# Air Quality Modeling Technical Support Document for the 2007 Fine Scale Modeling Platform 

U.S. Environmental Protection Agency<br>Office of Air Quality Planning and Standards<br>Air Quality Assessment Division<br>Research Triangle Park, NC 27711

November 2013

## INTRODUCTION

This document describes the air quality modeling performed by EPA to support multiple air quality assessment projects. Air quality was estimated with the Community Multi-scale Air Quality (CMAQ) model using a finer-scale horizontal grid resolution (4 km) than what is often used for national-scale assessments. CMAQ simulates the numerous physical and chemical processes involved in the formation, transport, and destruction of ozone, particulate matter and other air pollutants. In addition to the CMAQ model, the modeling platform includes the emissions, meteorology, and initial and boundary condition data which are inputs to this model.

Photochemical grid models use state of the science numerical algorithms to estimate pollutant formation, transport, and deposition over a variety of spatial scales that range from urban to continental. Emissions of precursor species are injected into the model where they react to form secondary species such as ozone and then transport around the modeling domain before ultimately being removed by deposition or chemical reaction.

The 2007 based CMAQ modeling platform was used as the basis for the air quality modeling. This platform represents a structured system of connected modeling-related tools and data that provide a consistent and transparent basis for assessing the air quality response to projected changes in emissions. The base year of data used to construct this platform includes emissions and meteorology for 2007. The modeling system treats the emissions, transport, and fate of criteria pollutants. This modeling platform and analysis is described below.

## METHODS

## Photochemical Modeling

The Community Multi-scale Air Quality (CMAQ) model v5.0.1 (www.cmaq-model.org) is a state of the science three-dimensional, Eulerian, "one-atmosphere" photochemical transport model used to estimate air quality (Byun and Schere, 2006; Foley et al., 2010). CMAQ simulates the formation and fate of photochemical oxidants, ozone, primary and secondary PM concentrations, and other pollutants over regional and urban spatial scales for given input sets of meteorological conditions and emissions. CMAQ is applied with the AERO6 aerosol module, which includes the ISORROPIAII inorganic chemistry (Fountoukis and Nenes, 2007) and a secondary organic aerosol module (Carlton et al., 2010). The CMAQ model is applied with sulfur and organic oxidation aqueous phase chemistry (Carlton et al., 2008) and the carbon-bond
gas-phase chemistry module CB05TU (Whitten et al., 2010). All domains were modeled for the entire year of 2007.

## Model Domains

The modeling analyses were performed for multiple domains with 4 km sized grid cells as shown in Figure 1. These domains have a parent domain that covers the continental United States with 12 km sized grid cells. The model extends vertically from the surface to 50 millibars (approximately 20 km ) using a sigma-pressure coordinate system (Table 1). The 12 km grid was used to establish the incoming air quality concentrations along the boundaries of the 4 km grids.

Figure 1. Photochemical model domains using 4 km sized grid cells shown with blue boxes.


Table 1. Vertical layer structure for the WRF simulation.

| Layer | Sigma | Height <br> (m) |
| :---: | :---: | :---: |
| 0 | 1.0000 | 0 |
| 1 | 0.9975 | 20.6 |
| 2 | 0.9950 | 41.4 |
| 3 | 0.9900 | 83.5 |
| 4 | 0.9850 | 125.5 |
| 5 | 0.9800 | 167.5 |
| 6 | 0.9700 | 252.1 |
| 7 | 0.9600 | 337.3 |
| 8 | 0.9500 | 422.9 |
| 9 | 0.9400 | 509.3 |
| 10 | 0.9300 | 596.2 |
| 11 | 0.9200 | 683.7 |
| 12 | 0.9100 | 771.9 |
| 13 | 0.9000 | 860.9 |
| 14 | 0.8800 | 1041.2 |
| 15 | 0.8600 | 1225.2 |
| 16 | 0.8400 | 1413.1 |
| 17 | 0.8200 | 1604.8 |
| 18 | 0.8000 | 1800.5 |
| 19 | 0.7700 | 2102.1 |
| 20 | 0.7400 | 2413.6 |
| 21 | 0.7000 | 2844.8 |
| 22 | 0.6500 | 3410.8 |
| 23 | 0.6000 | 4010.3 |
| 24 | 0.5500 | 4648.1 |
| 25 | 0.5000 | 5330.6 |
| 26 | 0.4500 | 6064.1 |
| 27 | 0.4000 | 6857.6 |
| 28 | 0.3500 | 7725.2 |
| 29 | 0.3000 | 8684.3 |
| 30 | 0.2500 | 9757.8 |
| 31 | 0.2000 | 10980.3 |
| 32 | 0.1500 | 12405.1 |
| 33 | 0.1000 | 14133.2 |
| 34 | 0.0500 | 16489.9 |
| 35 | 0.0000 | 20500.6 |
|  |  |  |
| 2 |  |  |

## Initial and Boundary Conditions

The lateral boundary and initial species concentrations are provided by a three-dimensional global atmospheric chemistry model, the GEOS-CHEM model (standard version 8-03-02). The global GEOS-CHEM model simulates atmospheric chemical and physical processes driven by assimilated meteorological observations from the NASA’s Goddard Earth Observing System (GEOS) (Yantosca et al., 2012). This model was run for 2007 with a grid resolution of 2.0 degree x 2.5 degree (latitude-longitude) and vertical layers up to approximately 80 km . The predictions were used to provide one-way dynamic boundary conditions at three-hour intervals and an initial concentration field for a 36 km CMAQ simulation covering the United States, northern Mexico, and southern Canada. The 36 km photochemical model simulation is used to supply initial and hourly boundary concentrations to the 12 km domain. The 36 km domain simulation includes 10 days of spin-up before the start of each calendar quarter that are not used in the analysis. The 12 and 4 km domain simulations include 3 days of spin-up before each calendar quarter.

## Meteorology

Before initiating the air quality simulations, it is important to identify the biases and errors associated with the meteorological modeling inputs. Meteorological inputs were developed with the Weather and Research Forecasting (WRF) model (Skamarock, 2008). The 2007 WRF model performance evaluations used an approach which included a combination of qualitative and quantitative analyses to assess the adequacy of the WRF simulated fields. Additionally, the evaluations compared spatial patterns of estimated to observed monthly average rainfall and checked maximum planetary boundary layer heights for reasonableness.

Qualitatively, the model fields closely matched the observed synoptic patterns, which is not unexpected given the use of nudging. The operational evaluation included statistical comparisons of model/observed pairs (e.g., mean bias, mean error, fractional bias, fractional error, etc.) for multiple meteorological parameters. For this portion of the evaluation, five meteorological parameters were investigated: temperature, humidity, shortwave downward radiation, wind speed, and wind direction. The individual WRF evaluations are described elsewhere (U.S. Environmental Protection Agency, 2013). It was ultimately determined that the bias and error values associated with all of the 2007 meteorological data were generally within the range of past meteorological modeling results that have been used for air quality applications.

## Emissions

The emissions data used for each domain are based on the 2008 National Emissions Inventory version 2. The development of anthropogenic and biogenic emissions for 2007 are described elsewhere (U.S. Environmental Protection Agency, 2012). Non-point anthropogenic emissions information was allocated to each model domain using 4 km resolution spatial surrogates to more finely spatially allocate emissions. Emissions are processed to photochemical model inputs with the SMOKE emissions modeling system (Houyoux et al., 2000).

Other (non-U.S.) North American emissions are based on a 2006 Canadian inventory and 1999 Mexican inventory projected to 2007. Global emissions of criteria pollutants are included in the modeling system through boundary condition inflow. Annual domain total emissions are shown in Tables 1 through 5 for each area.

Table 1. Annual total emissions (tons/year) by sector for the 4 km Detroit domain.

| Sector Description | Sector abbr. | VOC | NOX | PM2.5 | SO2 | NH3 | CO |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Area fugutive dust | afdust_adj | 0 | 0 | 4,145 | 0 | 0 | 0 |
| Agricultural ammonia | ag | 0 | 0 | 0 | 0 | 6,275 | 0 |
| Average fires | avefire | 45 | 13 | 54 | 6 | 10 | 585 |
| Biogenics | beis | 0 | 5,506 | 0 | 0 | 0 | 10,897 |
| Class 1 \& 2 CMV and locomotives | c1c2rail | 277 | 5,479 | 168 | 108 | 3 | 858 |
| Class 3 commercial marine vessel (CMV) | c3marine | 44 | 1,303 | 97 | 790 | 0 | 105 |
| Remaining nonpoint | nonpt | 80,378 | 20,059 | 7,528 | 6,396 | 2,670 | 50,478 |
| Nonroad mobile | nonroad | 36,592 | 33,220 | 2,531 | 1,816 | 35 | 358,490 |
| Onroad mobile | onroad | 79,081 | 175,706 | 7,531 | 842 | 2,670 | 929,601 |
| Onroad refueling | onroad_rfl | 6,223 | 0 | 0 | 0 | 0 | 0 |
| Other non-NEI nonpoint and nonroad | othar | 14,228 | 7,235 | 1,910 | 1,030 | 1,439 | 44,047 |
| Other non-NEI onroad | othon | 2,294 | 5,184 | 96 | 57 | 297 | 42,894 |
| Other non-NEI point | othpt | 513 | 19,761 | 2,529 | 72,586 | 794 | 58,579 |
| EGU point | ptipm | 745 | 79,093 | 2,428 | 256,588 | 87 | 7,690 |
| non-EGU point | ptnonipm | 17,698 | 27,900 | 4,417 | 29,595 | 199 | 51,884 |

Table 2. Annual total emissions (tons/year) by sector for the 4 km Atlanta domain.

| Sector Description | Sector abbr. | VOC | NOX | PM2.5 | SO2 | NH3 | CO |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Area fugutive dust | afdust_adj | 0 | 0 | 3,393 | 0 | 0 | 0 |
| Agricultural ammonia | ag | 0 | 0 | 0 | 0 | 34,225 | 0 |
| Average fires | avefire | 0 | 1,983 | 10,141 | 987 | 1,877 | 113,856 |
| Biogenics | beis | 0 | 3,062 | 0 | 0 | 0 | 38,006 |
| Class 1 \& 2 CMV and locomotives | c1c2rail | 428 | 7,808 | 251 | 87 | 4 | 1,161 |
| Remaining nonpoint | nonpt | 91,950 | 5,345 | 6,122 | 191 | 899 | 24,897 |
| Nonroad mobile | nonroad | 32,473 | 29,398 | 2,845 | 1,791 | 32 | 386,177 |
| Onroad mobile | onroad | 78,115 | 200,839 | 8,101 | 869 | 3,127 | 938,326 |
| Onroad refueling | onroad_rfl | 3,613 | 0 | 0 | 0 | 0 | 0 |
| EGU point | ptipm | 1,342 | 69,290 | 5,372 | 472,907 | 857 | 10,068 |
| non-EGU point | ptnonipm | 6,541 | 12,117 | 971 | 4,091 | 107 | 17,409 |

Table 3. Annual total emissions (tons/year) by sector for the 4 km Northeast domain.

