24.1%

Memphis, TN-AR-MS 0.0% 0.0% 0 -26.2%

Pensacola, FL 0.0% 0.0% 0 -26.4%

Barnstable-Yarmouth, MA 0.0% 0.0% 0 -26.7%

Columbus, GA-AL 0.0% 0.0% 0 -26.7%

Harrisburg-Lebanon-Carlisle, PA 0.0% 0.0% 0 -27.9%

Chattanooga, TN 0.0% 0.0% 0 -28.6%
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Providence, RI 0.0% 0.0% 0 -29.8%

Richmond-Petersburg, VA 0.0% 0.0% 0 -30.0%

Bakersfield, CA 0.0% 0.0% 0 -31.3%

Charleston, WV 0.0% 0.0% 0 -33.3%

Hartford, CT 0.0% 0.0% 0 -33.3%

Milwaukee 0.0% 0.0% 0 -33.9%

Huntington-Ashland, WV-KY-OH 0.0% 0.0% 0 -34.5%

Shreveport, LA 0.0% 0.0% 0 -36.4%

Sheboygan, WI 0.0% 0.0% 0 -37.5%

Augusta-Aiken, GA-SC 0.0% 0.0% 0 -40.0%

Cincinnati 0.0% 0.0% 0 -44.0%

St. Louis, MO-IL 0.0% 0.0% 0 -44.2%

Boston 0.0% 0.0% 0 -47.8%

Pittsburgh, PA 0.0% 0.0% 0 -48.9%

Birmingham, AL 0.0% 0.0% 0 -49.1%

Lancaster, PA 0.0% 0.0% 0 -50.0%

Reading, PA 0.0% 0.0% 0 -50.0%

Toledo, OH 0.0% 0.0% 0 -50.0%

Washington-Baltimore 0.0% 0.0% 0 -53.9%

Evansville-Henderson, IN-KY 0.0% 0.0% 0 -54.5%

Canton-Massillon, OH 0.0% 0.0% 0 -57.1%

Cleveland 0.0% 0.0% 0 -58.0%

Nashville, TN 0.0% 0.0% 0 -59.6%

Norfolk-Virginia Beach-Newport News 0.0% 0.0% 0 -61.5%

Columbus, OH 0.0% 0.0% 0 -64.7%

Little Rock, AR 0.0% 0.0% 0 -66.7%

Charlotte-Gastonia-Rock Hill, NC-SC 0.0% 0.0% 0 -71.4%

Springfield, MA 0.0% 0.0% 0 -71.4%

Parkersburg-Marietta, WV 0.0% 0.0% 0 -75.0%

San Diego, CA 0.0% 0.0% 0 -75.0%

Sarasota-Bradenton, FL 0.0% 0.0% 0 -75.0%

Youngstown-Warren, OH 0.0% 0.0% 0 -77.8%

Allentown-Bethlehem-Easton, PA 0.0% 0.0% 0 -80.0%

Longview-Marshall, TX 0.0% 0.0% 0 -80.0%

Scranton-Wilkes Barre, PA 0.0% 0.0% 0 -81.5%

Erie, PA 0.0% 0.0% 0 -81.8%
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Jamestown, NY 0.0% 0.0% 0 -83.3%

Janesville-Beloit, WI 0.0% 0.0% 0 -84.6%

Indianapolis, IN 0.0% 0.0% 0 -87.5%

Areas w/ no exceedances in control
Dallas 0.0% 0 -100.0%

Dayton-Springfield, OH 0.0% 0 -100.0%

Tulsa, OK 0.0% 0 -100.0%

York, PA 0.0% 0 -100.0%

Areas w/ no exceedances in base or control
Austin-San Marcos, TX 0

Clarksville-Hopkinsville, TN-KY 0

Columbia, SC 0

Dover, DE 0

Fayetteville, NC 0

Fort Wayne, IN 0

Greensboro-Winston Salem, NC 0

Greenville-Spartanburg, SC 0

Hickory-Morganton, NC 0

Huntsville, AL 0

Johnson City, TN 0

Johnstown, PA 0

Knoxville, TN 0

Lima, OH 0

Montgomery, AL 0

Raleigh-Durham, NC 0

Roanoke, VA 0

Rocky Mount, NC 0

Sharon, PA 0
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IV.  Particulate Matter Modeling over the Continental U.S.

A.  REMSAD Model Description

The REgional Modeling System for Aerosols and Deposition (REMSAD) Version 7.01
(ICF Kaiser, 2002) model was used as the tool for simulating Base Year and future
concentrations of PM in support of the NLDE air quality assessments.  Model runs were made for
the 1996 Base Year as well as for the 2020 and 2030 Base and Control scenarios.  As described
below, each of these emissions scenarios was simulated using 1996 meteorological data in order
to provide the annual mean PM concentrations, nitrogen deposition, and estimates of visibility
needed for the PM “exposure” analysis and benefits calculations.

The basis for REMSAD is the atmospheric diffusion equation (also called the species
continuity or advection/diffusion equation).  This equation represents a mass balance in which all
of the relevant emissions, transport, diffusion, chemical reactions, and removal processes are
expressed in mathematical terms.  REMSAD employs finite-difference numerical techniques for
the solution of the advection/diffusion equation.  

REMSAD was run using a latitude/longitude horizontal grid structure in which the
horizontal grids are generally divided into areas of equal latitude and longitude.  The vertical layer
structure of REMSAD is defined in terms of sigma-pressure coordinates.  The top and bottom of
the domain are defined as 0 and 1 respectively.  The vertical layers are defined as a percent of the
atmospheric pressure between the top and bottom of the domain.  For example, a vertical layer of
0.50 sigma is exactly halfway between the top and bottom of the domain as defined by the local
atmospheric pressure.  Usually, the vertical layers are defined to match the vertical layer structure
of the meteorological model used to generate the REMSAD meteorological inputs. 

1.  Gas Phase Chemistry

REMSAD simulates gas phase chemistry using a reduced-form version of Carbon Bond
(CB4) chemical mechanism termed “micro-CB4” (mCB4) which treats fewer VOC species
compared to the full CB4 mechanism.  The inorganic and radical parts of the reduced mechanism
are identical to CB4.  In this version of mCB4 the organic portion is based on one primary species
(VOC) and one primary and secondary carbonyl species (CARB).  The VOC species was
incorporated with kinetics representing an average anthropogenic hydrocarbon species.  A second
primary VOC species representing biogenic emissions is also included with kinetic characteristics
representing isoprene.  The intent of the mCB4 mechanism is to (a) provide a physically faithful
representation of the linkages between emissions of ozone precursor species and secondary PM
precursors species, (b) treat the oxidizing capacity of the troposphere, represented primarily by
the concentrations of radicals and hydrogen peroxide, and (c) simulate the rate of oxidation of the
nitrogen oxide (NOx) and sulfur dioxide (SO2) PM precursors.  Box model testing of mCB4 has
found that it performs very closely to the full CB4 that is contained in UAM-V (Whitten, 1999).

REMSAD version 7.01 includes several updates to the mCB4 mechanism relative to
earlier versions of REMSAD.  A new treatment for the NO3 and N2O5 species has been
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implemented which results in improved agreement with rigorous solvers such as Gear and
eliminates nitrogen mass inconsistencies.  Also, several additional reactions have been added to
the mCB4 mechanism which may be important for regional scale and annual applications where
wide ranges in temperature, pressure, and concentrations may be encountered.  The reactions are
OH + H, OH + NO3, and HO2 + NO3.  For the same reason three reactions involving peroxy nitric
acid (PNA), which were included in the original CB4 mechanism, were added to mCB4.    

2.  PM Chemistry

Primary PM emissions in REMSAD are treated as inert species.  They are advected and
deposited without any chemical interaction with other species.  Secondary PM species, such as
sulfate and nitrate are formed through chemical reactions within the model.  SO2 is the gas phase
precursor for particulate sulfate, while nitric acid is the gas phase precursor for particulate nitrate. 
Several other gas phase species are also involved in the secondary reactions.

There are two pathways for sulfate formation; gas phase and aqueous phase.  Aqueous
phase reactions take place within clouds, rain, and/or fog.  In-cloud processes can account for the
majority of atmospheric sulfate formation in many areas.  In REMSAD, aqueous SO2 reacts with
hydrogen peroxide (H2O2), ozone (O3), and/or oxygen (O2) to form aerosol sulfate.  REMSAD
version 7 has been upgraded to include all three aqueous phase sulfate reactions.  Previous
versions only contained the hydrogen peroxide reaction.  The rate of the aqueous phase reactions
depends on the concentrations of the chemical reactants as well as cloud water content.  SO2 also
reacts with OH radicals in the gas phase to form aerosol sulfate.  The aqueous phase and gas
phase sulfate is typically added together to get the total sulfate concentration.

An equilibrium algorithm is used to calculate particulate nitrate concentrations.  REMSAD
version 7.01 uses the MARS-A equilibrium algorithm (Saxena, et al., 1986) and (Kim et al.,
1993).  In REMSAD, particulate nitrate is calculated in an equilibrium reaction between nitric
acid, sulfate, and ammonia.  Nitric acid is a product of gas phase chemistry and is formed through
the mCB4 reactions.  The acids are neutralized by ammonia with sulfate reacting more quickly
than nitric acid.  An equilibrium  is established among ammonium sulfate and ammonium nitrate
which strongly favors ammonium sulfate.  If the available ammonia exceeds twice the available
sulfate then particulate nitrate is allowed to form as ammonium nitrate.  Nitrate is then partitioned
between particulate nitrate and gas phase nitric acid.  The partitioning of nitrate depends on the
availability of ammonia as well meteorological factors such as temperature and relative humidity. 

Organic aerosols can contribute a significant amount to the PM in the atmosphere. 
Primary organic aerosols (POA) are treated as a directly emitted species in REMSAD. In
REMSAD version 7.  A calculation of the production of secondary organic aerosols (SOA) due to
atmospheric chemistry processes has been added.  A peer review of the REMSAD model
(Seigneur et al., 1999) recommended an SOA module based on the equilibrium approach of
Pankow  (Odum et al., 1997) and (Griffin et al., 1999). The implementation of the SOA treatment
in version 7 of REMSAD follows the recommendation of the peer review.  This includes SOA
formation from anthropogenic and biogenic organic precursors.  For both anthropogenic and
biogenic organics REMSAD includes gas phase secondary organic species and the corresponding
aerosol phase species. 
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B.  REMSAD Modeling Domain

The REMSAD domain used for the NLDE modeling is shown in Figure IV-1.  The
geographic characteristics of the domain are as follows:

120 (E-W) X 84 (N-S) grid cells
Cell size (~36 km)

½ degree longitude (0.5)
1/3 degree latitude (0.3333)

E-W range: 66 degrees W - 126 degrees W
N-S range:  24 degrees N - 52 degrees N
Vertical extent: Ground to 16,200 meters (100mb) with 12 layers

Figure IV-1. 
REMSAD
Modeling Domain.
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C.  REMSAD  Inputs

Input data for REMSAD can be classified into six categories:  (1) simulation control, (2)
emissions, (3) initial and boundary concentrations, (4) meteorological, (5) surface characteristics,
and (6) chemical rates.  The REMSAD predictions of pollutant concentrations are calculated from
the emissions, advection, and dispersion processes coupled with the formation and deposition of
secondary PM species within every grid cell of the modeling domain.  To adequately replicate the
full three-dimensional structure of the atmosphere, the REMSAD program uses hourly input data
for a number of variables.  Table IV-1 lists the required REMSAD input files.

Table IV-1.  List of REMSAD input files.

Data type Files Description
Control CONTROL Simulation control information

Emissions PTSOURCE
EMISSIONS

Elevated source emissions 
Surface emissions

Initial and
boundary

concentrations

AIRQUALITY
BOUNDARY  

Initial concentrations
Lateral boundary concentrations

Meteorological WIND
TEMPERATURE 

PSURF
H2O 

VDIFFUSION 
RAIN

X,Y-components of winds
3D array of temperature

2D array of surface pressure
3D array of water vapor

3D array of vertical turbulent diffusivity
coefficients

3D array of cloud water mixing ratio
3D array of rain water mixing ratio

2D array of rainfall rates
Surface 

characteristics
SURFACE 
TERRAIN

Gridded land use
Terrain heights

Chemical rates CHEMPARAM 
RATES

Chemical reaction rates
Photolysis rates file
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1.  Meteorological Data

REMSAD requires input of winds (u- and v-vector wind components), temperatures,
surface pressure, specific humidity, vertical diffusion coefficients, and rainfall rates.  The
meteorological input files were developed from a 1996 annual MM5 model run that was
developed for previous projects.  MM5 is the Fifth-Generation NCAR / Penn State Mesoscale
Model.  MM5 (Grell et. al., 1994) is a numerical meteorological model that solves the full set of
physical and thermodynamic equations which govern atmospheric motions. MM5 was run in a
nested-grid mode with 2 levels of resolution: 108 km, and 36km with 23 vertical layers sigma
layers extending from the surface to the 100 mb pressure level.  The model was simulated in five
day segments with an eight hour ramp-up period.  The MM5 runs were started at 00Z, which is
7:00 p.m. EST.  The first eight hours of each five day period were removed before being input
into REMSAD.  Figure IV-2 shows the MM5 and REMSAD 36km domain superimposed on each
other.  Table IV-2 lists the vertical grid structures for the MM5 and REMSAD domains.  Further
detailed information concerning the development and evaluation of the 1996 MM5 datasets can be
found in (Olerud, 2000).

Figure IV-2.   MM5 36km Domain (solid box) and REMSAD Domain (dashed lines).
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Table IV-2. Vertical Grid Structure for 1996 MM5 and NLDE REMSAD Domains.  Layer
heights represent the top of each layer.  The first layer is from the ground up to 38 meters.

REMSAD 
Layer MM5 Layer

 

Sigma

Approximate

Height(m) Pressure(mb) 

0    0 1.000     0.0    1000.0

1    1 0.995    38.0     995.5

2    2 0.988    91.5     989.2

   3 0.980   152.9     982.0

3    4 0.970   230.3     973.0

   5 0.956   339.5     960.4

4    6 0.938   481.6     944.2

   7 0.916   658.1     924.4

5    8 0.893   845.8     903.7

   9 0.868  1053.9     881.2

6   10 0.839  1300.7     855.1

  11 0.808  1571.4     827.2

7   12 0.777  1849.6     799.3

  13 0.744  2154.5     769.6

8   14 0.702  2556.6     731.8

  15 0.648  3099.0     683.2

9   16 0.582  3805.8     623.8

  17 0.500  4763.7     550.0

10   18 0.400  6082.5     460.0

  19 0.300  7627.9     370.0

11   20 0.200  9510.5     280.0

  21 0.120 11465.1     208.0

  22 0.052 13750.2     146.0

12   23 0.000 16262.4     100.0

The physical options selected for this configuration of MM5 include the following:

1. One-way nested grids
2. Nonhydrostatic dynamics
3. Four-dimensional data assimilation (FDDA):

• Analysis nudging of wind, temperature, and mixing ratios
• Nudging coefficients range from 1.0 × 10-5 s-1 to 3.0 × 10-4 s-1

4.    Explicit moisture treatment:
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• 3-D predictions of cloud and precipitation fields
• Simple ice microphysics (summer) and Mixed ice microphysics (winter)
• Cloud effects on surface radiation
• Moist vertical diffusion in clouds
• Normal evaporative cooling

5. Boundary conditions:
• Time and inflow/outflow relaxation

6. Cumulus cloud parameterization schemes: 
• Anthes-Kuo (108-km grid)
• Kain-Fritsch (36-km grid)

7. No shallow convection
8. Full 3-dimensional Coriolis force
9. Drag coefficients vary with stability
10. Vertical mixing of momentum in mixed layer
11. Virtual temperature effects
12.  PBL process parameterization: MRF scheme
13. Surface layer parameterization:

• Fluxes of momentum, sensible and latent heat 
• Ground temperature prediction using energy balance equation 
• 24 land use categories 

14. Atmospheric radiation schemes: 
• Simple cooling 
• Long- and short-wave radiation scheme 

15. Sea ice treatment: 
• Forced Great Lakes/Hudson Bay to permanent ice under very cold conditions

     • 36-km treatment keyed by observations of sea ice over the Great Lakes 
16. Snow cover: 

• Assumed no snow cover for July and August
• National Center for Environmental Prediction (NCEP) snow cover for January to

June, and for September to December 

The MM5 model output cannot be directly input into REMSAD due to differences in the
grid coordinate systems and file formats.  A postprocessor called MM5-REMSAD was developed
to convert the MM5 data into REMSAD format.  This postprocessor was used to develop hourly
average meteorological input files from the MM5 output.  Documentation of the MM5REMSAD
code and further details on the development of the input files is contained in (Mansell, 2000).  

2.  Initial and Boundary Conditions, and Surface Characteristics

Application of the REMSAD modeling system requires data files specifying the initial
species concentration fields (AIRQUALITY) and lateral species concentrations (BOUNDARY). 
Due to the extent of the proposed modeling domains and the regional-scale nature of the
REMSAD model, these inputs were developed based on “clean” background concentration
values.  The NLDE modeling used temporally and spatially (horizontal) invariant data for both
initial and boundary conditions.  Species concentration values were allowed to decay vertically for
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most species.  Table IV-3 summarizes the initial and boundary conditions used in the NLDE
REMSAD modeling.

Table IV-3.  REMSAD Initial and Boundary Conditions (ppm)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

NO 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 8.44E-13 5.15E-13 1.72E-13 1.72E-13

NO2 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 8.44E-05 5.15E-05 1.72E-05 1.72E-05

O3 3.50E-02 3.50E-02 3.50E-02 3.50E-02 4.00E-02 4.00E-02 5.00E-02 5.00E-02 6.00E-02 6.00E-02 6.00E-02 7.00E-02

CO 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02 8.00E-02

SO2 3.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04 3.00E-04 2.53E-04 1.55E-04 5.15E-05 5.15E-05

NH3 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 7.12E-05 2.66E-05 2.95E-06 2.95E-06

VOC 2.00E-02 2.00E-02 2.00E-02 2.00E-02 2.00E-02 2.00E-02 2.00E-02 2.00E-02 1.69E-02 1.03E-02 3.44E-03 3.44E-03

CARB 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07

ISOP 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09

HNO3 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 8.44E-06 5.15E-06 1.72E-06 1.72E-06

PNO3 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 7.12E-06 2.66E-06 2.95E-07 2.95E-07

HG0 2.00E-07 2.00E-07 2.00E-07 2.00E-07 2.00E-07 2.00E-07 2.00E-07 2.00E-07 1.42E-07 5.31E-08 5.90E-09 5.90E-09

HG2G 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 7.12E-13 2.66E-13 2.95E-14 2.95E-14

GSO4 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 7.12E-06 2.66E-06 2.95E-07 2.95E-07

ASO4 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 7.12E-13 2.66E-13 2.95E-14 2.95E-14

NH4N 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 7.12E-06 2.66E-06 2.95E-07 2.95E-07

NH4S 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 1.00E-05 7.12E-06 2.66E-06 2.95E-07 2.95E-07

SOA 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 7.12E-04 2.66E-04 2.95E-05 2.95E-05

POA 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 7.12E-04 2.66E-04 2.95E-05 2.95E-05

PEC 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 7.12E-04 2.66E-04 2.95E-05 2.95E-05

PMFINE 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 7.12E-04 2.66E-04 2.95E-05 2.95E-05

PMCOARS 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 6.00E-04 1.37E-04 5.07E-06 5.07E-06

HG2P 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 7.12E-13 2.66E-13 2.95E-14 2.95E-14

Application of the REMSAD model requires specification of gridded terrain elevations
(TERRAIN) and landuse characteristics (SURFACE).  The SURFACE data files provides the
fraction of the 11 landuse categories recognized by REMSAD in each grid cell.  Landuse
characteristics are used in the model for the calculation of deposition parameters.  For this task, a
landuse/terrain processor, PROC_LUTERR,  was developed based on the MM5 TERRAIN
preprocessor.  Landuse data was obtained from the USGS Global 30 sec. vegetation database
which is the same database used in the 1996 MM5 models runs.  This dataset provides 24 landuse
categories, including urban.  For the REMSAD application, the 10 min. (1/6 deg.) datasets was
utilized.  The processor remapped the 24 USGS vegetation categories to those required for
application of REMSAD.  It also aggregated the 10 min resolution data to the ~36 km horizontal
resolution used for this REMSAD application.

For the TERRAIN input data files, a similar global terrain elevation dataset is also
available from NCAR and was used for this task.  While it is possible to use the terrain elevations
obtained from the MM5 model output data files, it was deemed more appropriate to begin with



11The dividing line between the West and East was defined as the 100th meridian.
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the USGS 10 min. resolution database due to the various map projections and interpolations
involved in developing the required data files for the geodetic coordinates used in REMSAD. 
However, because proper application of REMSAD will require zero terrain elevations, “dummy”
terrain files (with all zeroes) were developed and provided for input to REMSAD. 

D.  Model Performance Evaluation

The goal of the 1996 Base Year modeling was to reproduce the atmospheric processes
resulting in formation and dispersion of fine particulate matter across the U.S. An operational
model performance evaluation for PM2.5 and its related speciated components (e.g., sulfate,
nitrate, elemental carbon etc.) for 1996 was performed in order to estimate the ability of the
modeling system to replicate Base Year concentrations.  All of the observational data used in this
analysis can be found at the CAPITA website:

http://capita.wustl.edu/datawarehouse/Datasets/CAPITA/NAMPM_fine/Data/NAMPM_f.html 

This evaluation is comprised principally of statistical assessments of model versus
observed pairs.  The robustness of any evaluation is directly proportional to the amount and
quality of the ambient data available for comparison.  Unfortunately, there are few PM2.5
monitoring networks with available data for evaluation of the NLDE PM modeling.  Critical
limitations of the 1996 databases are a lack of urban monitoring sites with speciated
measurements and poor geographic representation of ambient concentration in the East. PM2.5
monitoring networks were expanded in 1999 to include more than 1000 Federal Reference
Method (FRM) monitoring sites.  The purpose of this network is to monitor PM2.5 mass levels in
urban areas.  These monitors only measure total PM2.5 mass and do not measure PM species.  In
2002 a new network of ~300 urban oriented speciation monitor sites began operation across the
country.  These monitors collect a full range of PM2.5 species that are necessary to evaluate
models and to develop PM2.5 control strategies. 