| Sector Description | Sector abbr. | VOC | NOX | PM2.5 | SO2 | NH3 | CO |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Area fugutive dust | afdust_adj | 0 | 0 | 15,014 | 0 | 0 | 0 |
| Agricultural ammonia | ag | 0 | 0 | 0 | 0 | 146,858 | 0 |
| Average fires | avefire | 0 | 1,261 | 7,793 | 687 | 1,480 | 90,122 |
| Biogenics | beis | 0 | 29,932 | 0 | 0 | 0 | 191,051 |
| Class 1 \& 2 CMV and locomotives | c1c2rail | 5,340 | 94,615 | 3,247 | 7,566 | 32 | 15,477 |
| Class 3 commercial marine vessel (CMV) | c3marine | 3,282 | 93,511 | 7,277 | 64,569 | 0 | 7,745 |
| Remaining nonpoint | nonpt | 715,181 | 206,040 | 108,339 | 167,288 | 12,585 | 694,328 |
| Nonroad mobile | nonroad | 412,570 | 244,327 | 23,219 | 12,686 | 283 | $3,103,480$ |
| Onroad mobile | onroad | 410,264 | 886,537 | 36,131 | 5,421 | 21,570 | $4,504,200$ |
| Onroad refueling | onroad_rfl | 18,168 | 0 | 0 | 0 | 0 | 0 |
| Other non-NEI nonpoint and nonroad | othar | 22,284 | 10,259 | 6,930 | 1,405 | 3,840 | 80,887 |
| Other non-NEI onroad | othon | 2,095 | 4,735 | 88 | 52 | 271 | 39,175 |
| Other non-NEI point | othpt | 0 | 6,259 | 306 | 2,814 | 1,463 | 4,566 |
| EGU point | ptipm | 2,814 | 190,859 | 35,031 | 872,116 | 2,941 | 44,419 |
| non-EGU point | ptnonipm | 49,535 | 151,844 | 21,347 | 81,837 | 3,635 | 249,421 |

Table 4. Annual total emissions (tons/year) by sector for the 4 km Missouri domain.

| Sector Description | Sector abbr. | VOC | NOX | PM2.5 | SO2 | NH3 | CO |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Area fugutive dust | afdust_adj | 0 | 0 | 164,012 | 0 | 0 | 0 |
| Agricultural ammonia | ag | 0 | 0 | 0 | 0 | 553,780 | 0 |
| Average fires | avefire | 0 | 29,137 | 130,321 | 13,679 | 23,605 | $1,426,770$ |
| Biogenics | beis | 0 | 208,584 | 0 | 0 | 0 | 439,474 |
| Class 1 \& 2 CMV and locomotives | c1c2rail | 8,943 | 188,530 | 5,984 | 4,531 | 90 | 29,673 |
| Remaining nonpoint | nonpt | 473,028 | 101,665 | 60,694 | 58,468 | 6,126 | 409,398 |
| Nonroad mobile | nonroad | 172,169 | 198,486 | 19,054 | 12,060 | 184 | $1,347,720$ |
| Onroad mobile | onroad | 288,357 | 681,309 | 24,602 | 4,982 | 10,895 | $3,340,040$ |
| Onroad refueling | onroad_rfl | 23,309 | 0 | 0 | 0 | 0 | 0 |
| EGU point | ptipm | 5,598 | 419,673 | 21,209 | 816,086 | 1,510 | 75,051 |
| non-EGU point | ptnonipm | 96,746 | 196,077 | 25,926 | 227,859 | 7,959 | 200,482 |

Table 5. Annual total emissions (tons/year) by sector for the 4 km California domain.

| Sector Description | Sector abbr. | VOC | NOX | PM2.5 | SO2 | NH3 | CO |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Area fugutive dust | afdust_adj | 0 | 0 | 53,873 | 0 | 0 | 0 |
| Agricultural ammonia | ag | 0 | 0 | 0 | 0 | 270,444 | 0 |
| Average fires | avefire | 0 | 19,689 | 136,010 | 11,355 | 26,153 | $1,595,960$ |
| Biogenics | beis | 0 | 84,357 | 0 | 0 | 0 | 810,354 |
| Class 1 \& 2 CMV and locomotives | c1c2rail | 7,141 | 84,796 | 2,658 | 2,390 | 6 | 18,384 |
| Class 3 commercial marine vessel (CMV) | c3marine | 3,905 | 113,163 | 8,500 | 69,652 | 0 | 9,654 |
| Remaining nonpoint | nonpt | 330,483 | 72,016 | 78,924 | 11,279 | 64,012 | 376,791 |
| Nonroad mobile | nonroad | 159,566 | 166,138 | 12,069 | 1,434 | 92 | 946,532 |
| Onroad mobile | onroad_adj | 294,297 | 610,609 | 25,572 | 1,986 | 16,449 | $2,743,120$ |
| Onroad refueling | onroad_rfl | 5,297 | 0 | 0 | 0 | 0 | 0 |
| Other non-NEI nonpoint and nonroad | othar | 73,046 | 28,575 | 5,163 | 13,264 | 6,654 | 59,537 |
| Other non-NEI onroad | othon | 12,601 | 12,249 | 978 | 643 | 407 | 85,330 |
| Other non-NEI point | othpt | 24,883 | 11,258 | 4,146 | 15,333 | 0 | 1,641 |
| EGU point | ptipm | 795 | 26,974 | 1,768 | 9,601 | 1,257 | 9,522 |
| non-EGU point | ptnonipm | 44,487 | 103,604 | 23,251 | 28,475 | 10,666 | 129,258 |

## RESULTS

## Model Performance Evaluation: PM2.5

An operational model performance evaluation for the speciated components of PM2.5 (e.g., sulfate, nitrate, elemental carbon, organic carbon, etc.) was conducted using 2007 state/local monitoring data in order to estimate the ability of the modeling system to replicate base year concentrations. The evaluation of PM2.5 component species includes comparisons of predicted and observed concentrations of sulfate (SO4), nitrate (NO3), ammonium (NH4), elemental carbon (EC), and organic carbon (OC). PM2.5 ambient measurements for 2007 were obtained from the Chemical Speciation Network (CSN) and the Interagency Monitoring of PROtected Visual Environments (IMPROVE). The CSN sites are generally located within urban areas and the IMPROVE sites are typically in rural/remote areas. The measurements at CSN and IMPROVE sites represent 24 -hour average concentrations. In calculating the model performance metrics, the modeled hourly species predictions were aggregated to the averaging times of the measurements.

Model performance statistics were calculated for observed/predicted pairs of daily concentrations. Metrics estimated include bias, error, fractional bias, and fractional error (Boylan and Russell, 2006; Simon et al., 2012). The aggregated metrics and number (N) of predictionobservation pairs are shown by chemical specie and quarter in Appendix A. Performance is best when metrics approach zero. The fractional bias and error metrics are bound by $200 \%$, which would represent poor model performance. Model performance was compared to the performance found in recent regional PM2.5 model applications for other, non-EPA studies. Overall, the mean bias (bias) and mean error (error) statistics are within the range or close to that found by other groups in recent applications (Simon et al., 2012). Spatial plots of seasonal average metrics by monitor location are shown in Appendix B. The model performance results give us confidence that our application of CMAQ using this modeling platform provides a scientifically credible approach for assessing PM2.5 concentrations for the purposes of this assessment.

## Model Performance Evaluation: Ozone

An operational model performance evaluation for eight-hour daily maximum ozone was conducted in order to estimate the ability of the modeling system to replicate the base year concentrations. Ozone measurements were taken from the 2007 State/local monitoring site data in the Aerometric Information Retrieval System (AIRS).

The ozone metrics covered in this evaluation include eight-hour average daily maximum ozone bias, error, fractional bias, and fractional error (Boylan and Russell, 2006; Simon et al., 2012). The evaluation principally consists of statistical assessments of model versus observed pairs that were paired in time and space. This ozone model performance includes all prediction and observation pairs and additional metrics are estimated where observed ozone exceeded or equaled 60 ppb . This cutoff was applied to evaluate the model on days of elevated ozone which are more policy relevant. Aggregated performance metrics by ozone season month are shown in Appendix A. Model performance is consistent with photochemical modeling published in
literature (Simon et al., 2012). Spatial plots of seasonal average metrics by monitor location are shown in Appendix B.

## Model Performance Evaluation: Hourly gas measurements

An operational model performance evaluation for hourly ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide was conducted in order to estimate the ability of the modeling system to replicate the base year concentrations. Measurements were taken from the 2007 State/local monitoring site data in the Aerometric Information Retrieval System (AIRS). Monitors included in the analysis are shown in Figures 2 and 3. Model and prediction pairs are shown with scatter density plots in Figures 4 to 8 for each separate 4 km domain: Atlanta, Detroit, Missouri, Northeast U.S., and California.


Figure 2. Hourly measurement locations included in scatter density plots for each area of the central and eastern United States.


Figure 3. Hourly measurement locations included in scatter density plots for California.


Figure 4. Scatter density plots matching hourly modeled and observed ozone (top left), nitrogen oxides (top right), carbon monoxide (bottom left), and sulfur dioxide (bottom right) for the Atlanta domain.


Figure 5. Scatter density plots matching hourly modeled and observed ozone (top left), nitrogen oxides (top right), carbon monoxide (bottom left), and sulfur dioxide (bottom right) for the Detroit domain.


Figure 6. Scatter density plots matching hourly modeled and observed ozone (top left), nitrogen oxides (top right), carbon monoxide (bottom left), and sulfur dioxide (bottom right) for the Missouri domain.


Figure 7. Scatter density plots matching hourly modeled and observed ozone (top left), nitrogen oxides (top right), carbon monoxide (bottom left), and sulfur dioxide (bottom right) for the Northeast domain.


Figure 8. Scatter density plots matching hourly modeled and observed ozone (top left), nitrogen oxides (top right), carbon monoxide (bottom left), and sulfur dioxide (bottom right) for the California domain.

## Acknowledgements

This document was made possible with contribution from Kirk Baker, Pat Dolwick, Darrell Ensley, Lara Reynolds, James Beidler, Allan Beidler, and Chris Allen.

## REFERENCES

Boylan, J.W., Russell, A.G., 2006. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmospheric Environment 40, 4946-4959.

Byun, D., Schere, K.L., 2006. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied Mechanics Reviews 59, 51-77.

Carlton, A.G., Bhave, P.V., Napelenok, S.L., Edney, E.D., Sarwar, G., Pinder, R.W., Pouliot, G.A., Houyoux, M., 2010. Model Representation of Secondary Organic Aerosol in CMAQv4.7. Environmental Science \& Technology 44, 8553-8560.

Carlton, A.G., Turpin, B.J., Altieri, K.E., Seitzinger, S.P., Mathur, R., Roselle, S.J., Weber, R.J., 2008. CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements. Environmental Science \& Technology 42, 8798-8802.

Foley, K.M., Roselle, S.J., Appel, K.W., Bhave, P.V., Pleim, J.E., Otte, T.L., Mathur, R., Sarwar, G., Young, J.O., Gilliam, R.C., Nolte, C.G., Kelly, J.T., Gilliland, A.B., Bash, J.O., 2010. Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geoscientific Model Development 3, 205-226.

Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for $\mathrm{K}+-\mathrm{Ca} 2+-\mathrm{Mg} 2+-\mathrm{Nh}(4)(+)-\mathrm{Na}+-\mathrm{SO} 42--\mathrm{NO} 3--\mathrm{Cl}--\mathrm{H} 2 \mathrm{O}$ aerosols. Atmos. Chem. Phys. 7, 4639-4659.

Houyoux, M.R., Vukovich, J.M., Coats, C.J., Wheeler, N.J.M., Kasibhatla, P.S., 2000. Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMRAQ) project. Journal of Geophysical Research-Atmospheres 105, 9079-9090.

Simon, H., Baker, K.R., Phillips, S., 2012. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmospheric Environment 61, 124-139.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X., Wang, W., Powers, J.G., 2008. A Description of the Advanced Research WRF Version 3.
U.S. Environmental Protection Agency, 2012. Technical Support Document: Preparation of the Emissions Inventories for the Version 5, 2007-based Platform, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.
U.S. Environmental Protection Agency, 2013. Meteorological Model Performance 2007 Fine Scale Platform, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina.

Whitten, G.Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D.T., Carter, W.P.L., Yarwood, G., 2010. A new condensed toluene mechanism for Carbon Bond CB05-TU. Atmospheric Environment 44, 5346-5355.

Yantosca, B., Long. M., Payer, M., Cooper, M., 2012. GEOS-Chem v9-01-03 Online User's Guide, http://acmg.seas.harvard.edu/geos/doc/man/index.html.

Appendix A

Aggregate model performance metrics for speciated PM2.5 and 8-hr ozone

| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean <br> Pred. (ug/m3) | R Square | Mean <br> Bias (ug/m3) | Mean <br> Error (ug/m3) | Fract. <br> Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4ATLANTA1 | CASTNET | NH4 | January | 4 | 0.70 | 0.72 | 0.08 | 0.02 | 0.22 | 7.8 | 34.9 |
| 4ATLANTA1 | CASTNET | NH4 | February | 4 | 0.80 | 1.20 | 0.50 | 0.40 | 0.40 | 38.7 | 38.7 |
| 4ATLANTA1 | CASTNET | NH4 | March | 5 | 1.25 | 1.25 | 0.67 | 0.00 | 0.21 | 4.9 | 19.7 |
| 4ATLANTA1 | CASTNET | NH4 | April | 4 | 1.11 | 1.12 | 0.92 | 0.01 | 0.09 | -1.4 | 9.9 |
| 4ATLANTA1 | CASTNET | NH4 | May | 4 | 1.70 | 1.05 | 0.11 | -0.65 | 0.65 | -45.0 | 45.0 |
| 4ATLANTA1 | CASTNET | NH4 | June | 5 | 1.66 | 1.18 | 0.10 | -0.49 | 0.49 | -33.9 | 33.9 |
| 4ATLANTA1 | CASTNET | NH4 | July | 4 | 1.38 | 1.17 | 0.87 | -0.21 | 0.21 | -17.5 | 17.5 |
| 4ATLANTA1 | CASTNET | NH4 | August | 4 | 2.59 | 1.45 | 0.96 | -1.14 | 1.14 | -54.9 | 54.9 |
| 4ATLANTA1 | CASTNET | NH4 | September | 5 | 1.64 | 1.17 | 0.88 | -0.47 | 0.47 | -32.7 | 32.7 |
| 4ATLANTA1 | CASTNET | NH4 | October | 4 | 0.89 | 0.76 | 0.83 | -0.13 | 0.16 | -12.6 | 20.3 |
| 4ATLANTA1 | CASTNET | NH4 | November | 4 | 0.99 | 1.16 | 0.71 | 0.17 | 0.30 | 10.9 | 26.9 |
| 4ATLANTA1 | CASTNET | NH4 | December | 4 | 0.90 | 0.82 | 0.12 | -0.08 | 0.24 | -11.0 | 26.8 |
| 4ATLANTA1 | CASTNET | NO3 | January | 4 | 0.59 | 0.98 | 0.15 | 0.38 | 0.50 | 49.9 | 62.4 |
| 4ATLANTA1 | CASTNET | NO3 | February | 4 | 0.76 | 2.31 | 0.20 | 1.56 | 1.56 | 96.9 | 96.9 |
| 4ATLANTA1 | CASTNET | NO3 | March | 5 | 0.82 | 0.94 | 0.71 | 0.12 | 0.97 | 11.1 | 110.0 |
| 4ATLANTA1 | CASTNET | NO3 | April | 4 | 0.63 | 1.08 | 0.28 | 0.45 | 0.81 | 38.1 | 93.9 |
| 4ATLANTA1 | CASTNET | NO3 | May | 4 | 0.59 | 0.17 | 0.41 | -0.41 | 0.48 | -56.2 | 92.4 |
| 4ATLANTA1 | CASTNET | NO3 | June | 5 | 0.19 | 0.07 | 0.87 | -0.12 | 0.14 | -82.2 | 94.8 |
| 4ATLANTA1 | CASTNET | NO3 | July | 4 | 0.15 | 0.12 | 0.44 | -0.03 | 0.10 | -23.1 | 72.9 |
| 4ATLANTA1 | CASTNET | NO3 | August | 4 | 0.08 | 0.05 | 0.17 | -0.03 | 0.05 | -58.1 | 77.1 |
| 4ATLANTA1 | CASTNET | NO3 | September | 5 | 0.24 | 0.10 | 0.07 | -0.14 | 0.16 | -63.1 | 79.2 |
| 4ATLANTA1 | CASTNET | NO3 | October | 4 | 0.48 | 0.31 | 0.03 | -0.17 | 0.27 | -63.8 | 80.6 |
| 4ATLANTA1 | CASTNET | NO3 | November | 4 | 0.81 | 1.54 | 0.23 | 0.73 | 0.82 | 46.7 | 61.9 |
| 4ATLANTA1 | CASTNET | NO3 | December | 4 | 0.54 | 1.08 | 0.12 | 0.55 | 0.63 | 59.6 | 73.1 |
| 4ATLANTA1 | CASTNET | TNO3 | January | 4 | 2.03 | 2.08 | 0.76 | 0.05 | 0.31 | -0.2 | 14.3 |
| 4ATLANTA1 | CASTNET | TNO3 | February | 4 | 2.90 | 3.50 | 1.00 | 0.60 | 0.60 | 17.2 | 17.2 |
| 4ATLANTA1 | CASTNET | TNO3 | March | 5 | 2.89 | 2.16 | 0.06 | -0.74 | 1.00 | -35.6 | 46.9 |
| 4ATLANTA1 | CASTNET | TNO3 | April | 4 | 2.17 | 2.45 | 0.12 | 0.29 | 0.56 | 9.1 | 25.5 |
| 4ATLANTA1 | CASTNET | TNO3 | May | 4 | 2.47 | 1.42 | 0.01 | -1.05 | 1.05 | -59.1 | 59.1 |
| 4ATLANTA1 | CASTNET | TNO3 | June | 5 | 2.06 | 1.02 | 0.30 | -1.05 | 1.05 | -70.8 | 70.8 |
| 4ATLANTA1 | CASTNET | TNO3 | July | 4 | 1.43 | 0.92 | 0.83 | -0.51 | 0.51 | -43.5 | 43.5 |
| 4ATLANTA1 | CASTNET | TNO3 | August | 4 | 2.13 | 1.32 | 0.01 | -0.81 | 0.81 | -46.8 | 46.8 |
| 4ATLANTA1 | CASTNET | TNO3 | September | 5 | 1.63 | 1.21 | 0.05 | -0.42 | 0.42 | -29.1 | 29.1 |
| 4ATLANTA1 | CASTNET | TNO3 | October | 4 | 1.48 | 1.66 | 0.98 | 0.17 | 0.60 | -11.1 | 40.0 |
| 4ATLANTA1 | CASTNET | TNO3 | November | 4 | 2.36 | 3.11 | 0.81 | 0.75 | 0.81 | 17.3 | 21.2 |
| 4ATLANTA1 | CASTNET | TNO3 | December | 4 | 2.42 | 2.64 | 0.50 | 0.23 | 0.38 | 5.9 | 13.9 |
| 4ATLANTA1 | CSN | EC | January | 15 | 0.96 | 1.95 | 0.01 | 0.99 | 1.17 | 71.2 | 84.9 |
| 4ATLANTA1 | CSN | EC | February | 12 | 0.66 | 1.77 | 0.20 | 1.11 | 1.11 | 101.0 | 101.0 |
| 4ATLANTA1 | CSN | EC | March | 14 | 1.21 | 2.17 | 0.74 | 0.96 | 0.97 | 54.2 | 56.2 |
| 4ATLANTA1 | CSN | EC | April | 12 | 1.04 | 1.61 | 0.66 | 0.57 | 0.58 | 43.9 | 46.1 |
| 4ATLANTA1 | CSN | EC | May | 13 | 0.94 | 1.49 | 0.85 | 0.55 | 0.55 | 55.9 | 55.9 |
| 4ATLANTA1 | CSN | EC | June | 12 | 0.66 | 1.37 | 0.18 | 0.70 | 0.87 | 86.7 | 95.6 |
| 4ATLANTA1 | CSN | EC | July | 14 | 0.67 | 1.46 | 0.01 | 0.80 | 1.01 | 79.7 | 95.3 |
| 4ATLANTA1 | CSN | EC | August | 10 | 1.49 | 2.17 | 0.42 | 0.68 | 0.68 | 44.0 | 44.0 |
| 4ATLANTA1 | CSN | EC | September | 13 | 1.56 | 1.93 | 0.04 | 0.36 | 0.91 | 21.8 | 49.4 |
| 4ATLANTA1 | CSN | EC | October | 13 | 0.73 | 1.69 | 0.21 | 0.96 | 0.96 | 78.1 | 78.1 |
| 4ATLANTA1 | CSN | EC | November | 13 | 2.08 | 2.78 | 0.07 | 0.71 | 1.70 | 49.1 | 75.0 |
| 4ATLANTA1 | CSN | EC | December | 12 | 1.36 | 2.62 | 0.36 | 1.27 | 1.32 | 67.5 | 69.3 |
| 4ATLANTA1 | CSN | NH4 | January | 15 | 0.96 | 1.18 | 0.10 | 0.22 | 0.53 | 22.5 | 50.8 |
| 4ATLANTA1 | CSN | NH4 | February | 12 | 1.08 | 1.33 | 0.37 | 0.26 | 0.36 | 26.3 | 33.8 |
| 4ATLANTA1 | CSN | NH4 | March | 14 | 1.34 | 1.44 | 0.49 | 0.10 | 0.32 | 5.7 | 24.0 |
| 4ATLANTA1 | CSN | NH4 | April | 12 | 1.08 | 1.20 | 0.64 | 0.12 | 0.25 | 12.7 | 24.7 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean <br> Pred. (ug/m3) | R <br> Square | Mean <br> Bias (ug/m3) | Mean <br> Error (ug/m3) | Fract. <br> Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4ATLANTA1 | CSN | NH4 | May | 13 | 1.93 | 0.99 | 0.37 | -0.94 | 0.94 | -66.8 | 66.8 |
| 4ATLANTA1 | CSN | NH4 | June | 12 | 1.98 | 1.53 | 0.58 | -0.44 | 0.57 | -22.1 | 31.1 |
| 4ATLANTA1 | CSN | NH4 | July | 14 | 1.80 | 1.36 | 0.12 | -0.44 | 0.62 | -29.4 | 41.4 |
| 4ATLANTA1 | CSN | NH4 | August | 10 | 2.26 | 1.42 | 0.42 | -0.85 | 0.86 | -41.4 | 42.9 |
| 4ATLANTA1 | CSN | NH4 | September | 13 | 1.78 | 1.40 | 0.59 | -0.38 | 0.55 | -25.4 | 38.2 |
| 4ATLANTA1 | CSN | NH4 | October | 13 | 1.10 | 1.03 | 0.66 | -0.07 | 0.40 | -16.1 | 49.9 |
| 4ATLANTA1 | CSN | NH4 | November | 13 | 1.55 | 1.64 | 0.58 | 0.09 | 0.34 | 6.7 | 23.5 |
| 4ATLANTA1 | CSN | NH4 | December | 12 | 1.99 | 1.39 | 0.79 | -0.60 | 0.74 | -17.8 | 32.3 |
| 4ATLANTA1 | CSN | NO3 | January | 15 | 1.42 | 2.02 | 0.27 | 0.60 | 0.93 | 34.3 | 56.8 |
| 4ATLANTA1 | CSN | NO3 | February | 12 | 1.92 | 3.12 | 0.67 | 1.20 | 1.20 | 59.1 | 59.1 |
| 4ATLANTA1 | CSN | NO3 | March | 14 | 0.75 | 1.40 | 0.02 | 0.65 | 0.82 | 34.9 | 64.3 |
| 4ATLANTA1 | CSN | NO3 | April | 12 | 0.65 | 1.29 | 0.55 | 0.63 | 0.70 | 56.7 | 72.2 |
| 4ATLANTA1 | CSN | NO3 | May | 13 | 0.77 | 0.32 | 0.36 | -0.45 | 0.45 | -91.9 | 91.9 |
| 4ATLANTA1 | CSN | NO3 | June | 12 | 0.47 | 0.22 | 0.00 | -0.25 | 0.28 | -82.7 | 88.0 |
| 4ATLANTA1 | CSN | NO3 | July | 14 | 0.51 | 0.20 | 0.24 | -0.31 | 0.32 | -91.7 | 92.9 |
| 4ATLANTA1 | CSN | NO3 | August | 10 | 0.42 | 0.17 | 0.22 | -0.26 | 0.29 | -86.0 | 96.7 |
| 4ATLANTA1 | CSN | NO3 | September | 13 | 0.47 | 0.34 | 0.00 | -0.13 | 0.31 | -47.7 | 81.2 |
| 4ATLANTA1 | CSN | NO3 | October | 13 | 0.49 | 0.97 | 0.12 | 0.48 | 0.78 | -8.1 | 118.0 |
| 4ATLANTA1 | CSN | NO3 | November | 13 | 1.03 | 2.59 | 0.31 | 1.57 | 1.57 | 79.5 | 79.5 |
| 4ATLANTA1 | CSN | NO3 | December | 12 | 2.27 | 2.68 | 0.74 | 0.41 | 0.99 | 38.1 | 52.0 |
| 4ATLANTA1 | CSN | OC | January | 14 | 2.94 | 2.60 | 0.46 | -0.34 | 0.91 | -5.7 | 35.7 |
| 4ATLANTA1 | CSN | OC | February | 11 | 2.83 | 3.04 | 0.50 | 0.21 | 0.92 | 19.2 | 38.6 |
| 4ATLANTA1 | CSN | OC | March | 14 | 4.74 | 4.67 | 0.48 | -0.07 | 1.13 | 0.1 | 28.7 |