The largest available ambient database for 1996 comes from the  Interagency Monitoring
of PROtected Visual Environments (IMPROVE) network.  IMPROVE is a cooperative visibility
monitoring effort between EPA, federal land management agencies, and state air agencies.  Data
is collected at Class I areas across the United States mostly at National Parks, National
Wilderness Areas, and other protected pristine areas (IMPROVE 2000).  There were
approximately 60 IMPROVE sites that had complete annual PM2.5 mass and/or PM2.5 species data
for 1996.    Forty two sites were in the West11 and 18 sites were in the East.  Figure IV-3 shows
the locations of the IMPROVE monitoring sites used in this evaluation.  IMPROVE data is
collected twice weekly (Wednesday and Saturday).  Thus, there is a total of 104 possible samples
per year or 26 samples per season.  For this analysis, a 50% completeness criteria was used.  That
is, in order to be counted in the statistics a site had to have > 50% complete data in all 4 seasons. 
If any season was missing, an annual average was not calculated for the site.  See Appendix G for
a list of the IMPROVE sites used in the evaluation. The observed IMPROVE data used for the
performance evaluation was PM2.5 mass, sulfate ion, nitrate ion, elemental carbon, organic
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aerosols, and crustal material (soils).  The REMSAD model output species were postprocessed in
order to achieve compatibility with the observation species.  The following is the translation of
REMSAD output species into PM2.5 and related species:

Sulfate Ion: TSO4 = ASO4 + GSO4
Nitrate Ion: PNO3
Anthropogenic SOA SOA1 + SOA2
Biogenic SOA SOA3 + SOA4
Organic aerosols: TOA = 1.167POA + SOA1 + SOA2 + SOA3 + SOA4
Elemental Carbon: PEC
Crustal Material (soils): PMFINE
PM2.5: PM2.5 = PMFINE + ASO4 + GSO4 + NH4S +

PNO3 + NH4N + 1.167*POA + PEC + 
SOA1 + SOA2 + SOA3 + SOA4

where, TSO4 is total sulfate ion, ASO4 is aqueous path sulfate, GSO4 is gaseous path sulfate,
NH4S is ammonium associated with sulfate,  PNO3 is nitrate ion, NH4N is ammonium associated
with nitrate, TOA is total organic aerosols, POA is primary organic aerosol, SOA1 and SOA2 are
anthropogenic secondary organic aerosol, SOA3 and SOA4 are biogenic secondary organic
aerosol, PEC is primary elemental carbon, and PMFINE is primary fine particles (other
unspeciated primary PM2.5).  PM2.5 is defined as the sum of the individual species.  POA is
multiplied by 1.167 to make modeled organic mass equivalent to monitored organic mass.

Figure IV-3.  Map of 1996 IMPROVE monitoring sites used in the REMSAD model

performance evaluation.

1.  Statistical Definitions
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Below are the definitions of statistics used for the evaluation.  The format of all the
statistics is such that negative values indicate model predictions that were less than their observed
counterparts.  Positive statistics indicate model overestimation of observed PM..  The statistics
were calculated for the entire REMSAD domain and separated for the east and the west.  The
dividing line between East and West is the 100th meridian.

Mean Observation: The mean observed value (in ug/m3) averaged over all monitored days in
the year and then averaged over all sites in the region.

Mean REMSAD Prediction: The mean predicted value (in ug/m3) paired in time and space with
the observations and then averaged over all sites in the region.

Ratio of the Means: Ratio of the predicted over the observed values.  A ratio of greater than 1
indicates on overprediction and a ratio of less than 1 indicates an underprediction.

Mean Bias (ug/m3):  This performance statistic averages the difference (model - observed) over
all pairs in which the observed values were greater than zero.  A mean bias of zero indicates that
the model over predictions and model under predictions exactly cancel each other out.  Note that
the model bias is defined such that it is a positive quantity when model prediction exceeds the
observation, and vice versa.  This model performance estimate is used to make statements about
the absolute or unnormalized bias in the model simulation

Mean Fractional Bias (percent): Normalized bias can become very large when a minimum
threshold is not used.  Therefore fractional bias is used as a substitute.  The fractional bias for
cases with factors of 2 under- and over-prediction are -67 and + 67 percent, respectively (as
opposed to -50 and +100 percent, when using normalized bias, which is not presented here). 
Fractional bias is a useful model performance indicator because it has the advantage of equally
weighting positive and negative bias estimates. The single largest disadvantage in this estimate of
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model performance is that the estimated concentration (i.e., prediction, Pred) is found in both the
numerator and denominator.  

Mean Error (ug/m3): This performance statistic averages the absolute value of the difference
(model - observed) over all pairs in which the observed values were greater than zero.  It is similar
to mean bias except that the absolute value of the difference is used so that the error is always
positive. 

Mean Fractional Error:  Normalized error can become very large when a minimum threshold is
not used.  Therefore fractional error is used as a substitute.  It is similar to the fractional bias
except the absolute value of the difference is used so that the error is always positive. 

2. Results of REMSAD Performance Evaluation

The statistics described above are presented for the entire domain, the Eastern sites, and
the Western sites.  The model’s ability to replicate annual average PM2.5 and PM2.5 species
concentrations at the IMPROVE sites is as follows:

a. PM2.5 Performance

Table IV-4 lists the performance statistics for PM2.5 at the IMPROVE sites.   For the full
domain, PM2.5 is underpredicted by 34%.  The ratio of the means is 0.66 with a bias of -2.12
ug/m3.  It can be seen that most of this underprediction is due to the Western sites.  The West is
underpredicted by 50% while the East is underpredicted by 18%.  The fractional bias is ~24% in
the East, while the fractional error is 49.5%. The fractional bias and error in the West is 52.5%
and 77% respectively. The observed PM2.5 concentrations in the East are relatively high compared
to the West.  REMSAD displays an ability to differentiate between generally high and low PM2.5
areas.

Table IV-4.  Annual mean PM2.5 performance at IMPROVE sites.
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No. of
Sites

Mean
REMSAD
Predictions
(ug/m3)

Mean
Observations
(ug/m3)

Ratio of
Means
(pred/obs)

 Bias
(ug/m3)

Fractional
Bias (%)

 Error
(ug/m3)

Fractional
Error (%)

National 54 4.09 6.21 0.66 -2.12 -44.6 3.29 69.4

East 15 9.17 11.15 0.82 -1.98 -24.1 4.57 49.5

West 39 2.13 4.31 0..50 -2.18 -52.5 2.80 77.0

b. Sulfate Performance

Table IV-5 lists the performance statistics for particulate sulfate at the IMPROVE sites. 
Domainwide, sulfate performance is better than PM2.5 with a sulfate underprediction of 20%.
The annual sulfate underprediction in the east is 11%  and 40% in the West. 

Table IV-5.  Annual mean sulfate ion performance at IMPROVE sites.

No. of
Sites

Mean
REMSAD
Predictions
(ug/m3)

Mean
Observations
(ug/m3)

Ratio of
Means
(pred/obs)

 Bias
(ug/m3)

Fractional
Bias (%)

 Error
(ug/m3)

Fractional
Error (%)

National 58 1.26 1.59 0.80 -0.32 -39.5 0.80 69.3

East 16 3.50 3.93 0..89 -0.43 -29.2 1.82 60.5

West 42 0.42 0.69 0.60 -0.28 -43.4 0.42 72.6

c.  Elemental Carbon Performance

Table IV-6 lists the performance statistics for primary elemental carbon at the IMPROVE
sites.  Performance for elemental carbon is very good in the east with a 0% bias. There is a
domainwide underprediction of 15% and a western underprediction of 29%.

Table IV-6.  Annual mean elemental carbon performance at IMPROVE sites.

No. of
Sites

Mean
REMSAD
Predictions
(ug/m3)

Mean
Observation
s (ug/m3)

Ratio of
Means
(pred/obs)

 Bias
(ug/m3)

Fractional
Bias (%)

 Error
(ug/m3)

Fractional
Error (%)

National 47 0.27 0.32 0.85 -0.05 -13.9 0.17 58.7

East 15 0.487 0.484 1.00 0.003  1.13 0.20 41.7

West 32 0.17 0.24 0.71 -0.07 -21.1 0.16 66.8
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d. Organic Aerosol Performance

Table IV-7 lists the performance statistics for primary organic aerosols at the IMPROVE
sites.  Organic aerosols are underpredicted nationwide.  The East and West are equally
underpredicted by about 45%.  Both the fractional bias and fractional errors are higher than for
PM2.5, sulfate, and elemental carbon.  It is clear that the model and the emissions inventory are
not accounting for all of the organics that were observed. Wild fires which produce a lot of
organic aerosol emissions were not included in the modeling. This may be important for model
evaluation, but not necessarily for the NLDE analysis.  Also, improvements to the  REMSAD
secondary organic aerosol (SOA) module are currently taking place which will lead to greater
SOA production in future model runs.

Table IV-7.  Annual mean organic aerosol performance at IMPROVE sites.

No. of
Sites

Mean
REMSAD
Predictions
(ug/m3)

Mean
Observations
(ug/m3)

Ratio of
Means
(pred/obs)

 Bias
(ug/m3)

Fractional
Bias (%)

 Error
(ug/m3)

Fractional
Error (%)

National 47 0.94 1.76 0.54 -0.82 -53.9 1.18 82.9

East 15 1.41 2.49 0.56 -1.08 -57.4 1.49 74.9

West 32 0.72 1.41 0.51 -0.69 -52.3 1.04 86.7

e.  Nitrate Performance

Table IV-8 lists the performance statistics for nitrate ion at the IMPROVE sites.  Nitrate is
generally overpredicted in the East and underpredicted in the West.  Nitrate is overpredicted by
82% in the east and underpredicted by 55% in the west. Domainwide there is an overprediction of
4%.

It is important to consider these results in the context that the observed nitrate
concentrations at the IMPROVE sites are very low.  The mean nationwide observations are only
0.40 ug/m3.  It is often difficult for models to replicate very low concentrations of secondarily
formed pollutants.  Nitrate is generally a small percentage of the measured PM2.5 at almost all of
the IMPROVE sites.  Nitrate can be an important contributor to PM2.5 in some urban areas
(particularly in California) but performance for those areas could not be assessed due to the lack
of urban area speciated nitrate data for 1996. 

Table IV-8.  Annual mean nitrate ion performance at IMPROVE sites.
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No. of
Sites

Mean
REMSAD
Predictions
(ug/m3)

Mean
Observations
(ug/m3)

Ratio of
Means
(pred/obs)

 Bias
(ug/m3)

Fractional
Bias (%)

 Error
(ug/m3)

Fractional
Error (%)

National 48 0.41 0.39 1.04 0.02 -86.4 0.43 134.1

East 15 1.00 0.55 1.82 0.45 -16.1 0.74 106.2

West 33 0.14 0.32 0.45 -0.18 -118.0 0.29 146.7

f.  PMFINE-Other (crustal) Performance 

Table IV-9 lists the performance statistics for PMFINE-other or primary crustal emissions. 
The observations show crustal PM2.5 to be generally higher in the West than in the East.  But
REMSAD is predicting higher crustal concentrations in the East.  The largest categories of
PMFINE-other are fugitive dust sources such as paved roads, unpaved roads, construction, and
animal feed lots.  There is a large uncertainty in the handling of these emissions in the inventory. 
It is apparent that too much fugitive dust is being emitted in the East.  It is evident from the
performance statistics that further work needs to be done to study the magnitude of these
emissions and how they are emitted into the model.

Table IV-9.  Annual mean PMFINE (crustal) performance at IMPROVE sites.

No. of
Sites

Mean
REMSAD
Predictions
(ug/m3)

Mean
Observations
(ug/m3)

Ratio of
Means
(pred/obs)

 Bias
(ug/m3)

Fractional
Bias (%)

 Error
(ug/m3)

Fractional
Error (%)

National 57 0.85 0.64 1.32 0.21 38.4 0.79 93.7

East 16 1.62 0.53 3.04 1.09 103.1 1.34 115.6

West 41 0.56 0.69 0.81 -0.13 13.2 0.58 85.2

g.  Summary of Model Performance Results Using Improve Data

The purpose of this model performance evaluation was to evaluate the capabilities of the
REMSAD modeling system in reproducing annual average concentrations for all IMPROVE sites
in the contiguous U.S. for fine particulate mass and its associated speciated components.  When
considering annual average statistics (e.g., predicted versus observed), which are computed and
aggregated over all sites and all days, REMSAD underpredicted fine particulate mass (PM2.5), by
34%.. PM2.5  in the Eastern U.S. was underpredicted by 18%, while PM2.5 in the West was
underpredicted by 50%.  All PM2.5 component species were underpredicted in the west.  In the
east nitrate and crustal material are significantly overestimated.  Elemental carbon shows neither
over or underprediction in the east with a bias of 0%. Eastern sulfate is slightly underpredicted
with a bias of 11%.  Organic aerosol is significantly underpredicted in both the east and west.

It should be noted that PM2.5 modeling is an evolving science.  There have been few
regional or national scale model applications for primary and secondary PM.  In fact, this is the
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one of the first nationwide applications of a full chemistry Eulerian grid model for the purpose of
estimating annual average concentrations of PM2.5 and its component species.  Also, unlike ozone
modeling, there is essentially no database of past performance statistics against which to measure
the performance of the NLDE PM modeling.  Given the state of the science relative to PM
modeling, it is inappropriate to judge PM model performance using criteria derived for other
pollutants, like ozone.  Still, the performance of the NLDE PM modeling is very encouraging,
especially considering that the results may be limited by our current knowledge of PM science and
chemistry, and by the emissions inventories for primary PM and secondary PM precursor
pollutants.

E.  Visibility Calculations

Several visibility parameters were calculated from the REMSAD model output for use in
the benefits analysis.  These included  light extinction coefficient (bext) and deciviews.  The
extinction coefficient values in units of inverse megameters (1/M) were calculated based on the
IMPROVE protocol (IMPROVE, 2000). The reconstructed bext values were calculated as
follows:

bext = 10.0 + [3.0 * f(RH) * (1.375 * (GSO4 + ASO4)) + 3.0 * f(RH) * (1.29 * PNO3)+
         4.0 * (TOA) + 10.0 * PEC + 1.0 * (PMFINE) + 0.6 * (PMCOARS)]

The 10.0 initial value accounts for atmospheric background (i.e., Rayleigh) scattering. 
f(RH) refers to the relative humidity correction function as defined by IMPROVE (2000).  The
relative humidity correction factor was calculated from the 3-hour average modeled relative
humidity at each grid cell for each time period.  The 3-hour average bext was then calculated.  All
of the hours in the day were then averaged to derive a daily average bext for each grid cell.  The
daily average bext were averaged to derive the annual average bext.  The annual average bext were
used to calculate the annual average deciviews (dv) using the following formula:

F. Projected Future PM2.5 Design Values

 In order to assess the need for the NLDE controls and the impacts of these controls on
PM2.5 air quality, EPA projected 1999-2001 ambient PM2.5 design values (EPA, 2003b) to the
2020 and 2030 future year Base and Control scenarios.  To provide the future-year estimates of
PM2.5 concentrations, relative reduction factors (RRFs) were calculated then applied to the
ambient data.  The procedures for determining the RRFs are similar to those in EPA’s draft
guidance for demonstrating attainment of air quality goals for PM2.5 and regional haze (EPA,
2000b). One aspect of the procedures in the guidance is to develop RRFs for each component
species of PM2.5 and then to apply these to the corresponding species measured at the monitoring
site.  However, the only extensive nationwide data base of ambient PM2.5 data available at the
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time of this analysis does not contain speciated data.  Thus, the RRFs were calculated for PM2.5
and applied to the monitoring data as described as follows.  First, the REMSAD predictions of
individual PM2.5 component species were postprocessed to provide annual mean PM2.5
concentrations in each grid cell for the 1996 Base Year and each future year scenario modeled
(i.e., 2020 Base and Control and 2030 Base and Control).  The gridded data were used to
determine RRFs at each monitoring site with valid annual mean PM2.5 data.  The RRFs were
calculated as the ratio of mean PM2.5 in the future-year scenario to the mean for the 1996 Base
Year.  This value was then multiplied by the ambient PM2.5 concentration at the monitoring site
to provide an estimate of the future PM2.5 concentrations at that site.  The annual mean 1999-
2001 PM2.5 county maximum design values  along with the corresponding future-year estimates,
based on RRFs, are provided in Appendix H.  Future year 2020 and 2030 county population
totals are also included in this appendix.
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Appendix A
8-Hour Ozone Design Values for 1999-2001and 2020 and 2030 Base Case and Control Case Scenarios.

Nonroad Proposal 8-Hr
Ozone Design Values

[Note: Nevada Cnty in CA is monitoring nonattainment, but is not included below because model predictions for the
location of monitoring sites in this counties are below the 70ppb cut off used for calculating RRFs]

 FIPS St FIPS Cty State County 1999 - 2001 DV 2020  Base 2020 Control 2030  Base 2030 Control 2000 Pop 2020 Pop 2030 Pop
1 27 Alabama Clay 84 67 66 67 65 14,254 15,600 16,298
1 51 Alabama Elmore 79 63 62 64 62 65,874 88,634 100,566
1 73 Alabama Jefferson 89 66 64 66 63 662,047 679,713 690,896
1 79 Alabama Lawrence 82 63 62 63 61 34,803 38,685 40,689
1 89 Alabama Madison 87 68 67 68 66 276,700 343,075 378,069
1 101 Alabama Montgomery 85 68 66 68 66 223,510 257,634 275,746
1 117 Alabama Shelby 96 70 68 70 67 143,293 259,341 320,220
1 119 Alabama Sumter 75 58 57 59 57 14,798 14,214 13,964
4 13 Arizona Maricopa 85 80 79 81 80 3,072,149 4,513,344 5,266,724
4 19 Arizona Pima 72 62 61 62 60 843,746 1,168,864 1,338,830
5 35 Arkansas Crittenden 92 83 81 83 81 50,866 54,912 57,013
5 97 Arkansas Montgomery 69 56 55 56 54 9,245 10,446 11,141
5 101 Arkansas Newton 78 62 60 62 59 8,608 9,490 10,042
5 119 Arkansas Pulaski 87 72 70 72 69 361,474 382,366 393,433
6 1 California Alameda 62 60 60 61 60 1,443,741 1,684,320 1,812,462
6 5 California Amador 91 67 64 67 62 35,100 50,906 59,249
6 9 California Calaveras 94 70 68 70 66 40,554 56,980 65,483
6 13 California Contra Costa 82 73 72 74 72 948,816 1,217,061 1,356,529
6 17 California El Dorado 104 72 69 70 66 156,299 235,742 277,664
6 19 California Fresno 108 93 91 93 90 799,407 1,010,798 1,121,458
6 25 California Imperial 92 74 72 74 71 142,361 183,499 204,781
6 27 California Inyo 79 67 66 67 65 17,945 19,672 20,783
6 29 California Kern 109 94 92 94 91 661,645 851,039 949,174
6 31 California Kings 98 80 78 81 77 129,461 171,603 193,641
6 37 California Los Angeles 105 121 120 123 120 9,519,338 10,068,317 10,397,571
6 39 California Madera 88 72 70 72 69 123,109 185,860 218,860
6 43 California Mariposa 91 70 68 70 67 17,130 21,798 24,289
6 47 California Merced 101 82 80 83 79 210,554 261,895 288,668
6 53 California Monterey 63 46 44 46 43 401,762 478,637 519,176
6 59 California Orange 77 101 100 101 100 2,846,289 3,681,637 4,114,415



6 61 California Placer 101 71 68 70 66 248,399 449,083 555,897
6 65 California Riverside 111 107 106 108 106 1,545,387 2,176,313 2,500,652
6 67 California Sacramento 99 76 73 76 70 1,223,499 1,581,115 1,767,164
6 69 California San Benito 72 57 54 57 53 53,234 74,650 85,672
6 71 California San Bernardino 129 133 132 135 133 1,709,434 2,298,311 2,602,018
6 73 California San Diego 94 72 69 72 68 2,813,833 3,720,010 4,194,289
6 77 California San Joaquin 84 73 71 74 71 563,598 711,131 788,116
6 83 California Santa Barbara 80 71 70 71 70 399,347 442,321 466,013
6 87 California Santa Cruz 65 52 50 52 49 255,602 274,436 285,269
6 99 California Stanislaus 91 76 74 76 73 446,997 576,927 644,333
6 107 California Tulare 104 82 80 82 79 368,021 461,550 510,533
6 109 California Tuolumne 92 66 64 65 62 54,501 68,481 75,819
6 111 California Ventura 101 94 92 94 92 753,197 974,455 1,089,111
6 113 California Yolo 82 69 68 70 68 168,660 218,397 244,258
8 1 Colorado Adams 65 61 60 61 60 363,857 478,469 538,611
8 5 Colorado Arapahoe 76 71 70 72 70 487,967 721,970 843,220
8 13 Colorado Boulder 72 69 68 69 68 291,288 384,637 433,584
8 31 Colorado Denver 70 66 66 67 67 554,636 556,044 561,112
8 41 Colorado El Paso 68 58 57 59 56 516,929 712,813 814,877
8 59 Colorado Jefferson 81 78 77 78 77 527,056 644,914 707,740
8 69 Colorado Larimer 74 69 69 70 69 251,494 370,247 431,833
8 83 Colorado Montezuma 69 65 65 66 65 23,830 33,546 38,492
8 123 Colorado Weld 70 63 62 63 61 180,936 225,994 249,859
9 1 Connecticut Fairfield 97 92 92 93 93 882,567 902,450 915,655
9 3 Connecticut Hartford 88 74 71 75 70 857,183 862,552 868,198
9 7 Connecticut Middlesex 99 88 85 90 85 155,071 173,619 183,603
9 9 Connecticut New Haven 97 87 85 89 85 824,008 835,856 844,674
9 11 Connecticut New London 90 79 76 80 76 259,088 275,818 285,218
9 13 Connecticut Tolland 90 75 72 76 71 136,364 149,910 157,442