| 4ATLANTA1 | CSN | OC | April | 12 | 2.64 | 1.89 | 0.96 | -0.75 | 0.85 | -20.7 | 37.5 |
| 4ATLANTA1 | CSN | OC | May | 13 | 4.74 | 2.24 | 0.41 | -2.50 | 2.52 | -50.9 | 52.3 |
| 4ATLANTA1 | CSN | OC | June | 12 | 4.31 | 2.06 | 0.31 | -2.25 | 2.28 | -64.1 | 66.3 |
| 4ATLANTA1 | CSN | OC | July | 14 | 3.78 | 1.85 | 0.22 | -1.93 | 1.93 | -65.8 | 66.1 |
| 4ATLANTA1 | CSN | OC | August | 10 | 5.76 | 4.43 | 0.41 | -1.33 | 1.37 | -24.8 | 26.0 |
| 4ATLANTA1 | CSN | OC | September | 13 | 4.52 | 3.29 | 0.01 | -1.23 | 2.35 | -22.6 | 52.9 |
| 4ATLANTA1 | CSN | OC | October | 13 | 2.55 | 2.56 | 0.06 | 0.01 | 1.04 | -7.7 | 40.6 |
| 4ATLANTA1 | CSN | OC | November | 13 | 5.90 | 4.32 | 0.02 | -1.58 | 2.71 | -31.6 | 50.2 |
| 4ATLANTA1 | CSN | OC | December | 12 | 4.56 | 5.06 | 0.87 | 0.50 | 0.81 | 17.2 | 23.4 |
| 4ATLANTA1 | CSN | SO4 | January | 15 | 1.91 | 2.04 | 0.08 | 0.13 | 0.99 | -2.0 | 45.2 |
| 4ATLANTA1 | CSN | SO4 | February | 12 | 1.83 | 1.48 | 0.00 | -0.35 | 0.90 | -13.7 | 45.9 |
| 4ATLANTA1 | CSN | SO4 | March | 14 | 3.50 | 3.37 | 0.79 | -0.13 | 0.55 | -2.4 | 17.5 |
| 4ATLANTA1 | CSN | SO4 | April | 12 | 2.88 | 3.02 | 0.52 | 0.15 | 0.83 | 2.9 | 27.6 |
| 4ATLANTA1 | CSN | SO4 | May | 13 | 5.13 | 3.19 | 0.58 | -1.94 | 1.94 | -46.0 | 46.1 |
| 4ATLANTA1 | CSN | SO4 | June | 12 | 6.01 | 4.98 | 0.77 | -1.03 | 1.18 | -15.8 | 20.2 |
| 4ATLANTA1 | CSN | SO4 | July | 14 | 5.40 | 4.22 | 0.20 | -1.17 | 2.19 | -33.8 | 46.7 |
| 4ATLANTA1 | CSN | SO4 | August | 10 | 7.77 | 4.99 | 0.67 | -2.78 | 2.88 | -40.3 | 42.5 |
| 4ATLANTA1 | CSN | SO4 | September | 13 | 5.59 | 4.32 | 0.56 | -1.27 | 1.93 | -29.1 | 41.0 |
| 4ATLANTA1 | CSN | SO4 | October | 13 | 3.00 | 2.43 | 0.71 | -0.57 | 0.98 | -24.3 | 43.4 |
| 4ATLANTA1 | CSN | SO4 | November | 13 | 3.68 | 2.87 | 0.76 | -0.81 | 0.81 | -25.7 | 25.7 |
| 4ATLANTA1 | CSN | SO4 | December | 12 | 3.30 | 2.15 | 0.81 | -1.14 | 1.17 | -36.9 | 38.8 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean <br> Pred. (ug/m3) | R Square | $\begin{gathered} \text { Mean } \\ \text { Bias } \\ (\mathrm{ug} / \mathrm{m} 3) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { Error } \\ (\mathrm{ug} / \mathrm{m} 3) \\ \hline \end{gathered}$ | Fract. Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4CALNEX1 | CASTNET | NH4 | January | 24 | 0.21 | 0.24 | 0.23 | 0.03 | 0.09 | 22.1 | 38.3 |
| 4CALNEX1 | CASTNET | NH4 | February | 24 | 0.22 | 0.20 | 0.79 | -0.02 | 0.07 | 5.6 | 36.4 |
| 4CALNEX1 | CASTNET | NH4 | March | 30 | 0.27 | 0.27 | 0.66 | 0.01 | 0.09 | 0.2 | 37.6 |
| 4CALNEX1 | CASTNET | NH4 | April | 24 | 0.32 | 0.22 | 0.50 | -0.09 | 0.14 | -35.4 | 54.9 |
| 4CALNEX1 | CASTNET | NH4 | May | 24 | 0.47 | 0.16 | 0.12 | -0.32 | 0.32 | -99.1 | 99.1 |
| 4CALNEX1 | CASTNET | NH4 | June | 30 | 0.40 | 0.09 | 0.10 | -0.31 | 0.31 | -128.0 | 128.0 |
| 4CALNEX1 | CASTNET | NH4 | July | 23 | 0.38 | 0.13 | 0.26 | -0.25 | 0.25 | -93.0 | 97.2 |
| 4CALNEX1 | CASTNET | NH4 | August | 23 | 0.42 | 0.23 | 0.38 | -0.19 | 0.20 | -63.4 | 64.3 |
| 4CALNEX1 | CASTNET | NH4 | September | 30 | 0.37 | 0.23 | 0.19 | -0.15 | 0.17 | -48.2 | 55.0 |
| 4CALNEX1 | CASTNET | NH4 | October | 22 | 0.23 | 0.19 | 0.58 | -0.04 | 0.08 | -14.3 | 45.5 |
| 4CALNEX1 | CASTNET | NH4 | November | 23 | 0.30 | 0.27 | 0.29 | -0.03 | 0.12 | -7.3 | 44.0 |
| 4CALNEX1 | CASTNET | NH4 | December | 27 | 0.18 | 0.24 | 0.11 | 0.06 | 0.14 | 40.0 | 62.3 |
| 4CALNEX1 | CASTNET | NO3 | January | 24 | 0.62 | 0.39 | 0.35 | -0.23 | 0.28 | -68.6 | 78.5 |
| 4CALNEX1 | CASTNET | NO3 | February | 24 | 0.62 | 0.30 | 0.81 | -0.32 | 0.35 | -74.4 | 86.3 |
| 4CALNEX1 | CASTNET | NO3 | March | 30 | 0.64 | 0.45 | 0.53 | -0.20 | 0.40 | -62.8 | 99.7 |
| 4CALNEX1 | CASTNET | NO3 | April | 24 | 1.00 | 0.42 | 0.76 | -0.58 | 0.59 | -95.4 | 102.0 |
| 4CALNEX1 | CASTNET | NO3 | May | 24 | 0.91 | 0.25 | 0.53 | -0.66 | 0.66 | -125.0 | 125.0 |
| 4CALNEX1 | CASTNET | NO3 | June | 30 | 0.93 | 0.18 | 0.40 | -0.75 | 0.76 | -136.0 | 137.0 |
| 4CALNEX1 | CASTNET | NO3 | July | 23 | 0.87 | 0.11 | 0.02 | -0.76 | 0.76 | -131.0 | 135.0 |
| 4CALNEX1 | CASTNET | NO3 | August | 23 | 1.03 | 0.09 | 0.41 | -0.94 | 0.94 | -168.0 | 168.0 |
| 4CALNEX1 | CASTNET | NO3 | September | 30 | 0.75 | 0.18 | 0.46 | -0.57 | 0.57 | -143.0 | 143.0 |
| 4CALNEX1 | CASTNET | NO3 | October | 22 | 0.68 | 0.35 | 0.31 | -0.34 | 0.41 | -84.8 | 99.0 |
| 4CALNEX1 | CASTNET | NO3 | November | 23 | 0.41 | 0.47 | 0.33 | 0.06 | 0.30 | -6.6 | 74.0 |
| 4CALNEX1 | CASTNET | NO3 | December | 27 | 0.57 | 0.48 | 0.19 | -0.08 | 0.39 | -24.6 | 79.2 |
| 4CALNEX1 | CASTNET | SO4 | January | 24 | 0.38 | 0.48 | 0.03 | 0.11 | 0.15 | 27.9 | 36.9 |
| 4CALNEX1 | CASTNET | SO4 | February | 24 | 0.44 | 0.46 | 0.56 | 0.02 | 0.15 | 18.8 | 36.6 |
| 4CALNEX1 | CASTNET | SO4 | March | 30 | 0.68 | 0.64 | 0.58 | -0.04 | 0.12 | -3.7 | 17.3 |
| 4CALNEX1 | CASTNET | SO4 | April | 24 | 0.93 | 0.75 | 0.61 | -0.19 | 0.25 | -18.6 | 29.5 |
| 4CALNEX1 | CASTNET | SO4 | May | 24 | 1.50 | 0.81 | 0.61 | -0.68 | 0.68 | -56.6 | 56.6 |
| 4CALNEX1 | CASTNET | SO4 | June | 30 | 1.27 | 0.77 | 0.36 | -0.50 | 0.52 | -43.6 | 49.0 |
| 4CALNEX1 | CASTNET | SO4 | July | 23 | 1.24 | 0.69 | 0.50 | -0.55 | 0.57 | -48.4 | 51.8 |
| 4CALNEX1 | CASTNET | SO4 | August | 23 | 1.30 | 0.84 | 0.21 | -0.46 | 0.54 | -35.7 | 48.0 |
| 4CALNEX1 | CASTNET | SO4 | September | 30 | 1.09 | 0.72 | 0.53 | -0.38 | 0.39 | -37.6 | 39.9 |
| 4CALNEX1 | CASTNET | SO4 | October | 22 | 0.62 | 0.51 | 0.44 | -0.11 | 0.14 | -16.8 | 23.6 |
| 4CALNEX1 | CASTNET | SO4 | November | 23 | 0.70 | 0.65 | 0.55 | -0.05 | 0.24 | 6.9 | 36.4 |
| 4CALNEX1 | CASTNET | SO4 | December | 27 | 0.34 | 0.45 | 0.12 | 0.11 | 0.16 | 30.9 | 43.0 |
| 4CALNEX1 | CASTNET | TNO3 | January | 24 | 1.30 | 1.09 | 0.59 | -0.21 | 0.36 | -11.9 | 29.9 |
| 4CALNEX1 | CASTNET | TNO3 | February | 24 | 1.50 | 0.99 | 0.92 | -0.51 | 0.54 | -31.5 | 40.1 |
| 4CALNEX1 | CASTNET | TNO3 | March | 30 | 1.81 | 1.64 | 0.81 | -0.17 | 0.51 | -7.5 | 33.2 |
| 4CALNEX1 | CASTNET | TNO3 | April | 24 | 2.20 | 1.64 | 0.90 | -0.56 | 0.58 | -25.9 | 31.9 |
| 4CALNEX1 | CASTNET | TNO3 | May | 24 | 2.60 | 1.72 | 0.90 | -0.88 | 0.88 | -48.1 | 48.1 |
| 4CALNEX1 | CASTNET | TNO3 | June | 30 | 2.81 | 2.02 | 0.76 | -0.79 | 1.03 | -49.6 | 54.6 |
| 4CALNEX1 | CASTNET | TNO3 | July | 23 | 2.89 | 2.24 | 0.92 | -0.65 | 0.71 | -43.4 | 44.5 |
| 4CALNEX1 | CASTNET | TNO3 | August | 23 | 3.06 | 2.34 | 0.92 | -0.72 | 0.79 | -42.8 | 45.1 |
| 4CALNEX1 | CASTNET | TNO3 | September | 30 | 2.35 | 1.77 | 0.66 | -0.58 | 0.68 | -39.4 | 43.0 |
| 4CALNEX1 | CASTNET | TNO3 | October | 22 | 1.78 | 1.39 | 0.79 | -0.39 | 0.53 | -29.5 | 38.2 |
| 4CALNEX1 | CASTNET | TNO3 | November | 23 | 1.63 | 1.78 | 0.46 | 0.14 | 0.72 | 4.9 | 39.6 |
| 4CALNEX1 | CASTNET | TNO3 | December | 27 | 1.19 | 0.98 | 0.34 | -0.21 | 0.49 | -9.5 | 41.9 |
| 4CALNEX1 | CSN | EC | January | 91 | 1.52 | 2.71 | 0.27 | 1.19 | 1.35 | 53.9 | 62.6 |
| 4CALNEX1 | CSN | EC | February | 54 | 1.07 | 2.03 | 0.42 | 0.97 | 1.03 | 58.0 | 63.4 |
| 4CALNEX1 | CSN | EC | March | 81 | 0.88 | 1.50 | 0.19 | 0.61 | 0.70 | 47.9 | 54.4 |
| 4CALNEX1 | CSN | EC | April | 72 | 0.55 | 1.06 | 0.22 | 0.51 | 0.57 | 53.3 | 62.7 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean Pred. (ug/m3) | R <br> Square | Mean <br> Bias (ug/m3) | $\begin{gathered} \text { Mean } \\ \text { Error } \\ \text { (ug/m3) } \end{gathered}$ | Fract. Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4CALNEX1 | CSN | EC | May | 82 | 0.56 | 1.09 | 0.19 | 0.54 | 0.59 | 61.4 | 67.6 |
| 4CALNEX1 | CSN | EC | June | 90 | 0.52 | 1.17 | 0.20 | 0.66 | 0.69 | 74.4 | 78.4 |
| 4CALNEX1 | CSN | EC | July | 83 | 0.58 | 1.09 | 0.20 | 0.51 | 0.55 | 62.1 | 67.1 |
| 4CALNEX1 | CSN | EC | August | 87 | 0.72 | 1.30 | 0.18 | 0.58 | 0.64 | 53.6 | 58.4 |
| 4CALNEX1 | CSN | EC | September | 87 | 0.77 | 1.37 | 0.18 | 0.60 | 0.66 | 49.9 | 56.5 |
| 4CALNEX1 | CSN | EC | October | 88 | 1.14 | 1.78 | 0.08 | 0.64 | 0.94 | 48.9 | 60.7 |
| 4CALNEX1 | CSN | EC | November | 84 | 1.77 | 2.31 | 0.31 | 0.54 | 0.87 | 26.1 | 42.0 |
| 4CALNEX1 | CSN | EC | December | 88 | 1.43 | 1.87 | 0.26 | 0.44 | 0.84 | 24.5 | 49.6 |
| 4CALNEX1 | CSN | NH4 | January | 125 | 2.11 | 1.12 | 0.67 | -0.99 | 1.15 | -41.4 | 68.8 |
| 4CALNEX1 | CSN | NH4 | February | 102 | 1.54 | 0.78 | 0.42 | -0.76 | 1.00 | -29.4 | 73.4 |
| 4CALNEX1 | CSN | NH4 | March | 146 | 1.19 | 0.67 | 0.26 | -0.52 | 0.74 | -39.5 | 72.4 |
| 4CALNEX1 | CSN | NH4 | April | 126 | 1.23 | 0.65 | 0.55 | -0.59 | 0.81 | -38.9 | 81.5 |
| 4CALNEX1 | CSN | NH4 | May | 129 | 1.41 | 0.62 | 0.64 | -0.80 | 0.85 | -92.4 | 99.8 |
| 4CALNEX1 | CSN | NH4 | June | 127 | 1.15 | 0.53 | 0.55 | -0.62 | 0.70 | -96.2 | 101.0 |
| 4CALNEX1 | CSN | NH4 | July | 124 | 1.04 | 0.38 | 0.61 | -0.66 | 0.69 | -95.1 | 99.6 |
| 4CALNEX1 | CSN | NH4 | August | 128 | 0.99 | 0.43 | 0.42 | -0.56 | 0.62 | -78.9 | 86.2 |
| 4CALNEX1 | CSN | NH4 | September | 126 | 0.87 | 0.45 | 0.23 | -0.42 | 0.54 | -60.0 | 81.5 |
| 4CALNEX1 | CSN | NH4 | October | 133 | 1.25 | 0.58 | 0.40 | -0.67 | 0.84 | -56.4 | 80.7 |
| 4CALNEX1 | CSN | NH4 | November | 118 | 3.45 | 1.26 | 0.59 | -2.19 | 2.26 | -76.3 | 93.3 |
| 4CALNEX1 | CSN | NH4 | December | 126 | 1.52 | 0.80 | 0.37 | -0.72 | 1.00 | -25.5 | 74.8 |
| 4CALNEX1 | CSN | NO3 | January | 126 | 6.93 | 3.46 | 0.69 | -3.47 | 3.65 | -58.3 | 68.6 |
| 4CALNEX1 | CSN | NO3 | February | 104 | 4.94 | 2.04 | 0.41 | -2.89 | 3.08 | -72.6 | 83.4 |
| 4CALNEX1 | CSN | NO3 | March | 147 | 3.20 | 1.73 | 0.35 | -1.47 | 1.91 | -56.3 | 75.8 |
| 4CALNEX1 | CSN | NO3 | April | 127 | 3.04 | 1.52 | 0.59 | -1.52 | 1.72 | -60.6 | 72.3 |
| 4CALNEX1 | CSN | NO3 | May | 129 | 2.79 | 1.51 | 0.66 | -1.27 | 1.48 | -77.8 | 89.1 |
| 4CALNEX1 | CSN | NO3 | June | 127 | 2.26 | 1.41 | 0.61 | -0.85 | 1.21 | -79.4 | 92.5 |
| 4CALNEX1 | CSN | NO3 | July | 125 | 2.22 | 0.80 | 0.59 | -1.42 | 1.54 | -108.0 | 124.0 |
| 4CALNEX1 | CSN | NO3 | August | 128 | 1.74 | 0.89 | 0.52 | -0.85 | 1.19 | -96.5 | 115.0 |
| 4CALNEX1 | CSN | NO3 | September | 128 | 2.01 | 0.97 | 0.31 | -1.04 | 1.35 | -85.8 | 109.0 |
| 4CALNEX1 | CSN | NO3 | October | 132 | 3.20 | 1.72 | 0.34 | -1.48 | 2.13 | -59.5 | 87.5 |
| 4CALNEX1 | CSN | NO3 | November | 119 | 8.55 | 3.63 | 0.42 | -4.92 | 5.60 | -62.9 | 87.9 |
| 4CALNEX1 | CSN | NO3 | December | 126 | 4.82 | 2.31 | 0.41 | -2.51 | 3.04 | -50.2 | 77.7 |
| 4CALNEX1 | CSN | OC | January | 91 | 9.40 | 7.63 | 0.44 | -1.76 | 3.70 | -7.8 | 49.0 |
| 4CALNEX1 | CSN | OC | February | 53 | 4.36 | 4.92 | 0.76 | 0.56 | 1.64 | 30.4 | 53.5 |
| 4CALNEX1 | CSN | OC | March | 78 | 2.63 | 3.36 | 0.31 | 0.73 | 1.34 | 33.1 | 49.1 |
| 4CALNEX1 | CSN | OC | April | 68 | 1.91 | 2.29 | 0.21 | 0.38 | 1.02 | 33.9 | 57.5 |
| 4CALNEX1 | CSN | OC | May | 81 | 2.15 | 2.01 | 0.04 | -0.14 | 1.05 | 9.8 | 49.1 |
| 4CALNEX1 | CSN | OC | June | 90 | 2.40 | 2.15 | 0.31 | -0.25 | 0.80 | -1.8 | 36.1 |
| 4CALNEX1 | CSN | OC | July | 83 | 2.93 | 2.24 | 0.30 | -0.69 | 1.21 | -11.7 | 39.1 |
| 4CALNEX1 | CSN | OC | August | 87 | 2.86 | 2.24 | 0.11 | -0.62 | 1.11 | -18.5 | 42.1 |
| 4CALNEX1 | CSN | OC | September | 87 | 2.92 | 2.71 | 0.05 | -0.21 | 1.42 | 6.4 | 41.8 |
| 4CALNEX1 | CSN | OC | October | 88 | 3.60 | 3.90 | 0.07 | 0.30 | 2.04 | 17.5 | 49.6 |
| 4CALNEX1 | CSN | OC | November | 84 | 5.61 | 5.21 | 0.42 | -0.40 | 1.86 | -1.9 | 33.0 |
| 4CALNEX1 | CSN | OC | December | 88 | 4.58 | 5.02 | 0.36 | 0.44 | 2.33 | 18.7 | 52.7 |
| 4CALNEX1 | CSN | SO4 | January | 126 | 0.79 | 0.97 | 0.37 | 0.18 | 0.34 | 25.8 | 41.0 |
| 4CALNEX1 | CSN | SO4 | February | 104 | 0.90 | 0.90 | 0.45 | -0.01 | 0.38 | 14.5 | 41.1 |
| 4CALNEX1 | CSN | SO4 | March | 147 | 1.40 | 1.14 | 0.37 | -0.26 | 0.53 | -4.7 | 35.0 |
| 4CALNEX1 | CSN | SO4 | April | 127 | 1.81 | 1.25 | 0.59 | -0.56 | 0.79 | -11.1 | 48.2 |
| 4CALNEX1 | CSN | SO4 | May | 129 | 2.39 | 1.33 | 0.50 | -1.06 | 1.11 | -43.9 | 48.7 |
| 4CALNEX1 | CSN | SO4 | June | 127 | 2.39 | 1.40 | 0.44 | -0.99 | 1.08 | -37.0 | 44.7 |
| 4CALNEX1 | CSN | SO4 | July | 125 | 2.76 | 1.17 | 0.19 | -1.59 | 1.65 | -52.6 | 57.2 |
| 4CALNEX1 | CSN | SO4 | August | 128 | 1.98 | 1.26 | 0.12 | -0.72 | 1.02 | -34.9 | 48.1 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | $\begin{gathered} \text { Mean } \\ \text { Pred. } \\ \text { (ug/m3) } \\ \hline \end{gathered}$ | R Square | $\begin{gathered} \text { Mean } \\ \text { Bias } \\ (\mathrm{ug} / \mathrm{m} 3) \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { Error } \\ \text { (ug/m3) } \end{gathered}$ | Fract. <br> Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4CALNEX1 | CSN | SO4 | September | 128 | 1.77 | 1.15 | 0.42 | -0.62 | 0.73 | -28.0 | 42.2 |
| 4CALNEX1 | CSN | SO4 | October | 132 | 1.33 | 1.00 | 0.49 | -0.33 | 0.57 | -8.0 | 42.4 |
| 4CALNEX1 | CSN | SO4 | November | 119 | 2.04 | 1.41 | 0.45 | -0.64 | 1.05 | -19.1 | 51.4 |
| 4CALNEX1 | CSN | SO4 | December | 126 | 0.99 | 0.83 | 0.10 | -0.17 | 0.62 | 21.3 | 53.9 |
| 4CALNEX1 | IMPROVE | EC | January | 153 | 0.28 | 0.32 | 0.81 | 0.04 | 0.13 | 4.1 | 47.9 |
| 4CALNEX1 | IMPROVE | EC | February | 168 | 0.18 | 0.25 | 0.79 | 0.08 | 0.13 | 12.1 | 64.7 |
| 4CALNEX1 | IMPROVE | EC | March | 199 | 0.17 | 0.23 | 0.64 | 0.07 | 0.12 | 18.0 | 54.2 |
| 4CALNEX1 | IMPROVE | EC | April | 169 | 0.15 | 0.20 | 0.56 | 0.06 | 0.10 | 33.6 | 59.8 |
| 4CALNEX1 | IMPROVE | EC | May | 176 | 0.20 | 0.21 | 0.48 | 0.02 | 0.10 | 0.7 | 47.3 |
| 4CALNEX1 | IMPROVE | EC | June | 180 | 0.18 | 0.32 | 0.27 | 0.14 | 0.17 | 49.1 | 65.6 |
| 4CALNEX1 | IMPROVE | EC | July | 179 | 0.23 | 0.51 | 0.01 | 0.28 | 0.32 | 59.6 | 73.0 |
| 4CALNEX1 | IMPROVE | EC | August | 189 | 0.31 | 0.50 | 0.02 | 0.19 | 0.36 | 54.6 | 77.5 |
| 4CALNEX1 | IMPROVE | EC | September | 189 | 0.22 | 0.47 | 0.20 | 0.25 | 0.30 | 59.4 | 72.9 |
| 4CALNEX1 | IMPROVE | EC | October | 159 | 0.28 | 0.42 | 0.20 | 0.14 | 0.30 | 45.9 | 79.8 |
| 4CALNEX1 | IMPROVE | EC | November | 182 | 0.29 | 0.50 | 0.62 | 0.22 | 0.30 | 49.1 | 73.0 |
| 4CALNEX1 | IMPROVE | EC | December | 169 | 0.23 | 0.31 | 0.83 | 0.08 | 0.15 | 54.2 | 80.4 |
| 4CALNEX1 | IMPROVE | NO3 | January | 175 | 1.81 | 0.97 | 0.79 | -0.83 | 0.96 | -76.3 | 104.0 |
| 4CALNEX1 | IMPROVE | NO3 | February | 160 | 1.10 | 0.41 | 0.52 | -0.68 | 0.73 | -113.0 | 126.0 |
| 4CALNEX1 | IMPROVE | NO3 | March | 206 | 0.78 | 0.39 | 0.25 | -0.40 | 0.59 | -102.0 | 123.0 |
| 4CALNEX1 | IMPROVE | NO3 | April | 191 | 0.80 | 0.28 | 0.37 | -0.52 | 0.55 | -118.0 | 124.0 |
| 4CALNEX1 | IMPROVE | NO3 | May | 191 | 0.81 | 0.22 | 0.36 | -0.58 | 0.62 | -133.0 | 138.0 |
| 4CALNEX1 | IMPROVE | NO3 | June | 195 | 0.62 | 0.13 | 0.34 | -0.49 | 0.50 | -127.0 | 133.0 |
| 4CALNEX1 | IMPROVE | NO3 | July | 190 | 0.48 | 0.09 | 0.02 | -0.39 | 0.42 | -126.0 | 143.0 |
| 4CALNEX1 | IMPROVE | NO3 | August | 204 | 0.54 | 0.09 | 0.03 | -0.45 | 0.48 | -133.0 | 145.0 |
| 4CALNEX1 | IMPROVE | NO3 | September | 190 | 0.63 | 0.19 | 0.22 | -0.44 | 0.50 | -124.0 | 133.0 |