10 1 Delaware Kent 93 72 70 72 69 126,697 152,443 166,217
10 3 Delaware New Castle 97 80 78 81 78 500,265 567,457 603,839
10 5 Delaware Sussex 95 74 72 75 71 156,638 207,387 233,829
11 1 D.C. Washington 94 82 80 83 79 572,059 544,554 532,846
12 1 Florida Alachua 79 61 59 60 58 217,955 264,811 289,558
12 3 Florida Baker 75 58 57 58 56 22,259 29,015 32,536
12 9 Florida Brevard 76 57 55 57 54 476,230 589,739 648,397
12 31 Florida Duval 74 59 58 60 58 778,879 936,714 1,020,493
12 33 Florida Escambia 88 75 74 75 74 294,410 341,459 367,084
12 57 Florida Hillsborough 84 67 65 67 63 998,948 1,263,223 1,400,587
12 59 Florida Holmes 74 61 59 61 59 18,564 22,230 24,178
12 71 Florida Lee 75 54 52 54 51 440,888 628,905 727,235



12 73 Florida Leon 77 60 59 61 58 239,452 315,384 355,230
12 81 Florida Manatee 83 64 62 64 61 264,002 384,627 447,858
12 83 Florida Marion 78 60 59 60 58 258,916 342,354 385,972
12 95 Florida Orange 81 63 61 63 60 896,344 1,227,393 1,400,894
12 97 Florida Osceola 77 59 57 59 56 172,493 302,384 371,754
12 99 Florida Palm Beach 75 58 56 58 54 1,131,184 1,744,032 2,061,168
12 101 Florida Pasco 79 62 60 62 58 344,765 450,945 505,559
12 103 Florida Pinellas 83 68 66 68 64 921,482 1,027,556 1,088,025
12 105 Florida Polk 80 59 57 58 55 483,924 595,133 652,539
12 111 Florida St Lucie 72 56 54 55 53 192,695 257,927 291,959
12 115 Florida Sarasota 85 64 61 64 60 325,957 400,330 439,136
12 117 Florida Seminole 78 60 58 60 57 365,196 569,587 677,953
12 127 Florida Volusia 74 56 55 56 54 443,343 563,819 626,353
13 21 Georgia Bibb 98 85 84 85 83 153,887 163,780 169,321
13 51 Georgia Chatham 76 63 62 63 61 232,048 252,931 264,176
13 57 Georgia Cherokee 76 56 55 56 54 141,903 231,192 277,881
13 67 Georgia Cobb 96 74 72 74 70 607,751 878,010 1,019,356
13 77 Georgia Coweta 96 80 79 80 78 89,215 134,032 157,494
13 85 Georgia Dawson 83 61 59 60 57 15,999 30,384 37,908
13 89 Georgia De Kalb 102 84 82 84 81 665,865 736,846 774,881
13 97 Georgia Douglas 98 78 76 78 75 92,174 136,784 160,103
13 113 Georgia Fayette 99 79 76 79 75 91,263 144,101 171,680
13 121 Georgia Fulton 107 88 85 88 84 816,006 899,328 944,173
13 127 Georgia Glynn 73 59 57 59 57 67,568 81,793 89,253
13 135 Georgia Gwinnett 94 72 69 72 67 588,448 893,435 1,052,982
13 151 Georgia Henry 107 85 83 85 81 119,341 188,831 225,194
13 215 Georgia Muscogee 90 73 71 73 69 186,291 203,643 213,076
13 223 Georgia Paulding 92 75 73 75 72 81,678 128,988 153,773
13 245 Georgia Richmond 87 69 67 69 67 199,775 216,710 225,937
13 247 Georgia Rockdale 104 82 79 82 78 70,111 105,990 124,745
13 261 Georgia Sumter 86 71 70 71 69 33,200 36,304 38,096
17 1 Illinois Adams 74 60 58 60 56 68,277 71,558 73,470
17 19 Illinois Champaign 80 62 60 63 59 179,669 190,977 197,308
17 31 Illinois Cook 88 85 85 86 86 5,376,741 5,389,403 5,415,053
17 43 Illinois Du Page 68 64 64 65 65 904,161 1,126,926 1,243,827
17 49 Illinois Effingham 81 62 60 62 59 34,264 39,077 41,698
17 65 Illinois Hamilton 77 58 56 58 55 8,621 8,942 9,136
17 83 Illinois Jersey 89 72 70 73 70 21,668 24,174 25,586
17 89 Illinois Kane 77 72 71 73 71 404,119 522,657 584,727
17 97 Illinois Lake 80 73 71 74 71 644,356 820,172 912,421
17 111 Illinois McHenry 83 77 75 78 75 260,077 355,171 404,813



17 115 Illinois Macon 78 60 58 60 57 114,706 112,528 111,690
17 117 Illinois Macoupin 80 62 60 62 60 49,019 52,630 54,535
17 119 Illinois Madison 82 68 66 68 66 258,941 277,485 287,588
17 143 Illinois Peoria 78 63 61 63 60 183,433 192,791 198,189
17 157 Illinois Randolph 78 60 59 60 58 33,893 36,184 37,390
17 163 Illinois St Clair 82 70 69 71 68 256,082 251,771 249,705
17 167 Illinois Sangamon 75 57 56 58 55 188,951 203,496 211,534
17 197 Illinois Will 79 68 67 68 67 502,266 676,751 768,045
17 201 Illinois Winnebago 76 64 62 65 61 278,418 317,176 337,859
18 3 Indiana Allen 87 71 68 71 66 331,849 373,222 395,439
18 19 Indiana Clark 86 68 67 69 67 96,472 117,704 129,061
18 43 Indiana Floyd 82 67 66 68 66 70,823 85,015 92,614
18 51 Indiana Gibson 71 52 51 52 50 32,500 33,741 34,514
18 57 Indiana Hamilton 91 74 71 74 70 182,740 279,810 331,998
18 59 Indiana Hancock 89 72 70 73 69 55,391 75,428 86,146
18 81 Indiana Johnson 87 66 64 66 63 115,209 160,081 184,100
18 89 Indiana Lake 90 84 83 85 84 484,564 492,963 498,991
18 91 Indiana La Porte 85 75 73 75 73 110,106 113,232 115,188
18 95 Indiana Madison 87 69 66 69 65 133,358 142,092 146,789
18 97 Indiana Marion 88 73 71 73 70 860,454 907,240 932,219
18 109 Indiana Morgan 87 70 67 70 66 66,689 87,224 98,229
18 123 Indiana Perry 90 65 64 65 63 18,899 19,056 19,202
18 127 Indiana Porter 90 82 81 83 82 146,798 184,172 203,679
18 129 Indiana Posey 86 67 65 67 64 27,061 28,879 29,978
18 141 Indiana St Joseph 84 68 66 68 65 265,559 284,912 295,551
18 163 Indiana Vanderburgh 84 65 63 65 62 171,922 180,244 185,028
18 167 Indiana Vigo 79 62 60 62 59 105,848 105,837 105,963
18 173 Indiana Warrick 81 60 58 60 57 52,383 65,019 71,761
19 45 Iowa Clinton 79 70 67 70 66 50,149 49,104 48,749
19 85 Iowa Harrison 74 64 62 64 61 15,666 16,924 17,592
19 113 Iowa Linn 73 64 62 64 61 191,701 223,880 240,980
19 147 Iowa Palo Alto 69 58 55 58 54 10,147 9,164 8,707
19 153 Iowa Polk 60 50 48 50 47 374,601 456,867 500,239
19 163 Iowa Scott 79 69 67 69 66 158,668 175,894 185,378
19 169 Iowa Story 66 55 53 55 52 79,981 84,967 87,711
19 181 Iowa Warren 67 56 54 56 53 40,671 52,190 58,348
20 107 Kansas Linn 79 69 68 70 67 9,570 4,769 4,493
20 173 Kansas Sedgwick 81 71 70 71 69 452,869 528,750 568,900
20 209 Kansas Wyandotte 80 72 70 72 70 157,882 144,783 138,690



21 13 Kentucky Bell 82 58 57 57 55 30,060 33,087 34,721
21 15 Kentucky Boone 85 64 62 64 62 85,991 125,566 146,706
21 19 Kentucky Boyd 86 66 65 66 65 49,752 48,055 47,412
21 29 Kentucky Bullitt 85 66 65 66 64 61,236 81,834 92,881
21 43 Kentucky Carter 83 60 59 61 59 26,889 31,905 34,505
21 47 Kentucky Christian 85 56 55 56 54 72,265 76,756 79,423
21 59 Kentucky Daviess 79 59 57 59 57 91,545 102,223 108,122
21 61 Kentucky Edmonson 88 62 60 62 59 11,644 12,812 13,433
21 67 Kentucky Fayette 81 64 62 64 62 260,512 326,968 362,189
21 83 Kentucky Graves 83 65 64 65 63 37,028 39,638 41,104
21 89 Kentucky Greenup 86 66 65 66 64 36,891 36,754 36,758
21 91 Kentucky Hancock 83 61 60 61 59 8,392 8,624 8,775
21 101 Kentucky Henderson 77 59 58 60 57 44,829 48,188 50,010
21 111 Kentucky Jefferson 89 73 72 73 72 693,604 725,700 743,029
21 113 Kentucky Jessamine 78 62 60 62 60 39,041 55,652 64,443
21 117 Kentucky Kenton 86 70 68 71 68 151,464 171,352 181,909
21 139 Kentucky Livingston 87 68 67 68 66 9,804 10,622 11,038
21 145 Kentucky McCracken 84 67 66 67 65 65,514 74,308 78,993
21 149 Kentucky McLean 86 64 62 64 62 9,938 10,296 10,458
21 185 Kentucky Oldham 91 70 68 70 68 46,178 67,362 78,725
21 195 Kentucky Pike 78 54 53 54 52 68,736 77,184 81,653
21 199 Kentucky Pulaski 86 66 65 66 64 56,217 68,945 75,701
21 209 Kentucky Scott 72 52 51 52 50 33,061 48,147 56,246
21 213 Kentucky Simpson 88 62 61 62 60 16,405 17,755 18,417
21 221 Kentucky Trigg 82 61 59 61 59 12,597 14,282 15,199
22 5 Louisiana Ascension 86 78 77 79 77 76,627 116,122 136,632
22 11 Louisiana Beauregard 78 70 69 71 70 32,986 37,222 39,536
22 15 Louisiana Bossier 90 79 78 79 78 98,310 123,645 137,122
22 17 Louisiana Caddo 83 72 71 73 71 252,161 267,902 276,688
22 19 Louisiana Calcasieu 86 78 77 79 78 183,577 215,763 232,906
22 33 Louisiana East Baton Rou 91 80 79 81 80 412,852 518,879 574,689
22 43 Louisiana Grant 81 71 70 72 70 18,698 21,330 22,695
22 47 Louisiana Iberville 86 77 76 78 76 33,320 33,003 33,048
22 51 Louisiana Jefferson 89 81 80 82 81 455,466 532,172 572,938
22 55 Louisiana Lafayette 83 73 72 74 73 190,503 233,196 255,915
22 63 Louisiana Livingston 88 79 78 80 79 91,814 157,803 191,919
22 71 Louisiana Orleans 76 70 70 71 70 484,674 430,421 404,817
22 73 Louisiana Ouachita 80 72 71 73 71 147,250 163,820 172,805
22 77 Louisiana Pointe Coupee 75 65 64 66 65 22,763 23,109 23,409
22 87 Louisiana St Bernard 81 74 74 75 75 67,229 70,693 72,688
22 89 Louisiana St Charles 86 79 79 80 79 48,072 56,744 61,278



22 93 Louisiana St James 83 76 75 77 76 21,216 22,289 22,945
22 95 Louisiana St John The Ba 86 78 77 79 78 43,044 48,046 50,791
22 101 Louisiana St Mary 83 75 75 76 75 53,500 53,475 53,518
22 121 Louisiana West Baton Rou 88 78 77 79 77 21,601 23,842 25,065
23 5 Maine Cumberland 80 68 66 69 66 265,612 308,231 330,836
23 9 Maine Hancock 89 72 69 73 68 51,791 56,083 58,499
23 11 Maine Kennebec 75 62 59 63 58 117,114 123,081 126,672
23 13 Maine Knox 80 68 65 68 64 39,618 45,464 48,544
23 17 Maine Oxford 61 52 50 53 50 54,755 60,048 62,916
23 31 Maine York 86 74 72 75 72 186,742 215,779 231,214
24 3 Maryland Anne Arundel 103 83 80 83 78 489,656 598,770 656,196
24 5 Maryland Baltimore 93 80 78 81 77 754,292 831,729 873,717
24 9 Maryland Calvert 89 67 65 67 64 74,563 121,253 145,708
24 13 Maryland Carroll 93 75 73 76 71 150,897 209,221 239,580
24 15 Maryland Cecil 106 84 81 84 79 85,951 107,523 119,075
24 17 Maryland Charles 96 73 71 73 70 120,546 171,193 197,639
24 21 Maryland Frederick 91 73 70 73 69 195,277 273,707 314,624
24 25 Maryland Harford 104 86 84 87 82 218,590 318,172 370,182
24 29 Maryland Kent 100 78 76 79 75 19,197 21,272 22,412
24 31 Maryland Montgomery 89 76 73 76 72 873,341 1,008,558 1,080,468
24 33 Maryland Prince Georges 97 80 77 81 76 801,515 884,449 929,496
24 43 Maryland Washington 85 65 63 65 62 131,923 149,914 159,551
25 1 Massachusetts Barnstable 96 79 76 80 75 222,230 277,219 306,052
25 5 Massachusetts Bristol 93 78 75 79 74 534,678 583,242 609,773
25 9 Massachusetts Essex 86 75 76 75 76 723,419 773,032 800,688
25 13 Massachusetts Hampden 85 73 71 74 70 456,228 450,007 448,459
25 15 Massachusetts Hampshire 87 75 73 76 72 152,251 164,397 171,127
25 17 Massachusetts Middlesex 88 74 71 74 71 1,465,396 1,510,184 1,537,905
25 25 Massachusetts Suffolk 84 69 67 69 67 689,807 659,760 646,962
25 27 Massachusetts Worcester 85 71 69 72 68 750,963 812,259 846,065
26 5 Michigan Allegan 87 74 72 75 72 105,665 137,366 153,990
26 19 Michigan Benzie 89 77 75 77 74 15,998 19,738 21,742
26 21 Michigan Berrien 87 72 70 73 70 162,453 167,167 169,909
26 27 Michigan Cass 87 70 68 70 67 51,104 56,079 58,817
26 37 Michigan Clinton 82 69 67 69 66 64,753 78,498 85,865
26 49 Michigan Genesee 86 74 72 74 71 436,141 446,891 453,670
26 63 Michigan Huron 83 71 70 72 69 36,079 37,703 38,663
26 65 Michigan Ingham 83 70 68 70 67 279,320 290,827 297,581
26 77 Michigan Kalamazoo 82 66 64 67 63 238,603 262,738 275,735
26 81 Michigan Kent 84 70 67 70 66 574,335 684,461 742,687
26 91 Michigan Lenawee 83 70 68 71 67 98,890 108,480 113,789



26 99 Michigan Macomb 88 84 84 85 86 788,149 890,585 946,209
26 105 Michigan Mason 91 77 75 78 74 28,274 33,109 35,683
26 113 Michigan Missaukee 82 69 67 70 67 14,478 17,741 19,439
26 121 Michigan Muskegon 92 79 77 80 76 170,200 181,910 188,401
26 125 Michigan Oakland 84 79 79 80 80 1,194,156 1,410,553 1,527,099
26 139 Michigan Ottawa 84 72 70 73 70 238,314 316,914 358,079
26 147 Michigan St Clair 85 76 75 77 75 164,235 193,051 208,573
26 163 Michigan Wayne 88 86 86 88 88 2,061,162 1,897,446 1,818,661
27 3 Minnesota Anoka 71 63 61 64 61 298,084 418,534 481,468
27 163 Minnesota Washington 75 66 64 67 63 201,130 326,359 391,832
28 1 Mississippi Adams 82 70 69 71 69 34,340 33,358 32,941
28 11 Mississippi Bolivar 82 65 64 66 63 40,633 37,408 35,949
28 33 Mississippi De Soto 86 71 69 71 69 107,199 173,599 210,077
28 45 Mississippi Hancock 87 77 76 78 76 42,967 61,659 71,279
28 47 Mississippi Harrison 89 80 79 81 79 189,601 227,885 248,075
28 49 Mississippi Hinds 80 64 63 65 62 250,800 268,318 278,025
28 59 Mississippi Jackson 87 78 78 79 78 131,420 153,814 165,743
28 75 Mississippi Lauderdale 79 60 59 61 59 78,161 84,485 87,885
28 81 Mississippi Lee 86 64 63 64 62 75,755 95,564 105,932
28 89 Mississippi Madison 79 70 69 71 69 74,674 103,364 118,443
28 149 Mississippi Warren 78 67 66 68 67 49,644 52,773 54,579
29 39 Missouri Cedar 84 72 71 73 70 13,733 14,933 15,530
29 47 Missouri Clay 84 74 72 74 72 184,006 243,759 275,253
29 77 Missouri Greene 75 59 57 59 56 240,391 287,457 312,253
29 99 Missouri Jefferson 89 72 70 72 69 198,099 264,327 300,317
29 137 Missouri Monroe 81 65 63 65 62 9,311 9,177 9,142
29 165 Missouri Platte 81 73 71 73 71 73,781 103,530 119,250
29 183 Missouri St Charles 90 76 75 77 74 283,883 402,014 466,353
29 186 Missouri Ste Genevieve 85 69 67 69 66 17,842 20,974 22,653
29 189 Missouri St Louis 88 76 75 77 74 1,016,315 1,033,549 1,043,340
29 510 Missouri St Louis City 81 68 67 69 67 348,189 301,448 277,083
31 55 Nebraska Douglas 62 54 52 54 51 463,585 546,160 589,984
31 109 Nebraska Lancaster 53 46 44 46 43 250,291 319,321 355,359
32 3 Nevada Clark 80 68 64 68 63 1,375,765 2,287,193 2,763,400
33 3 New Hampshire Carroll 66 55 53 55 52 43,666 55,385 61,542
33 5 New Hampshire Cheshire 72 58 56 58 55 73,825 80,765 84,656
33 9 New Hampshire Grafton 68 54 52 55 51 81,743 92,895 98,810
33 11 New Hampshire Hillsborough 83 70 68 70 67 380,841 444,066 477,617
33 13 New Hampshire Merrimack 70 58 56 58 56 136,225 157,419 168,690
33 15 New Hampshire Rockingham 81 71 69 72 69 277,359 348,095 385,327
33 17 New Hampshire Strafford 75 63 61 64 60 112,233 128,703 137,501



33 19 New Hampshire Sullivan 72 57 55 58 55 40,458 43,846 45,706
34 1 New Jersey Atlantic 91 74 72 74 71 252,552 287,629 306,558
34 7 New Jersey Camden 103 87 86 88 86 508,932 511,593 514,403
34 11 New Jersey Cumberland 97 77 75 78 74 146,438 153,044 156,835
34 15 New Jersey Gloucester 101 88 86 88 86 254,673 303,325 329,517
34 17 New Jersey Hudson 93 87 87 88 87 608,975 606,667 607,696
34 19 New Jersey Hunterdon 100 88 86 89 85 121,989 157,590 176,344
34 21 New Jersey Mercer 105 94 92 95 92 350,761 369,672 380,558
34 23 New Jersey Middlesex 103 92 90 93 90 750,162 862,446 922,342
34 25 New Jersey Monmouth 94 82 80 82 80 615,301 727,885 787,597
34 27 New Jersey Morris 97 81 79 82 79 470,212 530,791 563,247
34 29 New Jersey Ocean 109 94 92 95 91 510,916 634,857 700,145
34 31 New Jersey Passaic 89 78 77 79 77 489,049 503,064 511,915
35 1 New Mexico Bernalillo 75 69 67 69 68 556,678 673,674 735,366
35 13 New Mexico Dona Ana 80 62 59 62 58 174,682 235,150 266,803
35 45 New Mexico San Juan 73 70 69 70 69 113,801 165,573 192,638
36 1 New York Albany 80 65 62 65 61 294,565 307,100 314,272
36 5 New York Bronx 83 82 85 83 87 1,332,650 1,273,213 1,247,937
36 13 New York Chautauqua 89 76 74 76 73 139,750 140,312 141,059
36 15 New York Chemung 79 64 62 64 61 91,070 89,312 88,691
36 27 New York Dutchess 87 73 71 74 70 280,150 302,587 315,008
36 29 New York Erie 92 81 80 82 79 950,265 957,747 964,943
36 31 New York Essex 78 71 70 71 69 38,851 40,300 41,200
36 41 New York Hamilton 77 66 64 66 63 5,379 5,710 5,860
36 43 New York Herkimer 72 63 61 63 61 64,427 64,418 64,650
36 45 New York Jefferson 87 75 74 76 74 111,738 114,641 116,596
36 53 New York Madison 78 67 65 67 64 69,441 75,149 78,353
36 63 New York Niagara 87 77 76 78 76 219,846 221,402 222,977
36 65 New York Oneida 76 65 63 65 63 235,469 227,206 223,700
36 67 New York Onondaga 81 68 66 68 65 458,336 463,808 468,164
36 71 New York Orange 87 75 73 76 73 341,367 402,207 434,472
36 79 New York Putnam 89 78 76 78 76 95,745 120,410 133,361
36 81 New York Queens 86 76 75 76 76 2,229,379 2,252,882 2,272,692
36 85 New York Richmond 98 87 86 88 86 443,728 534,663 582,784
36 91 New York Saratoga 84 67 64 68 63 200,635 247,509 272,720
36 93 New York Schenectady 75 62 59 62 58 146,555 145,564 145,427
36 103 New York Suffolk 91 81 79 82 79 1,419,369 1,527,592 1,587,477
36 111 New York Ulster 81 68 65 68 65 177,749 190,657 197,999
36 117 New York Wayne 81 70 69 71 68 93,765 106,121 112,727
36 119 New York Westchester 92 86 86 87 88 923,459 967,314 992,781
37 3 North Carolina Alexander 87 64 62 64 61 33,603 38,866 41,560



37 11 North Carolina Avery 75 54 53 54 52 17,167 19,703 21,132
37 21 North Carolina Buncombe 83 59 57 58 55 206,330 254,412 279,720
37 27 North Carolina Caldwell 87 64 62 64 61 77,415 90,861 98,016
37 29 North Carolina Camden 80 66 65 66 64 6,885 7,992 8,639
37 33 North Carolina Caswell 90 67 65 67 64 23,501 25,539 26,676
37 37 North Carolina Chatham 81 60 57 60 56 49,329 61,495 67,885
37 51 North Carolina Cumberland 88 66 63 66 62 302,963 341,187 361,645
37 59 North Carolina Davie 96 69 67 69 66 34,835 40,475 43,475
37 61 North Carolina Duplin 82 63 61 63 59 49,063 53,223 55,448
37 63 North Carolina Durham 87 65 62 65 61 223,314 281,262 311,720
37 65 North Carolina Edgecombe 87 68 65 68 64 55,606 56,716 57,541
37 67 North Carolina Forsyth 94 68 66 68 64 306,067 366,864 398,805
37 69 North Carolina Franklin 86 64 61 64 60 47,260 59,759 66,374
37 77 North Carolina Granville 88 66 64 66 62 48,498 56,445 60,614
37 81 North Carolina Guilford 90 66 64 66 62 421,048 497,827 538,355
37 87 North Carolina Haywood 87 63 61 62 59 54,033 63,759 68,965
37 99 North Carolina Jackson 85 59 58 59 56 33,121 44,052 49,697
37 101 North Carolina Johnston 87 66 63 66 62 121,965 162,050 183,079
37 107 North Carolina Lenoir 82 63 61 63 60 59,648 63,512 65,712
37 109 North Carolina Lincoln 91 68 66 68 64 63,780 81,208 90,384
37 117 North Carolina Martin 79 63 61 63 61 25,593 26,001 26,321
37 119 North Carolina Mecklenburg 101 75 72 75 70 695,454 941,939 1,070,973
37 129 North Carolina New Hanover 75 60 58 61 58 160,307 233,447 271,367
37 131 North Carolina Northampton 82 64 62 64 61 22,086 24,879 26,443
37 145 North Carolina Person 89 66 64 66 63 35,623 42,087 45,621
37 147 North Carolina Pitt 84 65 62 65 61 133,798 184,753 211,387
37 157 North Carolina Rockingham 85 62 59 61 58 91,928 98,875 102,735
37 159 North Carolina Rowan 99 73 70 73 69 130,340 157,365 171,612
37 173 North Carolina Swain 73 53 51 52 50 12,968 15,962 17,531
37 179 North Carolina Union 87 64 61 64 59 123,677 163,429 184,264
37 183 North Carolina Wake 94 72 68 72 66 627,846 948,294 1,115,401
37 199 North Carolina Yancey 89 65 63 65 62 17,774 21,503 23,568



39 3 Ohio Allen 86 71 68 71 67 108,473 105,425 104,133
39 7 Ohio Ashtabula 89 75 73 76 73 102,728 107,171 109,827
39 17 Ohio Butler 89 70 68 70 67 332,807 438,817 495,203
39 23 Ohio Clark 87 68 66 69 64 144,742 141,717 140,693
39 27 Ohio Clinton 95 71 69 72 67 40,543 53,906 60,919
39 35 Ohio Cuyahoga 83 71 69 71 68 1,393,978 1,314,252 1,277,539
39 41 Ohio Delaware 91 73 70 73 69 109,989 162,726 190,545
39 49 Ohio Franklin 84 70 68 71 68 1,068,978 1,221,199 1,301,984
39 55 Ohio Geauga 93 77 75 78 74 90,895 113,647 125,915
39 57 Ohio Greene 85 66 63 66 62 147,886 161,044 168,294
39 61 Ohio Hamilton 86 71 69 71 68 845,303 844,891 845,159
39 81 Ohio Jefferson 84 70 68 70 68 73,894 67,057 63,997
39 83 Ohio Knox 90 73 70 73 69 54,500 64,422 69,708
39 85 Ohio Lake 91 77 75 78 75 227,511 247,357 258,390
39 87 Ohio Lawrence 86 66 65 66 64 62,319 63,291 63,930
39 89 Ohio Licking 88 70 68 70 67 145,491 175,706 191,730
39 95 Ohio Lucas 85 74 72 75 72 455,054 439,718 433,056
39 97 Ohio Madison 88 70 68 71 67 40,213 48,425 52,789
39 103 Ohio Medina 86 70 67 70 66 151,095 197,597 222,583
39 109 Ohio Miami 84 66 63 66 62 98,868 104,032 107,049
39 113 Ohio Montgomery 87 69 66 69 65 559,062 547,126 543,119
39 133 Ohio Portage 92 75 72 75 71 152,061 173,779 185,622
39 135 Ohio Preble 78 60 57 60 56 42,337 45,627 47,475
39 151 Ohio Stark 88 71 68 71 67 378,098 386,771 392,398
39 153 Ohio Summit 92 76 73 76 72 542,899 566,693 580,778
39 155 Ohio Trumbull 88 70 67 71 66 225,116 227,563 229,495
39 165 Ohio Warren 88 69 67 69 66 158,383 214,769 244,730
39 167 Ohio Washington 88 62 61 62 60 63,251 63,089 63,235
39 173 Ohio Wood 85 72 69 72 68 121,065 137,609 146,682
40 27 Oklahoma Cleveland 79 66 65 66 65 208,016 258,810 285,452
40 109 Oklahoma Oklahoma 80 68 67 68 66 660,448 726,990 763,100
40 143 Oklahoma Tulsa 87 76 75 76 75 563,299 658,823 709,459
41 5 Oregon Clackamas 68 61 59 61 58 338,391 474,981 546,680
41 9 Oregon Columbia 53 47 45 47 45 43,560 53,045 57,963
41 39 Oregon Lane 54 43 41 44 40 322,959 409,094 454,385
41 47 Oregon Marion 60 50 48 51 47 284,834 353,405 389,154



42 3 Pennsylvania Allegheny 92 77 75 77 74 1,281,666 1,242,514 1,227,036
42 5 Pennsylvania Armstrong 92 73 71 73 70 72,392 73,408 74,169
42 7 Pennsylvania Beaver 89 75 73 75 73 181,412 187,382 191,031
42 11 Pennsylvania Berks 95 76 74 76 73 373,638 405,375 422,931
42 13 Pennsylvania Blair 84 64 62 64 61 129,144 129,166 129,691
42 17 Pennsylvania Bucks 105 94 92 95 93 597,635 701,724 757,778
42 21 Pennsylvania Cambria 88 70 68 70 67 152,598 141,356 136,383
42 27 Pennsylvania Centre 80 61 59 61 59 135,758 160,300 173,165
42 33 Pennsylvania Clearfield 83 65 63 65 62 83,382 86,337 88,108
42 43 Pennsylvania Dauphin 94 75 73 75 72 251,798 278,696 293,157
42 45 Pennsylvania Delaware 94 80 79 81 78 550,864 543,058 540,509
42 49 Pennsylvania Erie 87 74 72 74 71 280,843 289,378 294,654
42 55 Pennsylvania Franklin 92 69 67 69 66 129,313 141,112 147,622
42 59 Pennsylvania Greene 92 68 66 68 66 40,672 44,016 45,919
42 69 Pennsylvania Lackawanna 86 67 64 67 63 213,295 204,671 200,982
42 71 Pennsylvania Lancaster 96 78 75 78 74 470,658 554,898 600,235
42 73 Pennsylvania Lawrence 78 62 60 63 60 94,643 96,639 98,062
42 77 Pennsylvania Lehigh 96 79 77 79 76 312,090 334,897 347,555
42 79 Pennsylvania Luzerne 84 64 62 65 61 319,250 305,014 298,966
42 81 Pennsylvania Lycoming 76 59 57 59 56 120,044 123,235 125,235
42 85 Pennsylvania Mercer 88 70 67 70 66 120,293 125,038 127,856
42 91 Pennsylvania Montgomery 100 89 88 90 88 750,097 797,026 823,454
42 95 Pennsylvania Northampton 97 80 78 80 77 267,066 293,034 307,174
42 99 Pennsylvania Perry 84 65 63 65 62 43,602 55,994 62,541
42 101 Pennsylvania Philadelphia 88 77 77 78 77 1,517,550 1,323,566 1,228,773
42 117 Pennsylvania Tioga 81 64 62 64 61 41,373 44,919 46,935
42 125 Pennsylvania Washington 88 73 72 74 71 202,897 207,824 211,081
42 129 Pennsylvania Westmoreland 86 70 68 70 67 369,993 376,604 381,310
42 133 Pennsylvania York 90 72 70 72 69 381,751 426,517 450,509
44 3 Rhode Island Kent 94 80 77 81 76 167,090 181,472 189,315
44 7 Rhode Island Providence 87 73 70 74 69 621,602 622,209 624,704
44 9 Rhode Island Washington 92 77 74 78 74 123,546 152,220 167,321
45 1 South Carolina Abbeville 85 63 61 62 60 26,167 28,754 30,113
45 3 South Carolina Aiken 86 68 66 69 66 142,552 170,499 185,233
45 7 South Carolina Anderson 90 69 67 69 66 165,740 198,222 215,416
45 11 South Carolina Barnwell 83 63 61 63 61 23,478 24,876 25,657
45 19 South Carolina Charleston 78 57 55 57 55 309,969 413,794 468,239
45 21 South Carolina Cherokee 87 66 64 66 63 52,537 59,576 63,288
45 23 South Carolina Chester 85 65 63 65 62 34,068 39,332 42,141
45 29 South Carolina Colleton 79 58 57 58 56 38,264 46,471 50,656
45 31 South Carolina Darlington 86 67 65 68 65 67,394 74,667 78,713



45 37 South Carolina Edgefield 80 61 59 61 58 24,595 26,612 27,592
45 77 South Carolina Pickens 87 64 62 64 61 110,757 155,424 178,605
45 79 South Carolina Richland 93 69 67 69 65 320,677 379,594 410,744
45 83 South Carolina Spartanburg 93 70 68 70 67 253,791 296,784 319,577
45 87 South Carolina Union 81 61 59 61 58 29,881 31,148 31,891
45 89 South Carolina Williamsburg 73 54 53 54 52 37,217 37,898 38,482
45 91 South Carolina York 82 63 60 63 60 164,614 215,724 242,457
47 1 Tennessee Anderson 90 63 61 63 60 71,330 80,733 85,682
47 9 Tennessee Blount 96 70 68 69 66 105,823 136,562 152,562
47 37 Tennessee Davidson 87 68 66 68 66 569,891 614,007 638,965
47 65 Tennessee Hamilton 92 71 69 70 68 307,896 347,332 368,296
47 75 Tennessee Haywood 89 70 68 70 67 19,797 20,645 21,157
47 89 Tennessee Jefferson 96 70 68 70 67 44,294 58,749 66,300
47 93 Tennessee Knox 96 69 67 69 66 382,032 473,001 520,715
47 99 Tennessee Lawrence 83 59 58 59 57 39,926 48,335 52,776
47 141 Tennessee Putnam 87 64 63 64 62 62,315 77,115 84,957
47 149 Tennessee Rutherford 86 65 63 65 62 182,023 276,366 325,300
47 155 Tennessee Sevier 98 70 68 70 67 71,170 121,259 147,616
47 157 Tennessee Shelby 93 83 82 84 82 897,472 1,021,255 1,086,498
47 163 Tennessee Sullivan 90 64 63 64 62 153,048 166,896 174,404
47 165 Tennessee Sumner 93 72 70 72 70 130,449 179,345 204,820
47 187 Tennessee Williamson 88 64 62 64 61 126,638 206,305 247,716
47 189 Tennessee Wilson 87 66 64 66 63 88,809 126,983 146,808
48 29 Texas Bexar 82 69 68 69 68 1,392,931 1,818,579 2,042,324
48 39 Texas Brazoria 91 82 81 83 82 241,767 322,468 364,672
48 85 Texas Collin 99 83 80 83 79 491,675 861,692 1,051,712
48 113 Texas Dallas 93 80 78 80 77 2,218,899 2,554,577 2,737,690
48 121 Texas Denton 101 83 81 84 80 432,976 674,188 798,468
48 139 Texas Ellis 88 73 72 74 71 111,360 148,722 168,262
48 141 Texas El Paso 75 59 56 59 55 679,622 896,883 1,010,581
48 167 Texas Galveston 98 90 90 91 91 250,158 318,241 353,952
48 183 Texas Gregg 95 74 73 74 72 111,379 131,531 142,339
48 201 Texas Harris 110 104 104 106 105 3,400,578 4,151,794 4,549,359
48 245 Texas Jefferson 85 78 77 79 78 252,051 270,004 279,811
48 339 Texas Montgomery 91 78 76 78 77 293,768 531,533 654,643
48 361 Texas Orange 74 67 67 68 68 84,966 92,773 97,011
48 439 Texas Tarrant 97 82 80 83 80 1,446,219 1,976,530 2,251,918
48 453 Texas Travis 88 73 72 74 71 812,280 1,100,723 1,255,821
48 469 Texas Victoria 79 67 66 68 66 84,088 103,302 113,486
49 11 Utah Davis 79 73 70 74 69 238,994 380,216 453,302
49 35 Utah Salt Lake 79 74 72 74 71 898,387 1,213,017 1,378,102



49 49 Utah Utah 78 73 70 73 69 368,536 550,933 645,756
49 57 Utah Weber 75 65 62 66 62 196,533 242,468 267,013
50 3 Vermont Bennington 79 64 61 65 60 36,994 39,841 41,416
51 13 Virginia Arlington 92 80 78 80 78 189,453 197,699 202,553
51 33 Virginia Caroline 85 65 63 65 62 22,121 27,006 29,528
51 36 Virginia Charles City 87 70 68 70 68 6,926 7,864 8,407
51 41 Virginia Chesterfield 86 68 66 68 65 259,903 366,136 422,063
51 59 Virginia Fairfax 95 80 78 81 78 969,749 1,202,969 1,325,540
51 61 Virginia Fauquier 82 62 60 62 59 55,139 76,422 87,462
51 69 Virginia Frederick 83 64 62 64 61 59,209 73,443 80,854
51 87 Virginia Henrico 90 70 68 71 67 262,300 326,604 360,545
51 107 Virginia Loudoun 86 71 69 71 68 169,599 259,606 306,614
51 113 Virginia Madison 87 64 62 64 61 12,520 15,004 16,249
51 139 Virginia Page 82 59 58 59 57 23,177 25,961 27,418
51 153 Virginia Prince William 85 68 66 68 65 280,813 404,026 468,438
51 161 Virginia Roanoke 86 63 61 63 60 85,778 101,646 109,937
51 163 Virginia Rockbridge 80 57 55 57 54 20,808 22,348 23,236
51 179 Virginia Stafford 85 65 63 65 62 92,446 137,914 161,575
51 197 Virginia Wythe 81 56 54 55 53 27,599 30,228 31,621
51 510 Virginia Alexandria Cit 88 76 75 77 74 128,283 73,706 82,724
51 650 Virginia Hampton City 87 73 72 74 71 146,437 160,395 168,015
51 800 Virginia Suffolk City 86 72 71 73 71 63,677 74,434 80,129
53 11 Washington Clark 59 54 53 54 53 345,238 519,909 611,725
53 33 Washington King 69 59 57 60 57 1,737,034 2,107,326 2,301,410
53 53 Washington Pierce 67 57 55 57 54 700,820 944,042 1,071,521
53 67 Washington Thurston 57 51 50 52 50 207,355 280,103 318,265
54 11 West Virginia Cabell 88 67 66 68 66 96,784 91,739 89,564
54 25 West Virginia Greenbrier 83 56 55 56 54 34,453 36,951 38,368
54 29 West Virginia Hancock 82 68 67 68 66 32,667 30,659 29,778
54 39 West Virginia Kanawha 90 66 65 66 64 200,073 197,841 197,586
54 69 West Virginia Ohio 82 63 62 63 61 47,427 46,546 46,276
54 107 West Virginia Wood 88 61 60 61 59 87,986 87,471 87,560
55 9 Wisconsin Brown 81 71 69 71 68 226,778 270,348 293,548
55 21 Wisconsin Columbia 78 67 64 67 63 52,468 64,023 70,105
55 25 Wisconsin Dane 78 67 65 68 64 426,526 538,843 597,808
55 27 Wisconsin Dodge 82 71 68 71 67 85,897 101,526 109,834
55 29 Wisconsin Door 93 80 78 81 77 27,961 33,124 35,898
55 39 Wisconsin Fond Du Lac 80 69 67 70 66 97,296 106,984 112,168
55 55 Wisconsin Jefferson 86 74 72 75 71 74,021 79,638 82,748
55 59 Wisconsin Kenosha 95 87 86 89 86 149,577 183,393 201,186
55 61 Wisconsin Kewaunee 89 77 75 77 74 20,187 20,915 21,347



55 71 Wisconsin Manitowoc 92 79 77 80 76 82,887 84,259 85,140
55 73 Wisconsin Marathon 76 66 64 67 64 125,834 148,400 160,358
55 79 Wisconsin Milwaukee 89 79 77 80 77 940,164 906,519 891,733
55 85 Wisconsin Oneida 73 64 62 64 62 36,776 49,768 56,724
55 87 Wisconsin Outagamie 79 69 67 69 66 160,971 202,072 223,681
55 89 Wisconsin Ozaukee 95 83 81 84 81 82,317 109,088 123,389
55 101 Wisconsin Racine 87 78 76 79 76 188,831 209,909 221,262
55 105 Wisconsin Rock 86 73 70 73 69 152,307 176,556 189,362
55 109 Wisconsin St Croix 73 64 61 64 60 63,155 78,467 86,455
55 111 Wisconsin Sauk 77 68 66 68 65 55,225 74,176 84,110
55 117 Wisconsin Sheboygan 95 82 80 83 80 112,646 125,303 132,146
55 123 Wisconsin Vernon 72 62 60 62 58 28,056 29,941 30,949
55 127 Wisconsin Walworth 84 73 70 73 70 93,759 115,771 127,506
55 131 Wisconsin Washington 84 75 73 76 73 117,493 147,051 162,701
55 133 Wisconsin Waukesha 86 77 75 78 75 360,767 466,063 521,974
55 139 Wisconsin Winnebago 80 70 68 70 67 156,763 183,637 197,968

# Nonattainment
Cntys 289 30 28 32 28

110,747,798 42,930,060 43,532,490 46,998,413 46,038,489 168,786,833 199,381,803 215,701,216



Appendix B
Projected Future Ozone Design Values After Implementation of Proposed

Nonroad Controls

Figure B-1.  Estimated future 8-hour ozone design values for the 2020 Control Case.



Figure B-2.  Estimated future 8-hour ozone design values for the 2030 Control Case.



Figure B-3.  Estimated future 1-hour ozone design values for the 2020 Control Case.



Figure B-4.  Estimated future 1-hour ozone design values for the 2030 Control Case.





Appendix C
Effect of Proposed Nonroad Controls on 8-Hour Ozone in 2020 for Selected

Eastern U.S. CMSA/MSAs

Table C-1.  Modeled episodic peak 8-hour average ozone, before and after the proposed
Nonroad emissions reductions in 2020.