| 4CALNEX1 | IMPROVE | NO3 | October | 171 | 0.82 | 0.35 | 0.36 | -0.47 | 0.58 | -98.1 | 119.0 |
| 4CALNEX1 | IMPROVE | NO3 | November | 185 | 1.73 | 0.68 | 0.42 | -1.06 | 1.36 | -56.7 | 107.0 |
| 4CALNEX1 | IMPROVE | NO3 | December | 169 | 1.24 | 0.66 | 0.50 | -0.59 | 0.86 | -66.1 | 103.0 |
| 4CALNEX1 | IMPROVE | OC | January | 152 | 1.05 | 0.99 | 0.88 | -0.07 | 0.39 | 9.3 | 51.1 |
| 4CALNEX1 | IMPROVE | OC | February | 166 | 0.71 | 0.79 | 0.64 | 0.08 | 0.38 | 0.2 | 57.7 |
| 4CALNEX1 | IMPROVE | OC | March | 197 | 0.68 | 0.73 | 0.55 | 0.05 | 0.34 | 11.6 | 52.2 |
| 4CALNEX1 | IMPROVE | OC | April | 174 | 0.70 | 0.66 | 0.42 | -0.04 | 0.31 | 0.0 | 46.8 |
| 4CALNEX1 | IMPROVE | OC | May | 176 | 1.02 | 0.72 | 0.28 | -0.30 | 0.45 | -26.6 | 49.4 |
| 4CALNEX1 | IMPROVE | OC | June | 181 | 1.02 | 1.25 | 0.05 | 0.23 | 0.66 | 16.4 | 52.8 |
| 4CALNEX1 | IMPROVE | OC | July | 180 | 1.40 | 2.37 | 0.00 | 0.97 | 1.54 | 32.0 | 61.8 |
| 4CALNEX1 | IMPROVE | OC | August | 190 | 1.70 | 2.13 | 0.01 | 0.43 | 1.72 | 31.2 | 67.6 |
| 4CALNEX1 | IMPROVE | OC | September | 188 | 1.32 | 1.99 | 0.07 | 0.67 | 1.32 | 35.1 | 61.1 |
| 4CALNEX1 | IMPROVE | OC | October | 161 | 1.62 | 1.60 | 0.08 | -0.02 | 1.58 | 24.0 | 72.9 |
| 4CALNEX1 | IMPROVE | OC | November | 182 | 1.13 | 1.82 | 0.30 | 0.69 | 1.09 | 45.1 | 69.6 |
| 4CALNEX1 | IMPROVE | OC | December | 168 | 0.93 | 1.08 | 0.61 | 0.15 | 0.65 | 37.3 | 70.1 |
| 4CALNEX1 | IMPROVE | SO4 | January | 175 | 0.34 | 0.51 | 0.50 | 0.18 | 0.23 | 56.1 | 62.3 |
| 4CALNEX1 | IMPROVE | SO4 | February | 160 | 0.40 | 0.47 | 0.46 | 0.07 | 0.21 | 37.0 | 53.3 |
| 4CALNEX1 | IMPROVE | SO4 | March | 206 | 0.63 | 0.65 | 0.30 | 0.02 | 0.25 | 12.1 | 37.4 |
| 4CALNEX1 | IMPROVE | SO4 | April | 191 | 0.89 | 0.76 | 0.56 | -0.14 | 0.31 | -4.5 | 35.9 |
| 4CALNEX1 | IMPROVE | SO4 | May | 191 | 1.44 | 0.88 | 0.44 | -0.56 | 0.61 | -41.7 | 47.4 |
| 4CALNEX1 | IMPROVE | SO4 | June | 195 | 1.19 | 0.83 | 0.20 | -0.36 | 0.51 | -25.9 | 44.4 |
| 4CALNEX1 | IMPROVE | SO4 | July | 190 | 1.19 | 0.72 | 0.03 | -0.47 | 0.60 | -32.2 | 50.0 |
| 4CALNEX1 | IMPROVE | SO4 | August | 204 | 1.12 | 0.91 | 0.08 | -0.22 | 0.51 | -13.7 | 47.1 |
| 4CALNEX1 | IMPROVE | SO4 | September | 190 | 0.99 | 0.75 | 0.38 | -0.24 | 0.37 | -18.2 | 39.6 |
| 4CALNEX1 | IMPROVE | SO4 | October | 171 | 0.58 | 0.55 | 0.41 | -0.03 | 0.22 | 8.4 | 40.1 |
| 4CALNEX1 | IMPROVE | SO4 | November | 185 | 0.76 | 0.71 | 0.41 | -0.05 | 0.39 | 17.3 | 53.7 |
| 4CALNEX1 | IMPROVE | SO4 | December | 169 | 0.34 | 0.50 | 0.20 | 0.17 | 0.26 | 54.4 | 66.0 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean <br> Pred. (ug/m3) | R <br> Square | $\begin{gathered} \text { Mean } \\ \text { Bias } \\ (\mathrm{ug} / \mathrm{m} 3) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { Error } \\ \text { (ug/m3) } \\ \hline \end{gathered}$ | Fract. Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4DET1 | CASTNET | NH4 | January | 4 | 1.29 | 1.26 | 0.87 | -0.03 | 0.09 | -2.7 | 6.7 |
| 4DET1 | CASTNET | NH4 | February | 4 | 1.55 | 1.45 | 0.76 | -0.10 | 0.20 | -4.7 | 11.6 |
| 4DET1 | CASTNET | NH4 | March | 4 | 1.30 | 1.77 | 0.15 | 0.47 | 0.60 | 24.1 | 35.3 |
| 4DET1 | CASTNET | NH4 | April | 4 | 0.75 | 0.83 | 0.53 | 0.08 | 0.16 | 6.0 | 18.0 |
| 4DET1 | CASTNET | NH4 | May | 4 | 1.10 | 0.96 | 0.96 | -0.13 | 0.13 | -14.9 | 14.9 |
| 4DET1 | CASTNET | NH4 | June | 5 | 1.36 | 1.22 | 0.96 | -0.14 | 0.20 | -6.6 | 14.1 |
| 4DET1 | CASTNET | NH4 | July | 4 | 1.07 | 0.79 | 0.81 | -0.28 | 0.33 | -25.6 | 33.5 |
| 4DET1 | CASTNET | NH4 | August | 4 | 1.15 | 0.87 | 0.46 | -0.28 | 0.28 | -30.6 | 30.6 |
| 4DET1 | CASTNET | NH4 | September | 5 | 1.34 | 1.49 | 0.34 | 0.16 | 0.36 | 13.3 | 26.9 |
| 4DET1 | CASTNET | NH4 | October | 4 | 1.20 | 1.06 | 0.88 | -0.14 | 0.19 | -14.2 | 20.6 |
| 4DET1 | CASTNET | NH4 | November | 4 | 1.77 | 1.72 | 0.53 | -0.05 | 0.41 | 2.9 | 25.6 |
| 4DET1 | CASTNET | NH4 | December | 4 | 1.38 | 1.95 | 0.74 | 0.57 | 0.57 | 37.9 | 37.9 |
| 4DET1 | CASTNET | NO3 | January | 4 | 2.78 | 3.11 | 0.74 | 0.33 | 0.44 | 8.5 | 14.7 |
| 4DET1 | CASTNET | NO3 | February | 4 | 4.13 | 3.81 | 0.81 | -0.32 | 0.46 | -7.2 | 10.9 |
| 4DET1 | CASTNET | NO3 | March | 4 | 2.14 | 3.56 | 0.50 | 1.42 | 1.70 | 42.5 | 58.6 |
| 4DET1 | CASTNET | NO3 | April | 4 | 0.70 | 1.32 | 0.96 | 0.62 | 0.62 | 54.2 | 54.2 |
| 4DET1 | CASTNET | NO3 | May | 4 | 0.43 | 0.92 | 0.88 | 0.48 | 0.50 | 57.6 | 60.3 |
| 4DET1 | CASTNET | NO3 | June | 5 | 0.25 | 0.91 | 0.40 | 0.66 | 0.66 | 103.0 | 103.0 |
| 4DET1 | CASTNET | NO3 | July | 4 | 0.20 | 0.26 | 0.96 | 0.06 | 0.22 | 33.9 | 98.3 |
| 4DET1 | CASTNET | NO3 | August | 4 | 0.25 | 0.31 | 0.29 | 0.07 | 0.27 | 40.6 | 98.2 |
| 4DET1 | CASTNET | NO3 | September | 5 | 0.29 | 1.27 | 0.00 | 0.98 | 0.98 | 121.0 | 121.0 |
| 4DET1 | CASTNET | NO3 | October | 4 | 0.84 | 1.20 | 0.24 | 0.36 | 0.87 | 23.1 | 73.7 |
| 4DET1 | CASTNET | NO3 | November | 4 | 3.63 | 4.04 | 0.06 | 0.41 | 1.17 | 16.0 | 34.3 |
| 4DET1 | CASTNET | NO3 | December | 4 | 2.51 | 4.96 | 0.61 | 2.45 | 2.45 | 65.0 | 65.0 |
| 4DET1 | CASTNET | TNO3 | January | 4 | 3.65 | 3.89 | 0.79 | 0.25 | 0.50 | 4.8 | 12.4 |
| 4DET1 | CASTNET | TNO3 | February | 4 | 4.93 | 4.33 | 0.81 | -0.60 | 0.60 | -12.3 | 12.3 |
| 4DET1 | CASTNET | TNO3 | March | 4 | 4.11 | 5.13 | 0.98 | 1.03 | 1.26 | 15.1 | 24.6 |
| 4DET1 | CASTNET | TNO3 | April | 4 | 2.04 | 2.19 | 0.26 | 0.15 | 0.60 | 3.7 | 24.5 |
| 4DET1 | CASTNET | TNO3 | May | 4 | 2.71 | 2.88 | 0.66 | 0.18 | 0.51 | 3.5 | 16.9 |
| 4DET1 | CASTNET | TNO3 | June | 5 | 2.32 | 3.32 | 0.74 | 1.00 | 1.00 | 34.9 | 34.9 |
| 4DET1 | CASTNET | TNO3 | July | 4 | 1.76 | 2.12 | 0.45 | 0.36 | 0.47 | 17.2 | 23.1 |
| 4DET1 | CASTNET | TNO3 | August | 4 | 1.97 | 2.56 | 0.10 | 0.59 | 0.61 | 24.2 | 25.4 |
| 4DET1 | CASTNET | TNO3 | September | 5 | 1.95 | 3.72 | 0.76 | 1.76 | 1.76 | 61.5 | 61.5 |
| 4DET1 | CASTNET | TNO3 | October | 4 | 2.57 | 3.53 | 0.40 | 0.96 | 1.13 | 22.3 | 28.7 |
| 4DET1 | CASTNET | TNO3 | November | 4 | 4.38 | 5.38 | 0.04 | 1.00 | 1.16 | 22.9 | 26.2 |
| 4DET1 | CASTNET | TNO3 | December | 4 | 3.91 | 5.72 | 0.92 | 1.81 | 1.81 | 38.1 | 38.1 |
| 4DET1 | CSN | EC | January | 30 | 0.50 | 1.93 | 0.11 | 1.43 | 1.43 | 115.0 | 115.0 |
| 4DET1 | CSN | EC | February | 24 | 0.57 | 1.94 | 0.14 | 1.38 | 1.38 | 107.0 | 107.0 |
| 4DET1 | CSN | EC | March | 35 | 0.66 | 1.45 | 0.41 | 0.79 | 0.80 | 67.8 | 68.1 |
| 4DET1 | CSN | EC | April | 28 | 0.44 | 1.24 | 0.35 | 0.80 | 0.81 | 88.3 | 95.0 |
| 4DET1 | CSN | EC | May | 31 | 0.76 | 1.52 | 0.67 | 0.76 | 0.77 | 59.3 | 62.5 |
| 4DET1 | CSN | EC | June | 30 | 0.63 | 1.35 | 0.28 | 0.72 | 0.74 | 65.2 | 70.7 |
| 4DET1 | CSN | EC | July | 29 | 0.76 | 1.75 | 0.52 | 0.99 | 1.00 | 71.5 | 73.1 |
| 4DET1 | CSN | EC | August | 31 | 0.93 | 2.15 | 0.28 | 1.23 | 1.23 | 76.6 | 76.6 |
| 4DET1 | CSN | EC | September | 30 | 1.03 | 1.61 | 0.11 | 0.59 | 0.81 | 30.4 | 53.6 |
| 4DET1 | CSN | EC | October | 30 | 0.74 | 1.71 | 0.42 | 0.98 | 0.99 | 70.8 | 71.8 |
| 4DET1 | CSN | EC | November | 30 | 1.15 | 2.80 | 0.21 | 1.64 | 1.71 | 84.3 | 86.0 |
| 4DET1 | CSN | EC | December | 26 | 1.00 | 2.19 | 0.33 | 1.20 | 1.21 | 68.7 | 69.4 |
| 4DET1 | CSN | NH4 | January | 30 | 1.86 | 1.91 | 0.53 | 0.05 | 0.36 | 4.9 | 19.6 |
| 4DET1 | CSN | NH4 | February | 24 | 2.18 | 1.88 | 0.92 | -0.30 | 0.55 | -0.1 | 27.7 |
| 4DET1 | CSN | NH4 | March | 35 | 2.29 | 2.25 | 0.31 | -0.04 | 0.81 | 1.7 | 37.1 |
| 4DET1 | CSN | NH4 | April | 28 | 1.09 | 1.10 | 0.56 | 0.01 | 0.30 | 1.5 | 26.9 |