Episodic 8-hour Maximum Ozone 2020 Base 2020 Control Percent
Difference

Total 149 145 -2.7%

Boston 104 98 -5.8%
Chicago 138 136 -1.4%
Cincinnati 106 102 -3.8%
Cleveland 101 98 -3.0%
Dallas 87 85 -2.3%
Detroit 120 119 -0.8%
Houston 110 109 -0.9%
Milwaukee 112 110 -1.8%
New York City 130 127 -2.3%
Philadelphia 111 108 -2.7%
Washington-Baltimore 113 110 -2.7%
Allentown-Bethlehem-Easton, PA 89 87 -2.2%
Atlanta, GA 149 145 -2.7%
Augusta-Aiken, GA-SC 90 88 -2.2%
Austin-San Marcos, TX 73 71 -2.7%
Barnstable-Yarmouth, MA 97 93 -4.1%
Baton Rouge, LA 121 120 -0.8%
Beaumont-Port Arthur, TX 107 107 0.0%
Benton Harbor, MI 145 142 -2.1%
Biloxi-Gulfport-Pascagoula, MS 111 110 -0.9%
Birmingham, AL 99 97 -2.0%
Buffalo-Niagara Falls, NY 105 104 -1.0%
Canton-Massillon, OH 99 95 -4.0%
Charleston, WV 95 93 -2.1%
Charlotte-Gastonia-Rock Hill, NC-SC 99 94 -5.1%
Chattanooga, TN 99 97 -2.0%
Clarksville-Hopkinsville, TN-KY 77 76 -1.3%
Columbia, SC 83 81 -2.4%
Columbus, GA-AL 100 98 -2.0%
Columbus, OH 96 92 -4.2%
Dayton-Springfield, OH 88 83 -5.7%
Dover, DE 83 80 -3.6%
Erie, PA 88 86 -2.3%
Evansville-Henderson, IN-KY 90 89 -1.1%
Fayetteville, NC 72 68 -5.6%



Fort Wayne, IN 76 73 -3.9%
Grand Rapids-Muskegon-Holland, MI 128 123 -3.9%
Greensboro-Winston Salem, NC 81 79 -2.5%
Greenville-Spartanburg, SC 83 79 -4.8%
Harrisburg-Lebanon-Carlisle, PA 94 91 -3.2%
Hartford, CT 127 123 -3.1%
Hickory-Morganton, NC 81 79 -2.5%
Huntington-Ashland, WV-KY-OH 98 97 -1.0%
Huntsville, AL 80 78 -2.5%
Indianapolis, IN 93 89 -4.3%
Jamestown, NY 88 85 -3.4%
Janesville-Beloit, WI 88 86 -2.3%
Johnson City, TN 75 73 -2.7%
Johnstown, PA 83 81 -2.4%
Knoxville, TN 76 74 -2.6%
Lake Charles, LA 107 106 -0.9%
Lancaster, PA 91 88 -3.3%
Lima, OH 80 77 -3.8%
Little Rock, AR 89 87 -2.2%
Longview-Marshall, TX 87 86 -1.1%
Louisville, KY-IN 113 111 -1.8%
Macon, GA 130 128 -1.5%
Memphis, TN-AR-MS 111 109 -1.8%
Montgomery, AL 84 83 -1.2%
Nashville, TN 100 98 -2.0%
New Haven-Bridgeport-Stamford, CT 128 125 -2.3%
New London - Norwich CT 122 116 -4.9%
New Orleans, LA 125 124 -0.8%
Norfolk-Virginia Beach-Newport News 92 89 -3.3%
Parkersburg-Marietta, WV 90 87 -3.3%
Pensacola, FL 93 92 -1.1%
Pittsburgh, PA 98 96 -2.0%
Providence, RI 114 108 -5.3%
Raleigh-Durham, NC 80 77 -3.8%
Reading, PA 93 90 -3.2%
Richmond-Petersburg, VA 109 106 -2.8%
Roanoke, VA 63 60 -4.8%
Rocky Mount, NC 72 69 -4.2%
St. Louis, MO-IL 111 109 -1.8%
Sarasota-Bradenton, FL 97 92 -5.2%
Scranton-Wilkes Barre, PA 92 88 -4.3%
Sharon, PA 79 76 -3.8%
Sheboygan, WI 92 89 -3.3%
Shreveport, LA 93 92 -1.1%
Springfield, MA 92 88 -4.3%
Toledo, OH 92 90 -2.2%
Tulsa, OK 85 84 -1.2%
York, PA 87 83 -4.6%
Youngstown-Warren, OH 91 89 -2.2%



Table C-2.  Number of cells in which 8-hour average ozone >= 85 ppb, before and after the
proposed Nonroad emissions reductions in 2020.

Count of cells >= 85 ppb 2020 Base 2020 Control Percent
Difference

Total 7056 6087 -13.7%

Boston 42 25 -40.5%
Chicago 458 419 -8.5%
Cincinnati 146 103 -29.5%
Cleveland 70 39 -44.3%
Dallas 4 1 -75.0%
Detroit 193 163 -15.5%
Houston 540 483 -10.6%
Milwaukee 57 44 -22.8%
New York City 490 457 -6.7%
Philadelphia 214 172 -19.6%
Washington-Baltimore 248 159 -35.9%
Allentown-Bethlehem-Easton, PA 10 3 -70.0%
Atlanta, GA 684 627 -8.3%
Augusta-Aiken, GA-SC 5 3 -40.0%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 28 25 -10.7%
Baton Rouge, LA 354 343 -3.1%
Beaumont-Port Arthur, TX 242 226 -6.6%
Benton Harbor, MI 59 55 -6.8%
Biloxi-Gulfport-Pascagoula, MS 333 307 -7.8%
Birmingham, AL 56 34 -39.3%
Buffalo-Niagara Falls, NY 17 16 -5.9%
Canton-Massillon, OH 20 9 -55.0%
Charleston, WV 3 2 -33.3%
Charlotte-Gastonia-Rock Hill, NC-SC 19 7 -63.2%
Chattanooga, TN 22 15 -31.8%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 32 27 -15.6%
Columbus, OH 29 18 -37.9%
Dayton-Springfield, OH 9 0 -100.0%
Dover, DE 0 0
Erie, PA 10 2 -80.0%
Evansville-Henderson, IN-KY 11 8 -27.3%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 143 123 -14.0%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 43 37 -14.0%
Hartford, CT 42 33 -21.4%
Hickory-Morganton, NC 0 0



Huntington-Ashland, WV-KY-OH 25 20 -20.0%
Huntsville, AL 0 0
Indianapolis, IN 15 3 -80.0%
Jamestown, NY 6 2 -66.7%
Janesville-Beloit, WI 11 3 -72.7%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 169 161 -4.7%
Lancaster, PA 4 3 -25.0%
Lima, OH 0 0
Little Rock, AR 3 1 -66.7%
Longview-Marshall, TX 4 1 -75.0%
Louisville, KY-IN 159 138 -13.2%
Macon, GA 171 152 -11.1%
Memphis, TN-AR-MS 133 110 -17.3%
Montgomery, AL 0 0
Nashville, TN 49 31 -36.7%
New Haven-Bridgeport-Stamford, CT 51 48 -5.9%
New London - Norwich CT 32 29 -9.4%
New Orleans, LA 1091 1065 -2.4%
Norfolk-Virginia Beach-Newport News 10 5 -50.0%
Parkersburg-Marietta, WV 4 1 -75.0%
Pensacola, FL 66 52 -21.2%
Pittsburgh, PA 88 58 -34.1%
Providence, RI 56 42 -25.0%
Raleigh-Durham, NC 0 0
Reading, PA 25 15 -40.0%
Richmond-Petersburg, VA 28 23 -17.9%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 119 85 -28.6%
Sarasota-Bradenton, FL 11 5 -54.5%
Scranton-Wilkes Barre, PA 26 8 -69.2%
Sharon, PA 0 0
Sheboygan, WI 8 5 -37.5%
Shreveport, LA 30 22 -26.7%
Springfield, MA 14 6 -57.1%
Toledo, OH 4 3 -25.0%
Tulsa, OK 1 0 -100.0%
York, PA 2 0 -100.0%
Youngstown-Warren, OH 8 5 -37.5%



Table C-3.  Number of days (out of 30 possible per subregion) in which peak 8-hour average
ozone >= 85 ppb, before and after the proposed Nonroad emissions reductions in 2020.

Number of Days w/ 8-Hour
Averages >= 85 ppb

2020 Base 2020 Control Percent
Difference

Total 427 370 -13.3%

Boston 4 3 -25.0%
Chicago 21 19 -9.5%
Cincinnati 12 8 -33.3%
Cleveland 7 5 -28.6%
Dallas 2 1 -50.0%
Detroit 11 11 0.0%
Houston 13 11 -15.4%
Milwaukee 9 9 0.0%
New York City 12 13 8.3%
Philadelphia 11 9 -18.2%
Washington-Baltimore 14 14 0.0%
Allentown-Bethlehem-Easton, PA 3 1 -66.7%
Atlanta, GA 21 21 0.0%
Augusta-Aiken, GA-SC 1 1 0.0%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 3 3 0.0%
Baton Rouge, LA 17 16 -5.9%
Beaumont-Port Arthur, TX 14 14 0.0%
Benton Harbor, MI 9 9 0.0%
Biloxi-Gulfport-Pascagoula, MS 14 13 -7.1%
Birmingham, AL 6 4 -33.3%
Buffalo-Niagara Falls, NY 1 1 0.0%
Canton-Massillon, OH 3 2 -33.3%
Charleston, WV 1 1 0.0%
Charlotte-Gastonia-Rock Hill, NC-SC 4 2 -50.0%
Chattanooga, TN 4 3 -25.0%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 3 3 0.0%
Columbus, OH 2 2 0.0%
Dayton-Springfield, OH 3 0 -100.0%
Dover, DE 0 0
Erie, PA 2 1 -50.0%
Evansville-Henderson, IN-KY 2 1 -50.0%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 9 8 -11.1%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 1 1 0.0%
Hartford, CT 7 5 -28.6%
Hickory-Morganton, NC 0 0



Huntington-Ashland, WV-KY-OH 5 4 -20.0%
Huntsville, AL 0 0
Indianapolis, IN 5 1 -80.0%
Jamestown, NY 1 1 0.0%
Janesville-Beloit, WI 3 2 -33.3%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 13 13 0.0%
Lancaster, PA 2 1 -50.0%
Lima, OH 0 0
Little Rock, AR 1 1 0.0%
Longview-Marshall, TX 1 1 0.0%
Louisville, KY-IN 18 14 -22.2%
Macon, GA 13 13 0.0%
Memphis, TN-AR-MS 17 17 0.0%
Montgomery, AL 0 0
Nashville, TN 8 6 -25.0%
New Haven-Bridgeport-Stamford, CT 9 8 -11.1%
New London - Norwich CT 5 4 -20.0%
New Orleans, LA 18 18 0.0%
Norfolk-Virginia Beach-Newport News 3 3 0.0%
Parkersburg-Marietta, WV 2 1 -50.0%
Pensacola, FL 8 8 0.0%
Pittsburgh, PA 8 6 -25.0%
Providence, RI 5 5 0.0%
Raleigh-Durham, NC 0 0
Reading, PA 2 2 0.0%
Richmond-Petersburg, VA 2 2 0.0%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 13 11 -15.4%
Sarasota-Bradenton, FL 3 1 -66.7%
Scranton-Wilkes Barre, PA 2 1 -50.0%
Sharon, PA 0 0
Sheboygan, WI 2 2 0.0%
Shreveport, LA 4 4 0.0%
Springfield, MA 1 1 0.0%
Toledo, OH 3 2 -33.3%
Tulsa, OK 1 0 -100.0%
York, PA 1 0 -100.0%
Youngstown-Warren, OH 2 2 0.0%



Table C-4.  Total sum of daily maximum 8-hour ozone averages >= 85 ppb, before and after the
proposed Nonroad emissions reductions in 2020.

Total PPB Sum >= 85 ppb 2020 Base 2020 Control Percent
Difference

Total 73442.4 62084.6 -15.5%

Boston 299.3 150.5 -49.7%
Chicago 4944.9 4341.2 -12.2%
Cincinnati 947.4 572.3 -39.6%
Cleveland 325 161.3 -50.4%
Dallas 4.3 0.5 -88.4%
Detroit 1448.4 1154.1 -20.3%
Houston 3654.5 3141.8 -14.0%
Milwaukee 469 351.6 -25.0%
New York City 6264.5 5396.7 -13.9%
Philadelphia 1806.6 1345.3 -25.5%
Washington-Baltimore 1821.7 1061.4 -41.7%
Allentown-Bethlehem-Easton, PA 21.4 6 -72.0%
Atlanta, GA 9815.1 8102.4 -17.4%
Augusta-Aiken, GA-SC 15.1 8.5 -43.7%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 175.6 83.1 -52.7%
Baton Rouge, LA 5606.4 5164.1 -7.9%
Beaumont-Port Arthur, TX 1701.8 1513 -11.1%
Benton Harbor, MI 927.1 790.1 -14.8%
Biloxi-Gulfport-Pascagoula, MS 3002.9 2690.1 -10.4%
Birmingham, AL 244.3 154.9 -36.6%
Buffalo-Niagara Falls, NY 167.6 154.7 -7.7%
Canton-Massillon, OH 80.5 42.7 -47.0%
Charleston, WV 18.3 14.3 -21.9%
Charlotte-Gastonia-Rock Hill, NC-SC 68.9 26.3 -61.8%
Chattanooga, TN 105.7 79.7 -24.6%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 215.4 161.3 -25.1%
Columbus, OH 120.3 49.8 -58.6%
Dayton-Springfield, OH 12.2 0 -100.0%
Dover, DE 0 0
Erie, PA 15.6 2.1 -86.5%
Evansville-Henderson, IN-KY 34.4 14.1 -59.0%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 2016.2 1593.7 -21.0%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 274.6 135.4 -50.7%
Hartford, CT 586.5 460.3 -21.5%



Hickory-Morganton, NC 0 0
Huntington-Ashland, WV-KY-OH 137.9 102.6 -25.6%
Huntsville, AL 0 0
Indianapolis, IN 35.9 9.5 -73.5%
Jamestown, NY 13.9 1.4 -89.9%
Janesville-Beloit, WI 19.2 2 -89.6%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 1392.3 1268.1 -8.9%
Lancaster, PA 13.3 6.1 -54.1%
Lima, OH 0 0
Little Rock, AR 5.7 2.3 -59.6%
Longview-Marshall, TX 4.4 1.4 -68.2%
Louisville, KY-IN 1360.5 1086.6 -20.1%
Macon, GA 2151.4 1894.9 -11.9%
Memphis, TN-AR-MS 840.1 640 -23.8%
Montgomery, AL 0 0
Nashville, TN 235 130 -44.7%
New Haven-Bridgeport-Stamford, CT 657.9 609.6 -7.3%
New London - Norwich CT 510.3 393.4 -22.9%
New Orleans, LA 16153.7 15314.1 -5.2%
Norfolk-Virginia Beach-Newport News 28.9 11.2 -61.2%
Parkersburg-Marietta, WV 7.7 2.8 -63.6%
Pensacola, FL 208.6 140.3 -32.7%
Pittsburgh, PA 395.6 235.4 -40.5%
Providence, RI 557.9 360.2 -35.4%
Raleigh-Durham, NC 0 0
Reading, PA 80.4 35.2 -56.2%
Richmond-Petersburg, VA 261.7 199.3 -23.8%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 816.7 581.4 -28.8%
Sarasota-Bradenton, FL 48.3 20.6 -57.3%
Scranton-Wilkes Barre, PA 73 13.1 -82.1%
Sharon, PA 0 0
Sheboygan, WI 31.4 15.5 -50.6%
Shreveport, LA 87.3 53 -39.3%
Springfield, MA 55.3 10.3 -81.4%
Toledo, OH 19.6 11.4 -41.8%
Tulsa, OK 0.5 0 -100.0%
York, PA 3.9 0 -100.0%
Youngstown-Warren, OH 22.6 9.1 -59.7%



Table C-5.  Population-weighted (using 2000 population), total sum of all 8-hour ozone averages
>= 85 ppb, before and after the proposed Nonroad emissions reductions in 2020.

Population-Weighted Total PPB
Sum >= 85 ppb

2020 Base 2020 Control Percent
Difference

Total 38173.3 34257.8 -10.3%

Boston 116.9 57.6 -50.7%
Chicago 3259 3343.9 2.6%
Cincinnati 772.5 522.1 -32.4%
Cleveland 205.4 136.8 -33.4%
Dallas 14.6 2 -86.3%
Detroit 879.9 795.1 -9.6%
Houston 3060.8 2717.3 -11.2%
Milwaukee 303 246 -18.8%
New York City 9611.2 9940 3.4%
Philadelphia 2028.9 1657.5 -18.3%
Washington-Baltimore 1851.3 1248.7 -32.6%
Allentown-Bethlehem-Easton, PA 7.7 2.7 -64.9%
Atlanta, GA 6583.3 5485.4 -16.7%
Augusta-Aiken, GA-SC 5.1 2.9 -43.1%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 19.9 8.9 -55.3%
Baton Rouge, LA 1143.3 1051.5 -8.0%
Beaumont-Port Arthur, TX 318.1 289.7 -8.9%
Benton Harbor, MI 45 37.3 -17.1%
Biloxi-Gulfport-Pascagoula, MS 322.4 289.5 -10.2%
Birmingham, AL 138.9 94.1 -32.3%
Buffalo-Niagara Falls, NY 58.7 52.4 -10.7%
Canton-Massillon, OH 28.4 13.9 -51.1%
Charleston, WV 5.6 4.4 -21.4%
Charlotte-Gastonia-Rock Hill, NC-SC 44.6 18.7 -58.1%
Chattanooga, TN 6 4.3 -28.3%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 18.8 11.4 -39.4%
Columbus, OH 52 21.3 -59.0%
Dayton-Springfield, OH 14.5 0 -100.0%
Dover, DE 0 0
Erie, PA 1.8 0.2 -88.9%
Evansville-Henderson, IN-KY 10.2 4.5 -55.9%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 290.9 231.4 -20.5%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 41.4 21.3 -48.6%
Hartford, CT 158.5 116.9 -26.2%
Hickory-Morganton, NC 0 0



Huntington-Ashland, WV-KY-OH 25.2 19.1 -24.2%
Huntsville, AL 0 0
Indianapolis, IN 35.3 13.6 -61.5%
Jamestown, NY 0.7 0 -100.0%
Janesville-Beloit, WI 1.8 0.2 -88.9%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 171.9 159.1 -7.4%
Lancaster, PA 4.2 1.9 -54.8%
Lima, OH 0 0
Little Rock, AR 0.4 0.1 -75.0%
Longview-Marshall, TX 0.2 0.1 -50.0%
Louisville, KY-IN 729.1 625.7 -14.2%
Macon, GA 298.7 262.4 -12.2%
Memphis, TN-AR-MS 234.5 166.7 -28.9%
Montgomery, AL 0 0
Nashville, TN 192.7 123.7 -35.8%
New Haven-Bridgeport-Stamford, CT 574.8 542.4 -5.6%
New London - Norwich CT 117.8 91.1 -22.7%
New Orleans, LA 2888.3 2766 -4.2%
Norfolk-Virginia Beach-Newport News 3.6 0.7 -80.6%
Parkersburg-Marietta, WV 0.1 0 -100.0%
Pensacola, FL 90.5 66.3 -26.7%
Pittsburgh, PA 302.8 202.5 -33.1%
Providence, RI 187.4 124.1 -33.8%
Raleigh-Durham, NC 0 0
Reading, PA 22 10.6 -51.8%
Richmond-Petersburg, VA 176.1 137.1 -22.1%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 585.2 460.5 -21.3%
Sarasota-Bradenton, FL 13 4.3 -66.9%
Scranton-Wilkes Barre, PA 9.7 2.1 -78.4%
Sharon, PA 0 0
Sheboygan, WI 5.2 2.2 -57.7%
Shreveport, LA 53.7 39.7 -26.1%
Springfield, MA 25.7 4.1 -84.0%
Toledo, OH 1.9 1.3 -31.6%
Tulsa, OK 0.1 0 -100.0%
York, PA 0.7 0 -100.0%
Youngstown-Warren, OH 1.7 0.6 -64.7%



Appendix D
Effect of Proposed Nonroad Controls on 8-Hour Ozone in 2030 for Selected

Eastern U.S. CMSA/MSAs

Table D-1.  Modeled episodic peak 8-hour average ozone, before and after the proposed
Nonroad emissions reductions in 2030.

Episodic 8-hour Maximum Ozone 2030 Base 2030 Control Percent
Difference

Total 150 143 -4.7%

Boston 105 97 -7.6%
Chicago 139 136 -2.2%
Cincinnati 106 101 -4.7%
Cleveland 103 98 -4.9%
Dallas 88 84 -4.5%
Detroit 122 121 -0.8%
Houston 112 111 -0.9%
Milwaukee 114 110 -3.5%
New York City 130 126 -3.1%
Philadelphia 112 108 -3.6%
Washington-Baltimore 114 109 -4.4%
Allentown-Bethlehem-Easton, PA 90 86 -4.4%
Atlanta, GA 150 143 -4.7%
Augusta-Aiken, GA-SC 91 89 -2.2%
Austin-San Marcos, TX 73 71 -2.7%
Barnstable-Yarmouth, MA 98 93 -5.1%
Baton Rouge, LA 123 121 -1.6%
Beaumont-Port Arthur, TX 110 108 -1.8%
Benton Harbor, MI 147 143 -2.7%
Biloxi-Gulfport-Pascagoula, MS 113 111 -1.8%
Birmingham, AL 99 95 -4.0%
Buffalo-Niagara Falls, NY 105 104 -1.0%
Canton-Massillon, OH 101 95 -5.9%
Charleston, WV 94 92 -2.1%
Charlotte-Gastonia-Rock Hill, NC-SC 100 92 -8.0%
Chattanooga, TN 99 97 -2.0%
Clarksville-Hopkinsville, TN-KY 77 75 -2.6%
Columbia, SC 83 80 -3.6%
Columbus, GA-AL 99 97 -2.0%
Columbus, OH 97 92 -5.2%
Dayton-Springfield, OH 88 81 -8.0%
Dover, DE 83 79 -4.8%
Erie, PA 89 85 -4.5%
Evansville-Henderson, IN-KY 91 87 -4.4%



Fayetteville, NC 72 66 -8.3%
Fort Wayne, IN 77 72 -6.5%
Grand Rapids-Muskegon-Holland, MI 130 122 -6.2%
Greensboro-Winston Salem, NC 81 78 -3.7%
Greenville-Spartanburg, SC 83 78 -6.0%
Harrisburg-Lebanon-Carlisle, PA 95 90 -5.3%
Hartford, CT 129 122 -5.4%
Hickory-Morganton, NC 81 78 -3.7%
Huntington-Ashland, WV-KY-OH 99 97 -2.0%
Huntsville, AL 80 77 -3.8%
Indianapolis, IN 94 87 -7.4%
Jamestown, NY 89 85 -4.5%
Janesville-Beloit, WI 89 85 -4.5%
Johnson City, TN 75 73 -2.7%
Johnstown, PA 83 79 -4.8%
Knoxville, TN 75 72 -4.0%
Lake Charles, LA 109 108 -0.9%
Lancaster, PA 92 88 -4.3%
Lima, OH 81 77 -4.9%
Little Rock, AR 89 86 -3.4%
Longview-Marshall, TX 88 86 -2.3%
Louisville, KY-IN 113 110 -2.7%
Macon, GA 130 127 -2.3%
Memphis, TN-AR-MS 112 108 -3.6%
Montgomery, AL 84 83 -1.2%
Nashville, TN 101 98 -3.0%
New Haven-Bridgeport-Stamford, CT 130 124 -4.6%
New London - Norwich CT 124 115 -7.3%
New Orleans, LA 127 125 -1.6%
Norfolk-Virginia Beach-Newport News 93 88 -5.4%
Parkersburg-Marietta, WV 90 86 -4.4%
Pensacola, FL 94 92 -2.1%
Pittsburgh, PA 99 96 -3.0%
Providence, RI 115 106 -7.8%
Raleigh-Durham, NC 80 76 -5.0%
Reading, PA 94 89 -5.3%
Richmond-Petersburg, VA 109 106 -2.8%
Roanoke, VA 63 59 -6.3%
Rocky Mount, NC 72 67 -6.9%
St. Louis, MO-IL 113 109 -3.5%
Sarasota-Bradenton, FL 96 90 -6.3%
Scranton-Wilkes Barre, PA 93 87 -6.5%
Sharon, PA 80 75 -6.3%
Sheboygan, WI 94 89 -5.3%
Shreveport, LA 94 91 -3.2%
Springfield, MA 93 87 -6.5%
Toledo, OH 93 90 -3.2%
Tulsa, OK 86 84 -2.3%
York, PA 87 81 -6.9%
Youngstown-Warren, OH 91 88 -3.3%



Table D-2.  Number of cells in which 8-hour average ozone >= 85 ppb, before and after the
proposed Nonroad emissions reductions in 2030.