| Domain | Network | Specie | Month | N | Mean <br> Obs. (ug/m3) | Mean <br> Pred. (ug/m3) | R Square | $\begin{gathered} \text { Mean } \\ \text { Bias } \\ \text { (ug/m3) } \end{gathered}$ | Mean <br> Error (ug/m3) | Fract. <br> Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4DET1 | CSN | NH4 | May | 31 | 2.38 | 1.71 | 0.96 | -0.67 | 0.77 | -14.4 | 33.4 |
| 4DET1 | CSN | NH4 | June | 30 | 1.58 | 0.92 | 0.77 | -0.66 | 0.67 | -54.8 | 58.0 |
| 4DET1 | CSN | NH4 | July | 29 | 1.25 | 0.84 | 0.76 | -0.41 | 0.48 | -19.6 | 40.8 |
| 4DET1 | CSN | NH4 | August | 31 | 2.52 | 1.73 | 0.49 | -0.79 | 0.95 | -42.7 | 48.1 |
| 4DET1 | CSN | NH4 | September | 30 | 2.21 | 1.69 | 0.87 | -0.53 | 0.58 | -23.4 | 30.1 |
| 4DET1 | CSN | NH4 | October | 30 | 1.51 | 1.20 | 0.69 | -0.31 | 0.44 | -20.2 | 26.8 |
| 4DET1 | CSN | NH4 | November | 30 | 2.76 | 2.52 | 0.53 | -0.24 | 0.93 | -1.4 | 33.5 |
| 4DET1 | CSN | NH4 | December | 29 | 3.35 | 2.82 | 0.36 | -0.53 | 0.99 | -15.6 | 29.6 |
| 4DET1 | CSN | NO3 | January | 30 | 3.98 | 4.86 | 0.64 | 0.88 | 1.13 | 19.8 | 26.9 |
| 4DET1 | CSN | NO3 | February | 24 | 5.23 | 4.71 | 0.83 | -0.52 | 1.05 | 2.5 | 22.7 |
| 4DET1 | CSN | NO3 | March | 35 | 3.97 | 4.52 | 0.19 | 0.55 | 2.00 | 12.1 | 45.5 |
| 4DET1 | CSN | NO3 | April | 28 | 1.52 | 1.71 | 0.40 | 0.18 | 0.85 | -1.9 | 47.1 |
| 4DET1 | CSN | NO3 | May | 31 | 1.34 | 1.46 | 0.40 | 0.12 | 0.80 | -19.7 | 64.8 |
| 4DET1 | CSN | NO3 | June | 30 | 0.72 | 0.60 | 0.56 | -0.12 | 0.40 | -79.7 | 100.0 |
| 4DET1 | CSN | NO3 | July | 29 | 0.90 | 0.40 | 0.37 | -0.51 | 0.60 | -102.0 | 111.0 |
| 4DET1 | CSN | NO3 | August | 31 | 1.46 | 0.76 | 0.04 | -0.70 | 1.00 | -76.6 | 91.2 |
| 4DET1 | CSN | NO3 | September | 30 | 1.34 | 1.48 | 0.45 | 0.14 | 0.80 | -36.4 | 73.6 |
| 4DET1 | CSN | NO3 | October | 30 | 1.34 | 1.30 | 0.72 | -0.04 | 0.56 | -24.8 | 48.6 |
| 4DET1 | CSN | NO3 | November | 30 | 4.91 | 5.89 | 0.20 | 0.97 | 2.32 | 21.8 | 43.5 |
| 4DET1 | CSN | NO3 | December | 29 | 5.83 | 5.94 | 0.18 | 0.12 | 2.43 | 7.0 | 40.4 |
| 4DET1 | CSN | OC | January | 29 | 1.53 | 4.25 | 0.00 | 2.72 | 2.87 | 92.9 | 97.0 |
| 4DET1 | CSN | OC | February | 24 | 1.51 | 5.67 | 0.01 | 4.16 | 4.16 | 120.0 | 120.0 |
| 4DET1 | CSN | OC | March | 32 | 1.75 | 2.74 | 0.19 | 0.99 | 1.40 | 49.7 | 63.2 |
| 4DET1 | CSN | OC | April | 20 | 1.37 | 1.81 | 0.27 | 0.44 | 1.17 | 58.6 | 79.2 |
| 4DET1 | CSN | OC | May | 30 | 3.18 | 2.12 | 0.83 | -1.06 | 1.53 | -5.1 | 57.7 |
| 4DET1 | CSN | OC | June | 29 | 2.95 | 1.51 | 0.64 | -1.44 | 1.51 | -51.6 | 63.3 |
| 4DET1 | CSN | OC | July | 29 | 2.92 | 1.65 | 0.30 | -1.27 | 1.34 | -56.5 | 60.6 |
| 4DET1 | CSN | OC | August | 31 | 3.49 | 2.54 | 0.28 | -0.95 | 1.10 | -30.9 | 36.6 |
| 4DET1 | CSN | OC | September | 30 | 2.77 | 1.85 | 0.19 | -0.92 | 1.09 | -31.8 | 42.4 |
| 4DET1 | CSN | OC | October | 30 | 1.94 | 1.82 | 0.46 | -0.12 | 0.59 | 2.7 | 30.0 |
| 4DET1 | CSN | OC | November | 30 | 2.67 | 3.53 | 0.09 | 0.86 | 1.82 | 38.3 | 61.0 |
| 4DET1 | CSN | OC | December | 26 | 3.76 | 3.88 | 0.12 | 0.12 | 2.44 | 22.5 | 64.8 |
| 4DET1 | CSN | SO4 | January | 30 | 2.44 | 1.57 | 0.23 | -0.88 | 0.97 | -39.7 | 45.1 |
| 4DET1 | CSN | SO4 | February | 24 | 2.27 | 1.47 | 0.45 | -0.80 | 0.97 | -37.3 | 48.9 |
| 4DET1 | CSN | SO4 | March | 35 | 3.44 | 2.87 | 0.36 | -0.57 | 1.08 | -14.9 | 34.8 |
| 4DET1 | CSN | SO4 | April | 28 | 2.02 | 1.85 | 0.30 | -0.17 | 0.55 | -6.9 | 27.9 |
| 4DET1 | CSN | SO4 | May | 31 | 5.34 | 4.72 | 0.92 | -0.62 | 1.23 | 8.1 | 29.0 |
| 4DET1 | CSN | SO4 | June | 30 | 4.11 | 2.76 | 0.76 | -1.34 | 1.50 | -33.4 | 40.9 |
| 4DET1 | CSN | SO4 | July | 29 | 3.39 | 2.58 | 0.77 | -0.81 | 0.99 | -15.1 | 30.5 |
| 4DET1 | CSN | SO4 | August | 31 | 6.05 | 5.84 | 0.66 | -0.21 | 1.82 | -8.7 | 31.7 |
| 4DET1 | CSN | SO4 | September | 30 | 5.50 | 4.04 | 0.85 | -1.45 | 1.70 | -18.3 | 31.2 |
| 4DET1 | CSN | SO4 | October | 30 | 3.05 | 2.72 | 0.67 | -0.33 | 0.67 | -10.6 | 21.6 |
| 4DET1 | CSN | SO4 | November | 30 | 3.39 | 2.68 | 0.72 | -0.71 | 0.90 | -25.5 | 28.7 |
| 4DET1 | CSN | SO4 | December | 29 | 3.48 | 3.31 | 0.28 | -0.18 | 1.91 | -32.2 | 54.6 |