Count of cells >= 85 ppb 2030 Base 2030 Control Percent
Difference

Total 7506 5968 -20.5%

Boston 46 24 -47.8%
Chicago 509 442 -13.2%
Cincinnati 159 89 -44.0%
Cleveland 81 34 -58.0%
Dallas 5 0 -100.0%
Detroit 208 163 -21.6%
Houston 600 519 -13.5%
Milwaukee 62 41 -33.9%
New York City 527 456 -13.5%
Philadelphia 225 161 -28.4%
Washington-Baltimore 256 118 -53.9%
Allentown-Bethlehem-Easton, PA 15 3 -80.0%
Atlanta, GA 683 574 -16.0%
Augusta-Aiken, GA-SC 5 3 -40.0%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 30 22 -26.7%
Baton Rouge, LA 366 348 -4.9%
Beaumont-Port Arthur, TX 266 243 -8.6%
Benton Harbor, MI 62 55 -11.3%
Biloxi-Gulfport-Pascagoula, MS 340 310 -8.8%
Birmingham, AL 53 27 -49.1%
Buffalo-Niagara Falls, NY 18 16 -11.1%
Canton-Massillon, OH 21 9 -57.1%
Charleston, WV 3 2 -33.3%
Charlotte-Gastonia-Rock Hill, NC-SC 21 6 -71.4%
Chattanooga, TN 21 15 -28.6%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 30 22 -26.7%
Columbus, OH 34 12 -64.7%
Dayton-Springfield, OH 10 0 -100.0%
Dover, DE 0 0
Erie, PA 11 2 -81.8%
Evansville-Henderson, IN-KY 11 5 -54.5%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 155 118 -23.9%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 43 31 -27.9%
Hartford, CT 48 32 -33.3%
Hickory-Morganton, NC 0 0
Huntington-Ashland, WV-KY-OH 29 19 -34.5%



Huntsville, AL 0 0
Indianapolis, IN 16 2 -87.5%
Jamestown, NY 6 1 -83.3%
Janesville-Beloit, WI 13 2 -84.6%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 182 168 -7.7%
Lancaster, PA 6 3 -50.0%
Lima, OH 0 0
Little Rock, AR 3 1 -66.7%
Longview-Marshall, TX 5 1 -80.0%
Louisville, KY-IN 166 126 -24.1%
Macon, GA 170 143 -15.9%
Memphis, TN-AR-MS 141 104 -26.2%
Montgomery, AL 0 0
Nashville, TN 52 21 -59.6%
New Haven-Bridgeport-Stamford, CT 65 55 -15.4%
New London - Norwich CT 36 28 -22.2%
New Orleans, LA 1142 1090 -4.6%
Norfolk-Virginia Beach-Newport News 13 5 -61.5%
Parkersburg-Marietta, WV 4 1 -75.0%
Pensacola, FL 72 53 -26.4%
Pittsburgh, PA 94 48 -48.9%
Providence, RI 57 40 -29.8%
Raleigh-Durham, NC 0 0
Reading, PA 28 14 -50.0%
Richmond-Petersburg, VA 30 21 -30.0%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 138 77 -44.2%
Sarasota-Bradenton, FL 12 3 -75.0%
Scranton-Wilkes Barre, PA 27 5 -81.5%
Sharon, PA 0 0
Sheboygan, WI 8 5 -37.5%
Shreveport, LA 33 21 -36.4%
Springfield, MA 14 4 -71.4%
Toledo, OH 6 3 -50.0%
Tulsa, OK 2 0 -100.0%
York, PA 3 0 -100.0%
Youngstown-Warren, OH 9 2 -77.8%



Table D-3.  Number of days (out of 30 possible per subregion) in which peak 8-hour average
ozone >= 85 ppb, before and after the proposed Nonroad emissions reductions in 2030.

Number of Days w/ 8-Hour
Averages >= 85 ppb

2030 Base 2030 Control Percent
Difference

Total 450 370 -17.8%

Boston 4 3 -25.0%
Chicago 22 21 -4.5%
Cincinnati 13 8 -38.5%
Cleveland 7 5 -28.6%
Dallas 2 0 -100.0%
Detroit 11 11 0.0%
Houston 13 12 -7.7%
Milwaukee 11 9 -18.2%
New York City 14 13 -7.1%
Philadelphia 12 10 -16.7%
Washington-Baltimore 16 12 -25.0%
Allentown-Bethlehem-Easton, PA 3 1 -66.7%
Atlanta, GA 21 21 0.0%
Augusta-Aiken, GA-SC 1 1 0.0%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 4 3 -25.0%
Baton Rouge, LA 17 17 0.0%
Beaumont-Port Arthur, TX 14 14 0.0%
Benton Harbor, MI 10 9 -10.0%
Biloxi-Gulfport-Pascagoula, MS 14 13 -7.1%
Birmingham, AL 6 4 -33.3%
Buffalo-Niagara Falls, NY 1 1 0.0%
Canton-Massillon, OH 3 2 -33.3%
Charleston, WV 1 1 0.0%
Charlotte-Gastonia-Rock Hill, NC-SC 5 2 -60.0%
Chattanooga, TN 4 3 -25.0%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 3 3 0.0%
Columbus, OH 5 2 -60.0%
Dayton-Springfield, OH 3 0 -100.0%
Dover, DE 0 0
Erie, PA 2 1 -50.0%
Evansville-Henderson, IN-KY 2 1 -50.0%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 9 8 -11.1%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 1 1 0.0%
Hartford, CT 8 5 -37.5%
Hickory-Morganton, NC 0 0



Huntington-Ashland, WV-KY-OH 5 4 -20.0%
Huntsville, AL 0 0
Indianapolis, IN 5 1 -80.0%
Jamestown, NY 1 1 0.0%
Janesville-Beloit, WI 3 2 -33.3%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 13 13 0.0%
Lancaster, PA 3 1 -66.7%
Lima, OH 0 0
Little Rock, AR 1 1 0.0%
Longview-Marshall, TX 1 1 0.0%
Louisville, KY-IN 18 14 -22.2%
Macon, GA 13 13 0.0%
Memphis, TN-AR-MS 17 17 0.0%
Montgomery, AL 0 0
Nashville, TN 8 5 -37.5%
New Haven-Bridgeport-Stamford, CT 9 9 0.0%
New London - Norwich CT 5 3 -40.0%
New Orleans, LA 18 18 0.0%
Norfolk-Virginia Beach-Newport News 4 3 -25.0%
Parkersburg-Marietta, WV 2 1 -50.0%
Pensacola, FL 8 8 0.0%
Pittsburgh, PA 8 6 -25.0%
Providence, RI 5 5 0.0%
Raleigh-Durham, NC 0 0
Reading, PA 2 2 0.0%
Richmond-Petersburg, VA 2 2 0.0%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 14 11 -21.4%
Sarasota-Bradenton, FL 3 1 -66.7%
Scranton-Wilkes Barre, PA 2 1 -50.0%
Sharon, PA 0 0
Sheboygan, WI 2 2 0.0%
Shreveport, LA 4 4 0.0%
Springfield, MA 1 1 0.0%
Toledo, OH 4 2 -50.0%
Tulsa, OK 2 0 -100.0%
York, PA 2 0 -100.0%
Youngstown-Warren, OH 3 1 -66.7%



Table D-4.  Total sum of daily maximum 8-hour ozone averages >= 85 ppb, before and after the
proposed Nonroad emissions reductions in 2030.

Total PPB Sum >= 85 ppb 2030 Base 2030 Control Percent
Difference

Total 80019.1 62480.3 -21.9%

Boston 344.6 118.6 -65.6%
Chicago 5683.5 4616.2 -18.8%
Cincinnati 1021.4 450.7 -55.9%
Cleveland 398.2 142.4 -64.2%
Dallas 7 0 -100.0%
Detroit 1720.9 1221.7 -29.0%
Houston 4395.1 3560.3 -19.0%
Milwaukee 537.8 339.9 -36.8%
New York City 6767.3 5350.7 -20.9%
Philadelphia 1948.2 1243.4 -36.2%
Washington-Baltimore 1895.9 813.4 -57.1%
Allentown-Bethlehem-Easton, PA 29.6 3.2 -89.2%
Atlanta, GA 9749.8 7233.7 -25.8%
Augusta-Aiken, GA-SC 18.5 8.8 -52.4%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 211.9 66.9 -68.4%
Baton Rouge, LA 6099 5439.6 -10.8%
Beaumont-Port Arthur, TX 2081.4 1780.6 -14.5%
Benton Harbor, MI 981.7 763.8 -22.2%
Biloxi-Gulfport-Pascagoula, MS 3292.3 2823.4 -14.2%
Birmingham, AL 227.3 113.2 -50.2%
Buffalo-Niagara Falls, NY 175.3 153.5 -12.4%
Canton-Massillon, OH 92.4 35.2 -61.9%
Charleston, WV 17.6 12.2 -30.7%
Charlotte-Gastonia-Rock Hill, NC-SC 77.6 16.3 -79.0%
Chattanooga, TN 104.2 68.2 -34.5%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 208.6 134.5 -35.5%
Columbus, OH 145.5 33.4 -77.0%
Dayton-Springfield, OH 16.8 0 -100.0%
Dover, DE 0 0
Erie, PA 21.1 0.2 -99.1%
Evansville-Henderson, IN-KY 36 8 -77.8%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 2182.6 1512.9 -30.7%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 301 99.1 -67.1%
Hartford, CT 651.6 438.1 -32.8%
Hickory-Morganton, NC 0 0
Huntington-Ashland, WV-KY-OH 153.2 99.2 -35.2%



Huntsville, AL 0 0
Indianapolis, IN 41.6 4.3 -89.7%
Jamestown, NY 18 0.1 -99.4%
Janesville-Beloit, WI 27.2 0.7 -97.4%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 1667.2 1471.1 -11.8%
Lancaster, PA 17.1 5.4 -68.4%
Lima, OH 0 0
Little Rock, AR 6.2 1.5 -75.8%
Longview-Marshall, TX 6.9 1.4 -79.7%
Louisville, KY-IN 1396.5 971.6 -30.4%
Macon, GA 2135 1766.6 -17.3%
Memphis, TN-AR-MS 928 613.4 -33.9%
Montgomery, AL 0 0
Nashville, TN 252 108.3 -57.0%
New Haven-Bridgeport-Stamford, CT 750.8 632.2 -15.8%
New London - Norwich CT 561.2 367.1 -34.6%
New Orleans, LA 17536.8 16290.3 -7.1%
Norfolk-Virginia Beach-Newport News 37.9 9 -76.3%
Parkersburg-Marietta, WV 8.3 1.6 -80.7%
Pensacola, FL 246.2 143.3 -41.8%
Pittsburgh, PA 440.6 201.6 -54.2%
Providence, RI 628.3 320.3 -49.0%
Raleigh-Durham, NC 0 0
Reading, PA 105.9 30.2 -71.5%
Richmond-Petersburg, VA 278 185.5 -33.3%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 927.6 553 -40.4%
Sarasota-Bradenton, FL 47.6 10.3 -78.4%
Scranton-Wilkes Barre, PA 91.6 6.2 -93.2%
Sharon, PA 0 0
Sheboygan, WI 40.3 13.5 -66.5%
Shreveport, LA 101.7 49.1 -51.7%
Springfield, MA 70.9 5.3 -92.5%
Toledo, OH 25.1 10.6 -57.8%
Tulsa, OK 1.4 0 -100.0%
York, PA 4.5 0 -100.0%
Youngstown-Warren, OH 24 5.7 -76.3%



Table D-5.  Population-weighted (2000 population), total sum of all 8-hour ozone averages >=
85 ppb, before and after the proposed Nonroad emissions reductions in 2030.

Population-Weighted Total PPB
Sum >= 85 ppb

2030 Base 2030 Control Percent
Difference

Total 41501 35162.4 -15.3%

Boston 134.6 44.2 -67.2%
Chicago 3914 4026.5 2.9%
Cincinnati 838.6 443.8 -47.1%
Cleveland 244.1 131 -46.3%
Dallas 23.2 0 -100.0%
Detroit 1086.1 914.8 -15.8%
Houston 3552.5 3014 -15.2%
Milwaukee 345.6 245.6 -28.9%
New York City 10233.9 10521.3 2.8%
Philadelphia 2208.3 1618.2 -26.7%
Washington-Baltimore 1959.5 1045.2 -46.7%
Allentown-Bethlehem-Easton, PA 9.6 1.4 -85.4%
Atlanta, GA 6616.6 4971.1 -24.9%
Augusta-Aiken, GA-SC 6.1 2.9 -52.5%
Austin-San Marcos, TX 0 0
Barnstable-Yarmouth, MA 24.5 7.2 -70.6%
Baton Rouge, LA 1239.8 1103.3 -11.0%
Beaumont-Port Arthur, TX 379.3 334.6 -11.8%
Benton Harbor, MI 47.8 35.6 -25.5%
Biloxi-Gulfport-Pascagoula, MS 351.6 301.6 -14.2%
Birmingham, AL 130.1 70.3 -46.0%
Buffalo-Niagara Falls, NY 63.8 52.7 -17.4%
Canton-Massillon, OH 32.8 10.9 -66.8%
Charleston, WV 5.3 3.6 -32.1%
Charlotte-Gastonia-Rock Hill, NC-SC 51.4 12.2 -76.3%
Chattanooga, TN 5.8 3.6 -37.9%
Clarksville-Hopkinsville, TN-KY 0 0
Columbia, SC 0 0
Columbus, GA-AL 18.2 8.8 -51.6%
Columbus, OH 68.6 13.8 -79.9%
Dayton-Springfield, OH 19.4 0 -100.0%
Dover, DE 0 0
Erie, PA 2.5 0 -100.0%
Evansville-Henderson, IN-KY 10.9 2.7 -75.2%
Fayetteville, NC 0 0
Fort Wayne, IN 0 0
Grand Rapids-Muskegon-Holland, MI 315.4 220.3 -30.2%
Greensboro-Winston Salem, NC 0 0
Greenville-Spartanburg, SC 0 0
Harrisburg-Lebanon-Carlisle, PA 46.7 16.9 -63.8%
Hartford, CT 180.1 109.5 -39.2%
Hickory-Morganton, NC 0 0



Huntington-Ashland, WV-KY-OH 27.9 18.7 -33.0%
Huntsville, AL 0 0
Indianapolis, IN 38.1 6.7 -82.4%
Jamestown, NY 1 0 -100.0%
Janesville-Beloit, WI 2.6 0 -100.0%
Johnson City, TN 0 0
Johnstown, PA 0 0
Knoxville, TN 0 0
Lake Charles, LA 201.2 181.4 -9.8%
Lancaster, PA 5.8 1.7 -70.7%
Lima, OH 0 0
Little Rock, AR 0.4 0.1 -75.0%
Longview-Marshall, TX 0.3 0.1 -66.7%
Louisville, KY-IN 764.9 598.7 -21.7%
Macon, GA 297 243.6 -18.0%
Memphis, TN-AR-MS 266.2 161 -39.5%
Montgomery, AL 0 0
Nashville, TN 206.5 108.1 -47.7%
New Haven-Bridgeport-Stamford, CT 660.9 571.8 -13.5%
New London - Norwich CT 130 85.3 -34.4%
New Orleans, LA 3097.7 2918.9 -5.8%
Norfolk-Virginia Beach-Newport News 5.8 0.6 -89.7%
Parkersburg-Marietta, WV 0.1 0 -100.0%
Pensacola, FL 102.4 65.4 -36.1%
Pittsburgh, PA 342 185.3 -45.8%
Providence, RI 206.8 107.7 -47.9%
Raleigh-Durham, NC 0 0
Reading, PA 28.9 9.3 -67.8%
Richmond-Petersburg, VA 183.6 126.8 -30.9%
Roanoke, VA 0 0
Rocky Mount, NC 0 0
St. Louis, MO-IL 635.3 439.5 -30.8%
Sarasota-Bradenton, FL 12.4 0.9 -92.7%
Scranton-Wilkes Barre, PA 12.7 1.1 -91.3%
Sharon, PA 0 0
Sheboygan, WI 6.1 1.3 -78.7%
Shreveport, LA 59.1 37.9 -35.9%
Springfield, MA 32.6 1.2 -96.3%
Toledo, OH 2.4 1.3 -45.8%
Tulsa, OK 0.4 0 -100.0%
York, PA 0.8 0 -100.0%
Youngstown-Warren, OH 2.4 0.3 -87.5%



Appendix E
Effect of Proposed Nonroad Controls on 8-Hour Ozone in 2020 forSelected

Western U.S. CMSA/MSAs

Table E-1.  Modeled episodic peak 8-hour average ozone, before and after the proposed
Nonroad emissions reductions in 2020.

Episodic 8-Hour Maximum Ozone 2020 Base 2020 Control Percent 
Difference

Total 135 132 -2.2%

Bakersfield, CA 103 101 -1.9%

Fresno, CA 77 76 -1.3%

Los Angeles 135 132 -2.2%

Merced, CA 72 68 -5.6%

Modesto, CA 73 71 -2.7%

Phoenix-Mesa, AZ 96 94 -2.1%

Sacramento 67 65 -3.0%

San Diego, CA 88 86 -2.3%

San Francisco 78 77 -1.3%

Visalia-Tulare, CA 76 74 -2.6%

Table E-2.  Number of cells in which 8-hour average ozone >= 85 ppb, before and after the
proposed Nonroad emissions reductions in 2020.

Episodic 8-Hour Maximum Ozone 2020 Base 2020 Control Percent 
Difference

Total 711 652 -8.3%

Bakersfield, CA 14 11 -21.4

Fresno, CA 0 0

Los Angeles 647 605 -6.5%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 46 35 -23.9%

Sacramento 0 0

San Diego, CA 4 1 -75.0%

San Francisco 0 0

Visalia-Tulare, CA 0 0



Table E-3.  Number of days (out of 26 possible per subregion) in which peak 8-hour average
ozone >= 85 ppb, before and after the proposed Nonroad emissions reductions in 2020.

Episodic 8-Hour Maximum Ozone 2020 Base 2020 Control Percent 
Difference

Total 25 23 -8.0%

Bakersfield, CA 1 1 0.0%

Fresno, CA 0 0

Los Angeles 16 15 -6.3%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 6 6 0.0%

Sacramento 0 0

San Diego, CA 2 1 -50.0%

San Francisco 0 0

Visalia-Tulare, CA 0 0

Table E-4.  Total sum of daily maximum 8-hour ozone average >=85 ppb, before and after the
proposed Nonroad emissions reductions in 2020.

Episodic 8-Hour Maximum Ozone 2020 Base 2020 Control Percent 
Difference

Total 8571.5 7656.9 -10.7%

Bakersfield, CA 99.4 78.5 -21.0%

Fresno, CA 0 0

Los Angeles 8260.7 7452.2 -9.8%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 201.6 124.9 -38.0%

Sacramento 0 0

San Diego, CA 9.7 1.2 -87.6%

San Francisco 0 0

Visalia-Tulare, CA 0 0



Table E-5.  Population-weighted (2000 population), total sum of all 8-hour ozone averages >=85
ppb, before and after the proposed Nonroad emissions reductions in 2020.

Episodic 8-Hour Maximum Ozone 2020 Base 2020 Control Percent 
Difference

Total 3774.9 3699.0 -2.0%

Bakersfield, CA 1.8 1.3 -27.8%

Fresno, CA 0 0

Los Angeles 3576.4 3544.2 -0.9%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 196.5 153.4 -21.9%

Sacramento 0 0

San Diego, CA 0.3 0.1 -66.7%

San Francisco 0 0

Visalia-Tulare, CA 0 0



Appendix F
Effect of Proposed Nonroad Controls on 8-Hour Ozone in 2030 for Selected

Western U.S. CMSA/MSAs

Table F-1.  Modeled episodic peak 8-hour average ozone, before and after the proposed
Nonroad emissions reductions in 2030.

Episodic 8-Hour Maximum Ozone 2030 Base 2030 Control Percent 
Difference

Total 136 131 -3.7%
Bakersfield, CA 104 100 -3.8%

Fresno, CA 78 75 -3.8%

Los Angeles 136 131 -3.7%

Merced, CA 72 68 -5.6%

Modesto, CA 73 70 -4.1%

Phoenix-Mesa, AZ 97 95 -2.1%

Sacramento 67 65 -3.0%

San Diego, CA 88 85 -3.4%

San Francisco 79 77 -2.5%

Visalia-Tulare, CA 76 73 -3.9%

Table F-2.  Number of cells in which 8-hour average ozone >= 85 ppb, before and after the
proposed Nonroad emissions reductions in 2030.

Episodic 8-Hour Maximum Ozone 2030 Base 2030 Control Percent 
Difference

Total 757 656 -13.3%

Bakersfield, CA 16 11 -31.3%

Fresno, CA 0 0

Los Angeles 677 605 -10.6%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 60 39 -35.0%

Sacramento 0 0

San Diego, CA 4 1 -75.0%

San Francisco 0 0

Visalia-Tulare, CA 0 0



Table F-3.  Number of days (out of 26 possible per subregion) in which peak 8-hour average
ozone >= 85 ppb, before and after the proposed Nonroad emissions reductions in 2030.

Episodic 8-Hour Maximum Ozone 2030 Base 2030 Control Percent 
Difference

Total 26 23 -11.5%

Bakersfield, CA 1 1 0.0%

Fresno, CA 0 0

Los Angeles 16 15 -6.3%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 7 6 -14.3%

Sacramento 0 0

San Diego, CA 2 1 -50.0%

San Francisco 0 0

Visalia-Tulare, CA 0 0

Table F-4.  Total sum of daily maximum 8-hour ozone average >=85 ppb, before and after the
proposed Nonroad emissions reductions in 2030.

Episodic 8-Hour Maximum Ozone 2030 Base 2030 Control Percent 
Difference

Total 9301.8 7743.5 -16.8%

Bakersfield, CA 108.2 74.3 -31.3%

Fresno, CA 0 0

Los Angeles 8910.5 7528.2 -15.5%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 273.2 140.9 -48.4%

Sacramento 0 0

San Diego, CA 9.9 0 -100.0%

San Francisco 0 0

Visalia-Tulare, CA 0 0



Table F-5.  Population-weighted (2000 population), total sum of all 8-hour ozone averages >=85
ppb, before and after the proposed Nonroad emissions reductions in 2030.

Episodic 8-Hour Maximum Ozone 2030 Base 2030 Control Percent 
Difference

Total 4265.0 4067.6 -4.6%

Bakersfield, CA 1.9 1.2 -36.8%

Fresno, CA 0 0

Los Angeles 3995.6 3877.3 -3.0%

Merced, CA 0 0

Modesto, CA 0 0

Phoenix-Mesa, AZ 267.2 189.0 -29.3%

Sacramento 0 0

San Diego, CA 0.3 0 -100.0%

San Francisco 0 0

Visalia-Tulare, CA 0 0



Appendix G
IMPROVE Monitoring Sites used in the REMSAD Model Performance

Evaluation

IMPROVE
Site Code

Site Name State

ACAD1 Acadia National Park Maine
BADL1 Badlands National Park South Dakota
BAND1 Bandelier National Monument New Mexico
BIBE1 Big Bend National Park Texas
BLIS1 Bliss State Park(TRPA) California
BOWA1 Boundary Waters Canoe Area Minnesota
BRCA1 Bryce Canyon National Park Colorado
BRID1 Bridger Wilderness Wyoming
BRIG1 Brigantine National Wildlife Refu New Jersey
BRLA1 Brooklyn Lake Wyoming
CANY1 Canyonlands National Park Utah
CHAS1 Chassahowitzka National Wildlife Florida
CHIR1 Chiricahua National Monument Arizona
CORI1 Columbia River Gorge Washington
CRLA1 Crater Lake National Park Oregon
CRMO1 Craters of the Moon NM(US DOE) Idaho
DEVA1 Death Valley Monument California
DOLA1 Dome Lands Wilderness California
DOSO1 Dolly Sods /Otter Creek Wildernes West Virginia
EVER1 Everglades National Park Florida
GICL1 Gila Wilderness New Mexico
GLAC1 Glacier National Park Montana
GRBA1 Great Basin National Park Nevada
GRCA1 Grand Canyon NP- Hopi Point Arizona
GRSA1 Great Sand Dunes National Monument Colorado
GRSM1 Great Smoky Mountains National Park Tennessee
GUMO1 Guadalupe Mountains National Park Texas
JARB1 Jarbidge Wilderness Nevada
JEFF1 Jefferson/James River Face Wildern Virginia
LAVO1 Lassen Volcanic National Park California
LOPE1 Lone Peak Wilderness Utah
LYBR1 Lye Brook Wilderness Vermont
MACA1 Mammoth Cave National Park Kentucky
MEVE1 Mesa Verde National Park Colorado
MOOS1 Moosehorn NWR Maine
MORA1 Mount Rainier National Park Washington
MOZI1 Mount Zirkel Wilderness Colorado
OKEF1 Okefenokee National Wildlife Refu Georgia
PEFO1 Petrified Forest National Park Arizona
PINN1 Pinnacles National Monument California
PORE1 Point Reyes National Seashore California



IMPROVE
Site Code

Site Name State

PUSO1 Puget Sound Washington
REDW1 Redwood National Park California
ROMA1 Cape Romain National Wildlife Ref South Carolina
ROMO2 Rocky Mountain National Park Colorado
SAGO1 San Gorgonio Wilderness California
SALM1 Salmon National Forest Idaho
SAWT1 Sawtooth National Forest Idaho
SCOV1 Scoville (US DOE) Idaho
SEQU1 Sequoia National Park California
SHEN1 Shenandoah National Park Virginia
SHRO1 Shining Rock Wilderness North Carolina
SIPS1 Sipsy Wilderness Alabama
SNPA1 Snoqualamie Pass, Snoqualamie N.F Washington
SOLA1 South Lake Tahoe (TRPA) California
SULA1 Sula (Selway Bitteroot Wilderness) Montana
THSI1 Three Sisters Wilderness Idaho
TONT1 Tonto National Monument Arizona
UPBU1 Upper Buffalo Wilderness Arkansas
WASH1 Washington D.C. Washington D.C.



Appendix  H
Annual PM2.5 Design Values for 1999-2001 and 2020 and 2030 Base Case and Control Case Scenarios.

Nonroad Proposal PM2.5 County Design Values
and Population
[Based on REMSAD v7.01 Modeling]

FIPS
State FIPS Cnty   State   County 1999 - 2001 2020 Base 2020 Control 2030 Base 2030 Control 2000  Pop 2020 Pop 2030 Pop

1 27 Alabama Clay 15.5 14.1 13.82 14.65 14.26 14,254 15,600 16,298
1 33 Alabama Colbert 15.3 12.34 12.03 12.79 12.36 54,984 57,232 58,485
1 49 Alabama De Kalb 16.8 14.96 14.61 15.59 15.09 64,452 77,672 84,590
1 69 Alabama Houston 16.3 15.28 15.02 15.85 15.49 88,787 106,041 115,148
1 73 Alabama Jefferson 21.6 20.79 20.3 22 21.32 662,047 679,713 690,896
1 89 Alabama Madison 15.5 13.36 12.99 13.92 13.4 276,700 343,075 378,069
1 97 Alabama Mobile 15.3 14.94 14.69 15.73 15.39 399,843 440,944 463,124
1 101 Alabama Montgomery 16.8 15.82 15.54 16.49 16.1 223,510 257,634 275,746
1 103 Alabama Morgan 19.1 16.93 16.54 17.64 17.1 111,064 133,015 144,685
1 113 Alabama Russell 18.4 17.61 17.21 18.33 17.78 49,756 56,127 59,536
1 117 Alabama Shelby 17.2 15.95 15.63 16.69 16.24 143,293 259,341 320,220
1 121 Alabama Talladega 17.8 16.57 16.28 17.29 16.89 80,321 87,739 91,815
4 5 Arizona Coconino 7.5 7.22 7.13 7.38 7.25 116,320 147,562 164,495
4 7 Arizona Gila 9.6 9.39 9.2 9.74 9.48 51,335 86,549 104,850
4 13 Arizona Maricopa 11.2 11.83 10.97 13 11.83 3,072,149 4,513,344 5,266,724
4 21 Arizona Pinal 8.6 8.93 8.7 9.59 9.28 179,727 298,094 359,616
4 23 Arizona Santa Cruz 12.1 12.45 12.18 13.19 12.82 38,381 49,022 54,635
5 35 Arkansas Crittenden 15.3 14.23 13.61 14.98 14.16 50,866 54,912 57,013
5 119 Arkansas Pulaski 15.9 14.41 14.01 15.03 14.47 361,474 382,366 393,433
6 1 California Alameda 12.2 11.2 10.6 12.06 11.17 1,443,741 1,684,320 1,812,462
6 7 California Butte 15.4 13.54 13.32 14.01 13.69 203,171 253,550 279,642
6 9 California Calaveras 9.4 7.94 7.76 8.19 7.92 40,554 56,980 65,483
6 11 California Colusa 10.3 9.38 9.25 9.6 9.39 18,804 24,342 27,300
6 17 California El Dorado 8.1 7.1 6.95 7.42 7.21 156,299 235,742 277,664
6 19 California Fresno 24 21.28 20.56 22.55 21.5 799,407 1,010,798 1,121,458
6 23 California Humboldt 9.2 9.04 8.94 9.2 9.08 126,518 140,881 148,723
6 25 California Imperial 15.7 14.54 14.09 15.18 14.52 142,361 183,499 204,781
6 29 California Kern 23.7 20.52 19.89 21.3 20.36 661,645 851,039 949,174
6 31 California Kings 16.6 13.82 13.38 14.29 13.62 129,461 171,603 193,641
6 37 California Los Angeles 25.9 24.04 23.06 26.03 24.61 9,519,338 10,068,317 10,397,571



6 45 California Mendocino 8 6.76 6.66 6.91 6.77 86,265 99,671 106,876
6 47 California Merced 18.9 15.66 15.16 16.23 15.49 210,554 261,895 288,668
6 49 California Modoc 8 7.1 7 7.17 7.04 9,449 9,859 10,033
6 59 California Orange 22.4 22.01 21.01 23.89 22.41 2,846,289 3,681,637 4,114,415
6 61 California Placer 12.5 10.75 10.45 11.23 10.79 248,399 449,083 555,897
6 65 California Riverside 29.8 29.69 28.5 32.21 30.39 1,545,387 2,176,313 2,500,652
6 71 California San Bernardino 25.8 25.7 24.68 27.88 26.31 1,709,434 2,298,311 2,602,018
6 73 California San Diego 17.1 17.57 16.85 19.4 18.27 2,813,833 3,720,010 4,194,289
6 77 California San Joaquin 16.4 14.3 13.79 15.05 14.29 563,598 711,131 788,116
6 79 California San Luis Obispo 10 10.2 9.99 10.63 10.32 246,681 320,613 358,966
6 89 California Shasta 10.4 8.92 8.82 9.12 8.99 163,256 200,480 219,953
6 97 California Sonoma 11.1 9.45 9.23 9.89 9.58 458,614 592,845 662,549
6 99 California Stanislaus 19.7 16.49 15.95 17.12 16.32 446,997 576,927 644,333
6 101 California Sutter 12.9 11.7 11.51 11.96 11.68 78,930 106,062 120,252
6 107 California Tulare 24.7 21.83 21.29 22.77 21.96 368,021 461,550 510,533
6 111 California Ventura 14.5 14.03 13.69 15.01 14.52 753,197 974,455 1,089,111
8 13 Colorado Boulder 9.2 9.38 9.04 9.94 9.52 291,288 384,637 433,584
8 77 Colorado Mesa 7.3 6.82 6.66 7.13 6.92 116,255 160,627 183,761
9 1 Connecticut Fairfield 13.6 12.97 12.47 13.67 12.97 882,567 902,450 915,655
9 9 Connecticut New Haven 16.8 15.88 15.36 16.71 15.98 824,008 835,856 844,674

10 1 Delaware Kent 12.9 11.84 11.53 12.38 11.92 126,697 152,443 166,217
10 3 Delaware New Castle 16.6 15.72 15.28 16.52 15.9 500,265 567,457 603,839
10 5 Delaware Sussex 14.5 13.38 13.05 14.01 13.52 156,638 207,387 233,829
11 1 D.C. Washington 16.6 15.56 15.05 16.39 15.66 572,059 544,554 532,846
12 1 Florida Alachua 10.9 10.03 9.85 10.39 10.15 217,955 264,811 289,558
12 11 Florida Broward 9 9.25 8.88 9.89 9.38 1,623,018 2,132,443 2,399,060
12 17 Florida Citrus 10.5 9.12 8.94 9.43 9.2 118,085 148,847 164,729
12 25 Florida Dade 8.5 8.12 7.98 8.55 8.36 2,253,362 2,253,362 2,253,362
12 33 Florida Escambia 13.4 11.82 11.57 12.26 11.91 294,410 341,459 367,084
12 57 Florida Hillsborough 12.6 11.49 11.1 12.22 11.69 998,948 1,263,223 1,400,587
12 71 Florida Lee 9.6 8.94 8.64 9.39 8.98 440,888 628,905 727,235
12 73 Florida Leon 13.4 12.4 12.14 12.87 12.52 239,452 315,384 355,230
12 95 Florida Orange 11.4 11.13 10.7 11.8 11.19 896,344 1,227,393 1,400,894
12 103 Florida Pinellas 11.8 10.76 10.39 11.45 10.94 921,482 1,027,556 1,088,025
12 111 Florida St Lucie 9.6 8.76 8.53 9.1 8.8 192,695 257,927 291,959
12 115 Florida Sarasota 10.5 9.21 8.98 9.6 9.29 325,957 400,330 439,136
12 117 Florida Seminole 10.5 9.63 9.34 10.11 9.71 365,196 569,587 677,953
12 127 Florida Volusia 10.6 9.83 9.58 10.25 9.91 443,343 563,819 626,353
13 21 Georgia Bibb 17.6 17.73 17.39 18.56 18.09 153,887 163,780 169,321



13 51 Georgia Chatham 16.5 17.08 16.84 17.84 17.51 232,048 252,931 264,176
13 59 Georgia Clarke 18.6 17.17 16.73 17.92 17.29 101,489 112,738 118,720
13 63 Georgia Clayton 19.2 19.08 18.55 20.19 19.44 236,517 296,995 328,695
13 67 Georgia Cobb 18.6 17.78 17.35 18.6 17.99 607,751 878,010 1,019,356
13 89 Georgia De Kalb 19.6 20.13 19.36 21.72 20.63 665,865 736,846 774,881
13 95 Georgia Dougherty 16.6 16.64 16.4 17.3 16.95 96,065 102,414 105,869
13 115 Georgia Floyd 18.5 17.56 17.18 18.44 17.91 90,565 100,842 106,408
13 121 Georgia Fulton 21.2 21.77 20.94 23.49 22.31 816,006 899,328 944,173
13 139 Georgia Hall 17.2 15.36 14.97 15.98 15.42 139,277 175,978 195,214
13 215 Georgia Muscogee 18 17.22 16.84 17.93 17.4 186,291 203,643 213,076
13 223 Georgia Paulding 16.8 15.89 15.53 16.64 16.13 81,678 128,988 153,773
13 245 Georgia Richmond 17.4 16.2 15.83 16.88 16.36 199,775 216,710 225,937
13 303 Georgia Washington 16.5 15.88 15.64 16.45 16.13 21,176 23,302 24,439
13 319 Georgia Wilkinson 18.1 17.95 17.7 18.8 18.46 10,220 11,450 12,105
16 1 Idaho Ada 9.5 8.01 7.77 8.22 7.9 300,904 430,613 498,386
16 5 Idaho Bannock 10 9.1 8.9 9.58 9.3 75,565 92,988 102,241
16 27 Idaho Canyon 10.2 8.61 8.49 8.66 8.49 131,441 161,808 177,844
16 83 Idaho Twin Falls 3.2 2.97 2.91 3.02 2.95 64,284 81,940 91,186
17 19 Illinois Champaign 13.8 12.5 12.13 12.98 12.44 179,669 190,977 197,308
17 31 Illinois Cook 18.8 18.6 17.88 19.86 18.89 5,376,741 5,389,403 5,415,053
17 43 Illinois Du Page 15.4 14.96 14.37 15.8 14.98 904,161 1,126,926 1,243,827
17 115 Illinois Macon 15.4 13.96 13.59 14.54 14.01 114,706 112,528 111,690
17 119 Illinois Madison 17.3 16.26 15.79 17.18 16.53 258,941 277,485 287,588
17 157 Illinois Randolph 13.9 11.98 11.68 12.46 12.02 33,893 36,184 37,390
17 163 Illinois St Clair 17.4 16.45 16 17.4 16.76 256,082 251,771 249,705
17 167 Illinois Sangamon 14.2 12.39 12.02 12.85 12.32 188,951 203,496 211,534
17 197 Illinois Will 15.9 15.42 14.97 16.22 15.59 502,266 676,751 768,045
18 19 Indiana Clark 17.3 15.81 15.33 16.67 16 96,472 117,704 129,061
18 39 Indiana Elkhart 15.1 13.63 13.22 14.15 13.56 182,791 209,889 224,577
18 43 Indiana Floyd 15.6 14.25 13.82 15.03 14.43 70,823 85,015 92,614
18 67 Indiana Howard 15.4 13.71 13.24 14.23 13.55 84,964 88,876 90,901
18 89 Indiana Lake 16.3 15.57 15.11 16.36 15.71 484,564 492,963 498,991
18 97 Indiana Marion 17 15.64 15.01 16.45 15.56 860,454 907,240 932,219
18 127 Indiana Porter 13.9 13.27 12.88 13.95 13.4 146,798 184,172 203,679
18 157 Indiana Tippecanoe 15.4 13.71 13.27 14.22 13.58 148,955 178,981 194,850
18 163 Indiana Vanderburgh 16.9 14.75 14.31 15.37 14.75 171,922 180,244 185,028
18 167 Indiana Vigo 15.4 12.96 12.54 13.43 12.81 105,848 105,837 105,963
19 13 Iowa Black Hawk 11.7 10.21 9.84 10.5 9.96 128,012 131,365 133,578
19 45 Iowa Clinton 12.4 10.99 10.64 11.35 10.83 50,149 49,104 48,749



19 103 Iowa Johnson 11.6 10.16 9.8 10.45 9.93 111,006 142,696 159,465
19 113 Iowa Linn 11.4 10.04 9.71 10.35 9.88 191,701 223,880 240,980
19 153 Iowa Polk 10.9 9.63 9.22 9.95 9.35 374,601 456,867 500,239
19 163 Iowa Scott 13 11.76 11.34 12.18 11.58 158,668 175,894 185,378
19 193 Iowa Woodbury 10 8.84 8.47 9.07 8.52 103,877 117,766 125,197
20 91 Kansas Johnson 11.8 10.62 10.19 11.02 10.42 451,086 625,281 716,948
20 107 Kansas Linn 11.2 9.72 9.42 9.98 9.55 9,570 9,998 10,395
20 173 Kansas Sedgwick 11.8 10.68 10.32 11 10.5 452,869 528,750 568,900
20 177 Kansas Shawnee 11.3 10.11 9.77 10.41 9.93 169,871 181,292 187,649
21 13 Kentucky Bell 16.8 14.19 13.87 14.71 14.27 30,060 33,087 34,721
21 19 Kentucky Boyd 15.5 13.97 13.65 14.67 14.23 49,752 48,055 47,412
21 29 Kentucky Bullitt 16 13.44 13.09 13.96 13.47 61,236 81,834 92,881
21 37 Kentucky Campbell 15.5 13.88 13.41 14.55 13.9 88,616 95,627 99,377
21 43 Kentucky Carter 12.9 11.3 11.05 11.76 11.41 26,889 31,905 34,505
21 59 Kentucky Daviess 15.8 13.67 13.3 14.24 13.71 91,545 102,223 108,122
21 67 Kentucky Fayette 16.8 14.23 13.84 14.83 14.27 260,512 326,968 362,189
21 73 Kentucky Franklin 14.5 12.28 11.94 12.8 12.31 47,687 58,066 63,579
21 111 Kentucky Jefferson 17.1 15.63 15.15 16.48 15.81 693,604 725,700 743,029
21 117 Kentucky Kenton 15.9 14.34 13.86 15.06 14.38 151,464 171,352 181,909
21 145 Kentucky McCracken 15.1 13.01 12.66 13.52 13.03 65,514 74,308 78,993
21 195 Kentucky Pike 16.1 14.44 14.16 15.03 14.64 68,736 77,184 81,653
21 227 Kentucky Warren 15.4 12.52 12.17 12.93 12.44 92,522 113,224 124,048
22 17 Louisiana Caddo 13.7 13.51 13.17 14.11 13.64 252,161 267,902 276,688
22 19 Louisiana Calcasieu 12.7 12.92 12.66 13.79 13.43 183,577 215,763 232,906
22 33 Louisiana East Baton Rouge 14.6 15.03 14.73 15.95 15.55 412,852 518,879 574,689
22 47 Louisiana Iberville 13.9 13.72 13.49 14.39 14.08 33,320 33,003 33,048
22 51 Louisiana Jefferson 13.6 13.4 12.95 14.23 13.65 455,466 532,172 572,938
22 55 Louisiana Lafayette 12.4 11.87 11.57 12.4 12 190,503 233,196 255,915
22 71 Louisiana Orleans 14.1 13.89 13.42 14.76 14.16 484,674 430,421 404,817
22 73 Louisiana Ouachita 13 12.42 12.17 12.98 12.63 147,250 163,820 172,805
22 79 Louisiana Rapides 13.3 12.8 12.55 13.34 12.99 126,337 134,449 138,921
22 105 Louisiana Tangipahoa 13.5 12.77 12.46 13.41 13 100,588 123,191 135,181
22 121 Louisiana West Baton Rouge 14.1 14.52 14.23 15.4 15.01 21,601 23,842 25,065
23 1 Maine Androscoggin 10.3 9.29 9.07 9.63 9.33 103,793 112,835 117,751
23 3 Maine Aroostook 10.8 10.15 10.03 10.29 10.14 73,938 69,371 67,299
23 5 Maine Cumberland 11.7 10.81 10.51 11.24 10.83 265,612 308,231 330,836
23 9 Maine Hancock 6 5.42 5.31 5.59 5.43 51,791 56,083 58,499
23 11 Maine Kennebec 10 8.92 8.72 9.23 8.95 117,114 123,081 126,672
23 17 Maine Oxford 10.4 9.6 9.41 9.87 9.61 54,755 60,048 62,916



23 19 Maine Penobscot 9.4 8.37 8.18 8.62 8.37 144,919 154,987 160,631
24 5 Maryland Baltimore 16 14.67 14.29 15.36 14.82 754,292 831,729 873,717
24 33 Maryland Prince Georges 17.3 16.22 15.69 17.08 16.32 801,515 884,449 929,496
24 510 Maryland Baltimore City 17.8 16.55 15.99 17.43 16.64 651,154 575,980 540,899
25 13 Massachusetts Hampden 14.1 13.4 13.01 14.06 13.51 456,228 450,007 448,459
25 15 Massachusetts Hampshire 9 8.5 8.24 8.89 8.53 152,251 164,397 171,127
25 25 Massachusetts Suffolk 16.1 15.59 14.31 16.59 14.8 689,807 659,760 646,962
25 27 Massachusetts Worcester 12.7 11.75 11.31 12.3 11.68 750,963 812,259 846,065
26 5 Michigan Allegan 12.2 11.28 10.96 11.73 11.28 105,665 137,366 153,990
26 21 Michigan Berrien 12.5 11.37 11.05 11.81 11.35 162,453 167,167 169,909
26 49 Michigan Genesee 12.7 11.62 11.3 12.06 11.62 436,141 446,891 453,670
26 65 Michigan Ingham 13.1 11.78 11.43 12.21 11.72 279,320 290,827 297,581
26 77 Michigan Kalamazoo 15 13.6 13.19 14.13 13.55 238,603 262,738 275,735
26 81 Michigan Kent 14.1 12.85 12.42 13.41 12.79 574,335 684,461 742,687
26 99 Michigan Macomb 13.2 12.18 11.88 12.6 12.18 788,149 890,585 946,209
26 121 Michigan Muskegon 12.2 11.4 11.11 11.87 11.46 170,200 181,910 188,401
26 139 Michigan Ottawa 13.3 12.12 11.71 12.64 12.07 238,314 316,914 358,079
26 147 Michigan St Clair 13.8 12.55 12.3 12.87 12.52 164,235 193,051 208,573
26 163 Michigan Wayne 18.9 17.75 17.27 18.53 17.85 2,061,162 1,897,446 1,818,661
28 33 Mississippi De Soto 14 12.23 11.91 12.67 12.22 107,199 173,599 210,077
28 35 Mississippi Forrest 15.2 14.22 14 14.66 14.37 72,604 83,371 89,113
28 45 Mississippi Hancock 12.2 11.7 11.42 12.36 12 42,967 61,659 71,279
28 49 Mississippi Hinds 15.1 13.66 13.31 14.28 13.79 250,800 268,318 278,025
28 59 Mississippi Jackson 13.8 13.45 13.2 14.02 13.69 131,420 153,814 165,743
28 67 Mississippi Jones 16.6 15.07 14.81 15.54 15.18 64,958 73,388 77,897
28 75 Mississippi Lauderdale 15.3 13.96 13.69 14.45 14.08 78,161 84,485 87,885
28 81 Mississippi Lee 14.2 12.34 12.03 12.8 12.37 75,755 95,564 105,932
28 87 Mississippi Lowndes 15.1 13.01 12.74 13.51 13.14 61,586 65,500 67,716
29 21 Missouri Buchanan 12.4 11.04 10.68 11.39 10.87 85,998 84,393 83,729
29 39 Missouri Cedar 11.5 9.79 9.5 10.03 9.62 13,733 14,933 15,530
29 47 Missouri Clay 12.8 11.95 11.49 12.5 11.86 184,006 243,759 275,253
29 77 Missouri Greene 12.2 10.48 10.18 10.77 10.35 240,391 287,457 312,253
29 95 Missouri Jackson 13.9 12.97 12.47 13.57 12.88 654,880 660,463 665,053
29 97 Missouri Jasper 13.7 11.45 11.12 11.77 11.29 104,686 128,109 140,409
29 99 Missouri Jefferson 15 14.18 13.79 15 14.45 198,099 264,327 300,317
29 137 Missouri Monroe 11 9.5 9.22 9.78 9.39 9,311 9,177 9,142
29 183 Missouri St Charles 14.6 13.72 13.33 14.5 13.95 283,883 402,014 466,353
29 186 Missouri Ste Genevieve 14.2 12.25 11.92 12.68 12.21 17,842 20,974 22,653
29 189 Missouri St Louis 14.1 13.25 12.87 14 13.47 1,016,315 1,033,549 1,043,340



29 510 Missouri St Louis City 16.3 15.41 14.99 16.3 15.7 348,189 301,448 277,083
30 49 Montana Lewis And Clark 8.5 8.64 8.55 8.96 8.84 55,716 73,082 82,209
30 53 Montana Lincoln 16.4 15.22 15.07 15.35 15.14 18,837 19,735 20,307
30 63 Montana Missoula 11.8 11.04 10.87 11.22 10.98 95,802 126,218 142,114
30 111 Montana Yellowstone 8 7.95 7.81 8.23 8.03 129,352 157,282 171,961
31 109 Nebraska Lancaster 10.5 9.41 9.01 9.66 9.09 250,291 319,321 355,359
32 3 Nevada Clark 11 11.57 10.16 12.69 10.73 1,375,765 2,287,193 2,763,400
32 31 Nevada Washoe 9.7 8.97 8.68 9.51 9.11 339,486 435,434 486,504
34 17 New Jersey Hudson 17.5 15.87 15.2 16.81 15.88 608,975 606,667 607,696
34 21 New Jersey Mercer 14.3 13.76 13.38 14.49 13.95 350,761 369,672 380,558
34 39 New Jersey Union 16.3 15 14.52 15.87 15.21 522,541 532,182 539,007
35 13 New Mexico Dona Ana 10.9 10.47 10.17 10.84 10.44 174,682 235,150 266,803
35 17 New Mexico Grant 5.7 5.66 5.6 5.87 5.79 31,002 43,675 50,353
35 25 New Mexico Lea 6.9 6.59 6.45 6.75 6.56 55,511 61,522 64,859
35 43 New Mexico Sandoval 5 5.14 5 5.48 5.29 89,908 156,855 191,838
35 49 New Mexico Santa Fe 4.8 4.46 4.39 4.57 4.47 129,292 200,022 237,288
36 5 New York Bronx 16.4 15.49 14.63 16.34 15.14 1,332,650 1,273,213 1,247,937
36 61 New York New York 17.8 16.81 15.88 17.74 16.43 1,537,195 1,549,867 1,561,676
37 1 North Carolina Alamance 15.3 14.04 13.7 14.68 14.21 130,800 163,548 180,531
37 25 North Carolina Cabarrus 15.7 14.1 13.72 14.79 14.24 131,063 194,287 227,392
37 35 North Carolina Catawba 17.1 15.06 14.7 15.75 15.25 141,685 169,675 184,315
37 37 North Carolina Chatham 13.4 12.39 12.07 12.99 12.53 49,329 61,495 67,885
37 51 North Carolina Cumberland 15.4 13.64 13.27 14.2 13.67 302,963 341,187 361,645
37 57 North Carolina Davidson 17.3 15.8 15.42 16.62 16.07 147,246 183,125 201,995
37 61 North Carolina Duplin 12.6 11.06 10.8 11.44 11.07 49,063 53,223 55,448
37 63 North Carolina Durham 15.3 14.75 14.22 15.63 14.87 223,314 281,262 311,720
37 67 North Carolina Forsyth 16.2 14.95 14.58 15.71 15.17 306,067 366,864 398,805
37 71 North Carolina Gaston 15.3 14.37 14.03 15.13 14.64 190,365 220,661 236,720
37 81 North Carolina Guilford 16.3 15.19 14.75 16 15.37 421,048 497,827 538,355
37 87 North Carolina Haywood 15.4 13.62 13.33 14.24 13.84 54,033 63,759 68,965
37 111 North Carolina McDowell 16.2 14.63 14.34 15.35 14.95 42,151 48,933 52,572
37 119 North Carolina Mecklenburg 16.8 15.85 15.27 16.77 15.95 695,454 941,939 1,070,973
37 121 North Carolina Mitchell 15.5 13.71 13.44 14.29 13.92 15,687 16,288 16,644
37 129 North Carolina New Hanover 12.2 11.72 11.5 12.27 11.97 160,307 233,447 271,367
37 133 North Carolina Onslow 12.1 11.08 10.83 11.5 11.16 150,355 162,645 169,450
37 135 North Carolina Orange 14.3 13.23 12.88 13.86 13.37 118,227 157,410 177,913
37 173 North Carolina Swain 14.1 12.42 12.18 12.9 12.57 12,968 15,962 17,531



37 183 North Carolina Wake 15.3 14.75 14.22 15.63 14.87 627,846 948,294 1,115,401
37 191 North Carolina Wayne 15.3 13.32 13 13.78 13.33 113,329 128,949 137,243
38 17 North Dakota Cass 8.6 7.82 7.48 8.06 7.56 123,138 159,734 179,181
38 57 North Dakota Mercer 6.3 5.71 5.53 5.78 5.5 8,644 9,840 10,629
38 91 North Dakota Steele 6.9 6.17 5.9 6.28 5.87 2,258 2,143 2,105
39 17 Ohio Butler 17.4 15.53 15.02 16.26 15.55 332,807 438,817 495,203
39 35 Ohio Cuyahoga 20.3 19.17 18.5 20.17 19.22 1,393,978 1,314,252 1,277,539
39 49 Ohio Franklin 18.1 16.2 15.64 16.93 16.17 1,068,978 1,221,199 1,301,984
39 61 Ohio Hamilton 19.3 17.28 16.7 18.12 17.3 845,303 844,891 845,159
39 81 Ohio Jefferson 18.9 17.4 17.06 18.11 17.66 73,894 67,057 63,997
39 85 Ohio Lake 14 12.94 12.56 13.52 13.02 227,511 247,357 258,390
39 87 Ohio Lawrence 17.4 15.68 15.32 16.47 15.98 62,319 63,291 63,930
39 93 Ohio Lorain 15.1 13.87 13.48 14.44 13.91 284,664 299,991 308,902
39 95 Ohio Lucas 16.7 15.66 15.18 16.41 15.75 455,054 439,718 433,056
39 99 Ohio Mahoning 16.4 14.85 14.43 15.5 14.92 257,555 247,426 243,143
39 113 Ohio Montgomery 17.6 16.02 15.49 16.8 16.04 559,062 547,126 543,119
39 133 Ohio Portage 15.3 14.06 13.66 14.71 14.15 152,061 173,779 185,622
39 145 Ohio Scioto 20 17.44 17.06 18.19 17.65 79,195 81,119 82,336
39 151 Ohio Stark 18.3 16.4 15.95 17.09 16.45 378,098 386,771 392,398
39 153 Ohio Summit 17.3 15.9 15.45 16.63 16 542,899 566,693 580,778
39 155 Ohio Trumbull 16.2 14.67 14.26 15.31 14.74 225,116 227,563 229,495
41 3 Oregon Benton 7.4 6.8 6.73 6.85 6.76 78,153 100,204 111,826
41 9 Oregon Columbia 6.6 5.92 5.78 6.12 5.93 43,560 53,045 57,963
41 29 Oregon Jackson 11.3 9.8 9.68 9.85 9.68 181,269 274,059 322,247
41 35 Oregon Klamath 9.7 8.88 8.81 8.9 8.81 63,775 71,177 75,195
41 37 Oregon Lake 7.6 7.05 6.98 7.09 7 7,422 8,309 8,760
41 39 Oregon Lane 13.2 12.14 11.9 12.23 11.93 322,959 409,094 454,385
41 47 Oregon Marion 8.2 7.29 7.18 7.36 7.23 284,834 353,405 389,154
41 51 Oregon Multnomah 9.1 8.45 8.18 8.9 8.53 660,486 732,692 770,078
41 59 Oregon Umatilla 8.8 9.12 8.94 9.21 8.95 70,548 90,312 100,659
41 67 Oregon Washington 7.8 7.24 7.01 7.63 7.31 445,342 707,747 846,117



42 3 Pennsylvania Allegheny 21 17.17 16.7 17.83 17.17 1,281,666 1,242,514 1,227,036
42 11 Pennsylvania Berks 15.6 14.23 13.84 14.88 14.32 373,638 405,375 422,931
42 21 Pennsylvania Cambria 15.3 13.19 12.9 13.67 13.27 152,598 141,356 136,383
42 43 Pennsylvania Dauphin 15.5 13.56 13.15 14.15 13.56 251,798 278,696 293,157
42 45 Pennsylvania Delaware 15 14.48 14.07 15.32 14.75 550,864 543,058 540,509
42 71 Pennsylvania Lancaster 16.9 14.2 13.76 14.74 14.1 470,658 554,898 600,235
42 101 Pennsylvania Philadelphia 16.6 16.03 15.57 16.95 16.33 1,517,550 1,323,566 1,228,773
42 125 Pennsylvania Washington 15.5 13.14 12.8 13.66 13.19 202,897 207,824 211,081
42 129 Pennsylvania Westmoreland 15.6 12.75 12.41 13.24 12.75 369,993 376,604 381,310
42 133 Pennsylvania York 16.3 14.57 14.16 15.21 14.63 381,751 426,517 450,509
45 19 South Carolina Charleston 12.6 12.26 12.03 12.83 12.51 309,969 413,794 468,239
45 43 South Carolina Georgetown 13.9 13.2 12.97 13.76 13.46 55,797 68,463 75,143
45 45 South Carolina Greenville 17 15.55 15.15 16.2 15.64 379,616 468,167 514,778
45 63 South Carolina Lexington 15.6 14.71 14.41 15.33 14.9 216,014 328,789 387,567
45 73 South Carolina Oconee 12.3 11.09 10.86 11.53 11.21 66,215 75,582 80,607
45 79 South Carolina Richland 15.4 14.42 14.13 14.95 14.55 320,677 379,594 410,744
45 83 South Carolina Spartanburg 15.4 14.09 13.73 14.68 14.17 253,791 296,784 319,577
46 99 South Dakota Minnehaha 10.4 9.3 8.9 9.57 8.97 148,281 197,855 223,297
47 37 Tennessee Davidson 17 15 14.5 15.79 15.09 569,891 614,007 638,965
47 65 Tennessee Hamilton 18.9 16.75 16.38 17.44 16.91 307,896 347,332 368,296
47 93 Tennessee Knox 20.4 17.61 17.19 18.42 17.84 382,032 473,001 520,715
47 145 Tennessee Roane 17 14.33 14.03 14.88 14.46 51,910 57,776 60,862
47 157 Tennessee Shelby 15.6 14.51 13.87 15.28 14.44 897,472 1,021,255 1,086,498
47 163 Tennessee Sullivan 17 14.67 14.4 15.36 14.98 153,048 166,896 174,404
47 165 Tennessee Sumner 15.7 13.85 13.39 14.58 13.93 130,449 179,345 204,820
48 113 Texas Dallas 14.4 14.85 14.2 15.9 15.01 2,218,899 2,554,577 2,737,690
48 201 Texas Harris 15.1 16.25 15.72 17.61 16.91 3,400,578 4,151,794 4,549,359
49 11 Utah Davis 9 9.79 8.85 10.75 9.47 238,994 380,216 453,302
49 35 Utah Salt Lake 13.6 14.79 13.38 16.24 14.32 898,387 1,213,017 1,378,102
49 45 Utah Tooele 7.2 7.99 7.67 8.69 8.25 40,735 55,270 62,805
49 49 Utah Utah 10.4 10.85 10.31 11.68 10.95 368,536 550,933 645,756
49 57 Utah Weber 8.8 9.28 8.75 10.1 9.37 196,533 242,468 267,013
50 3 Vermont Bennington 9.9 9.14 8.92 9.49 9.19 36,994 39,841 41,416
50 7 Vermont Chittenden 6.8 6.17 6.06 6.33 6.18 146,571 173,091 187,081
50 21 Vermont Rutland 11.3 10.22 9.99 10.54 10.23 63,400 65,527 66,875
50 23 Vermont Washington 10.5 9.42 9.24 9.68 9.43 58,039 60,941 62,628



51 520 Virginia Bristol City 16 13.43 13.15 13.95 13.55 17,367 18,209 18,678
51 760 Virginia Richmond City 14.9 14.52 14.15 15.34 14.83 197,790 175,431 164,515
51 700 Virginia Newport News City 12.7 12.27 11.98 12.95 12.55 180,150 195,895 204,594
51 770 Virginia Roanoke City 15.2 13.33 12.99 13.86 13.39 94,911 93,712 93,612
51 810 Virginia Virginia Beach Cit 13.2 12.96 12.6 13.72 13.22 425,257 549,024 613,524
53 33 Washington King 11.9 11.41 10.84 12.25 11.5 1,737,034 2,107,326 2,301,410
53 53 Washington Pierce 11.7 11.05 10.61 11.72 11.13 700,820 944,042 1,071,521
53 61 Washington Snohomish 11.4 10.29 10 10.83 10.43 606,024 845,477 970,992
53 63 Washington Spokane 10.4 9.3 9.11 9.51 9.24 417,939 509,105 557,164
53 67 Washington Thurston 9.7 8.4 8.16 8.77 8.45 207,355 280,103 318,265
53 73 Washington Whatcom 7.9 7.33 7.17 7.68 7.46 166,814 226,580 257,874
54 3 West Virginia Berkeley 16 13.93 13.58 14.47 13.98 75,905 107,760 124,408
54 9 West Virginia Brooke 17.4 16.01 15.71 16.67 16.26 25,447 24,298 23,878
54 11 West Virginia Cabell 17.8 15.77 15.36 16.47 15.92 96,784 91,739 89,564
54 29 West Virginia Hancock 17.4 16.01 15.71 16.67 16.26 32,667 30,659 29,778
54 33 West Virginia Harrison 14.8 12.81 12.54 13.27 12.91 68,652 71,377 72,950
54 39 West Virginia Kanawha 18.4 16.55 16.09 17.27 16.67 200,073 197,841 197,586
54 51 West Virginia Marshall 16.5 14.42 14.12 14.94 14.53 35,519 31,563 29,729
54 61 West Virginia Monongalia 15 12.84 12.57 13.31 12.94 81,866 88,976 93,035
54 69 West Virginia Ohio 15.7 13.55 13.23 14.06 13.62 47,427 46,546 46,276
54 81 West Virginia Raleigh 14 12.27 12.02 12.72 12.38 79,220 81,108 82,355
54 89 West Virginia Summers 10.9 9.49 9.3 9.82 9.57 12,999 12,851 12,861
54 107 West Virginia Wood 17.6 15.28 14.9 15.87 15.36 87,986 87,471 87,560
55 9 Wisconsin Brown 11.4 10.3 10.01 10.69 10.28 226,778 270,348 293,548
55 25 Wisconsin Dane 13.2 12.03 11.63 12.53 11.95 426,526 538,843 597,808
55 27 Wisconsin Dodge 11.8 10.54 10.22 10.89 10.43 85,897 101,526 109,834
55 29 Wisconsin Door 8 7.44 7.27 7.69 7.47 27,961 33,124 35,898
55 31 Wisconsin Douglas 8.3 8.58 8.43 9.16 8.95 43,287 45,371 46,594
55 43 Wisconsin Grant 12.3 10.7 10.35 11 10.49 49,597 50,281 50,845
55 55 Wisconsin Jefferson 12.5 11.29 10.95 11.71 11.21 74,021 79,638 82,748
55 59 Wisconsin Kenosha 12.1 11.66 11.31 12.25 11.76 149,577 183,393 201,186
55 71 Wisconsin Manitowoc 10.3 9.39 9.13 9.76 9.4 82,887 84,259 85,140
55 79 Wisconsin Milwaukee 14.5 14.4 13.95 15.26 14.62 940,164 906,519 891,733
55 87 Wisconsin Outagamie 11.3 10.4 10.1 10.85 10.43 160,971 202,072 223,681
55 125 Wisconsin Vilas 6.4 5.89 5.76 6.08 5.89 21,033 29,797 34,546
55 133 Wisconsin Waukesha 14.1 13.39 12.96 14.06 13.47 360,767 466,063 521,974



55 139 Wisconsin Winnebago 11.2 10.17 9.88 10.55 10.13 156,763 183,637 197,968
55 141 Wisconsin Wood 10.6 9.37 9.13 9.69 9.34 75,555 88,639 95,597
56 21 Wyoming Laramie 5.4 5.64 5.51 5.97 5.8 81,607 93,096 99,109
56 33 Wyoming Sheridan 10.9 10.33 10.14 10.52 10.26 26,560 29,543 31,126

#
Nonattainment
Cntys 149 79 67 107 84