| Domain | Network | Specie | Month | N | Mean <br> Obs. (ug/m3) | Mean <br> Pred. (ug/m3) | R <br> Square | Mean <br> Bias (ug/m3) | Mean <br> Error (ug/m3) | Fract. <br> Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4MO2 | CASTNET | NH4 | January | 9 | 1.13 | 0.81 | 0.40 | -0.31 | 0.35 | -29.8 | 33.5 |
| 4 MO 2 | CASTNET | NH4 | February | 12 | 1.38 | 1.28 | 0.38 | -0.10 | 0.37 | -1.7 | 27.1 |
| 4 MO 2 | CASTNET | NH4 | March | 15 | 1.21 | 1.46 | 0.35 | 0.25 | 0.39 | 20.4 | 29.3 |
| 4MO2 | CASTNET | NH4 | April | 12 | 1.11 | 1.26 | 0.62 | 0.16 | 0.27 | 10.6 | 19.2 |
| 4 MO 2 | CASTNET | NH4 | May | 12 | 1.25 | 1.12 | 0.45 | -0.13 | 0.34 | -9.7 | 27.4 |
| $4 \mathrm{MO2}$ | CASTNET | NH4 | June | 14 | 1.17 | 1.14 | 0.76 | -0.03 | 0.27 | -1.8 | 20.8 |
| 4 MO 2 | CASTNET | NH4 | July | 11 | 1.15 | 1.03 | 0.81 | -0.12 | 0.29 | -4.3 | 27.9 |
| 4MO2 | CASTNET | NH4 | August | 12 | 1.54 | 1.16 | 0.85 | -0.38 | 0.49 | -17.7 | 36.8 |
| 4MO2 | CASTNET | NH4 | September | 15 | 1.18 | 1.06 | 0.79 | -0.12 | 0.20 | -9.7 | 17.0 |
| $4 \mathrm{MO2}$ | CASTNET | NH4 | October | 12 | 0.66 | 0.65 | 0.94 | -0.01 | 0.07 | 0.4 | 11.9 |
| 4 MO 2 | CASTNET | NH4 | November | 12 | 0.95 | 1.28 | 0.13 | 0.32 | 0.52 | 30.7 | 46.4 |
| 4MO2 | CASTNET | NH4 | December | 13 | 1.66 | 1.42 | 0.44 | -0.24 | 0.46 | -12.8 | 32.8 |
| $4 \mathrm{MO2}$ | CASTNET | NO3 | January | 9 | 2.72 | 2.02 | 0.30 | -0.69 | 0.99 | -23.5 | 39.5 |
| 4MO2 | CASTNET | NO3 | February | 12 | 3.90 | 3.39 | 0.71 | -0.51 | 1.09 | -4.6 | 29.1 |
| 4 MO 2 | CASTNET | NO3 | March | 15 | 2.55 | 2.39 | 0.71 | -0.16 | 0.76 | -7.9 | 41.5 |
| 4MO2 | CASTNET | NO3 | April | 12 | 1.30 | 2.14 | 0.31 | 0.84 | 1.02 | 43.3 | 56.1 |
| 4 MO 2 | CASTNET | NO3 | May | 12 | 1.00 | 0.93 | 0.22 | -0.06 | 0.49 | -21.9 | 57.7 |
| 4MO2 | CASTNET | NO3 | June | 14 | 0.62 | 0.78 | 0.02 | 0.16 | 0.55 | 11.8 | 86.2 |
| 4 MO 2 | CASTNET | NO3 | July | 11 | 0.64 | 0.55 | 0.34 | -0.09 | 0.51 | -10.5 | 84.0 |
| 4 MO 2 | CASTNET | NO3 | August | 12 | 0.63 | 0.44 | 0.24 | -0.19 | 0.44 | -29.4 | 78.7 |
| 4 MO 2 | CASTNET | NO3 | September | 15 | 0.61 | 0.55 | 0.01 | -0.06 | 0.39 | -14.9 | 72.5 |
| 4 MO 2 | CASTNET | NO3 | October | 12 | 1.08 | 0.57 | 0.30 | -0.51 | 0.56 | -69.1 | 73.6 |
| 4MO2 | CASTNET | NO3 | November | 12 | 2.41 | 2.59 | 0.71 | 0.18 | 0.74 | -0.2 | 27.4 |
| 4MO2 | CASTNET | NO3 | December | 13 | 3.78 | 3.60 | 0.44 | -0.18 | 1.11 | -0.3 | 32.9 |
| 4 MO 2 | CASTNET | SO4 | January | 9 | 1.43 | 0.86 | 0.69 | -0.57 | 0.57 | -47.6 | 47.6 |
| 4MO2 | CASTNET | SO4 | February | 12 | 1.75 | 1.06 | 0.50 | -0.68 | 0.69 | -46.5 | 46.7 |
| 4 MO 2 | CASTNET | SO4 | March | 15 | 2.95 | 2.45 | 0.69 | -0.49 | 0.57 | -19.1 | 21.6 |
| 4 MO 2 | CASTNET | SO4 | April | 12 | 2.84 | 2.19 | 0.88 | -0.65 | 0.65 | -25.6 | 25.6 |
| 4 MO 2 | CASTNET | SO4 | May | 12 | 3.61 | 2.81 | 0.67 | -0.80 | 0.87 | -24.8 | 27.3 |
| 4 MO 2 | CASTNET | SO4 | June | 14 | 3.86 | 2.90 | 0.90 | -0.97 | 0.99 | -26.8 | 27.6 |
| 4 MO 2 | CASTNET | SO4 | July | 11 | 3.96 | 2.83 | 0.92 | -1.14 | 1.14 | -30.3 | 30.3 |
| 4 MO 2 | CASTNET | SO4 | August | 12 | 5.09 | 3.38 | 0.83 | -1.71 | 1.72 | -38.4 | 38.9 |
| 4 MO 2 | CASTNET | SO4 | September | 15 | 3.70 | 2.81 | 0.67 | -0.89 | 0.95 | -25.2 | 26.5 |
| 4 MO 2 | CASTNET | SO4 | October | 12 | 1.87 | 1.66 | 0.92 | -0.22 | 0.34 | -6.1 | 15.9 |
| 4 MO 2 | CASTNET | SO4 | November | 12 | 2.27 | 1.85 | 0.37 | -0.42 | 0.44 | -20.4 | 22.1 |
| 4MO2 | CASTNET | SO4 | December | 13 | 2.01 | 1.32 | 0.36 | -0.68 | 0.68 | -39.0 | 39.0 |
| 4 MO 2 | CASTNET | TNO3 | January | 9 | 3.30 | 2.61 | 0.34 | -0.69 | 0.90 | -21.1 | 29.3 |
| 4MO2 | CASTNET | TNO3 | February | 12 | 4.55 | 3.94 | 0.77 | -0.61 | 0.93 | -9.3 | 18.8 |
| 4 MO 2 | CASTNET | TNO3 | March | 15 | 4.04 | 3.32 | 0.83 | -0.71 | 0.86 | -25.6 | 30.4 |
| 4MO2 | CASTNET | TNO3 | April | 12 | 2.73 | 3.09 | 0.58 | 0.36 | 0.77 | 8.8 | 24.3 |
| $4 \mathrm{MO2}$ | CASTNET | TNO3 | May | 12 | 2.62 | 2.31 | 0.45 | -0.32 | 0.82 | -24.5 | 38.1 |
| $4 \mathrm{MO2}$ | CASTNET | TNO3 | June | 14 | 2.15 | 2.04 | 0.74 | -0.11 | 0.48 | -10.7 | 26.4 |
| 4 MO 2 | CASTNET | TNO3 | July | 11 | 1.98 | 2.33 | 0.69 | 0.35 | 0.49 | 14.6 | 22.5 |
| 4 MO 2 | CASTNET | TNO3 | August | 12 | 2.22 | 2.39 | 0.37 | 0.17 | 0.51 | 3.6 | 20.5 |
| $4 \mathrm{MO2}$ | CASTNET | TNO3 | September | 15 | 1.97 | 2.09 | 0.55 | 0.12 | 0.36 | 4.5 | 16.1 |
| $4 \mathrm{MO2}$ | CASTNET | TNO3 | October | 12 | 2.02 | 1.96 | 0.90 | -0.06 | 0.23 | -6.2 | 13.1 |
| 4 MO 2 | CASTNET | TNO3 | November | 12 | 3.17 | 3.49 | 0.74 | 0.33 | 0.68 | 6.0 | 18.3 |
| 4MO2 | CASTNET | TNO3 | December | 13 | 4.50 | 4.45 | 0.40 | -0.05 | 1.09 | 0.0 | 24.8 |
| 4MO2 | CSN | EC | January | 103 | 0.35 | 1.01 | 0.30 | 0.66 | 0.68 | 92.1 | 94.4 |
| 4 MO 2 | CSN | EC | February | 78 | 0.46 | 1.43 | 0.14 | 0.98 | 0.99 | 92.6 | 96.3 |
| 4 MO 2 | CSN | EC | March | 124 | 0.56 | 1.32 | 0.35 | 0.76 | 0.79 | 71.6 | 75.8 |
| 4MO2 | CSN | EC | April | 108 | 0.49 | 1.10 | 0.34 | 0.61 | 0.63 | 68.3 | 75.0 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | $\begin{gathered} \text { Mean } \\ \text { Pred. } \\ \text { (ug/m3) } \\ \hline \end{gathered}$ | R <br> Square | $\begin{gathered} \text { Mean } \\ \text { Bias } \\ \text { (ug/m3) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { Error } \\ \text { (ug/m3) } \end{gathered}$ | Fract. Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4MO2 | CSN | EC | May | 113 | 0.56 | 1.32 | 0.33 | 0.76 | 0.80 | 72.4 | 81.8 |
| 4 MO 2 | CSN | EC | June | 103 | 0.57 | 1.57 | 0.27 | 1.00 | 1.05 | 91.6 | 95.7 |
| 4 MO 2 | CSN | EC | July | 99 | 0.52 | 1.44 | 0.31 | 0.92 | 0.92 | 89.2 | 90.4 |
| 4 MO 2 | CSN | EC | August | 100 | 0.57 | 1.77 | 0.15 | 1.20 | 1.21 | 96.8 | 97.4 |
| 4 MO 2 | CSN | EC | September | 106 | 0.89 | 1.44 | 0.04 | 0.55 | 0.89 | 49.9 | 71.7 |
| 4 MO 2 | CSN | EC | October | 98 | 0.69 | 1.35 | 0.17 | 0.66 | 0.80 | 64.5 | 72.8 |
| 4 MO 2 | CSN | EC | November | 102 | 0.72 | 1.58 | 0.48 | 0.86 | 0.88 | 71.4 | 75.0 |
| 4 MO 2 | CSN | EC | December | 97 | 0.60 | 1.47 | 0.30 | 0.88 | 0.94 | 70.7 | 80.7 |
| 4 MO 2 | CSN | NH4 | January | 102 | 1.44 | 1.10 | 0.50 | -0.34 | 0.55 | -16.7 | 39.4 |
| 4 MO 2 | CSN | NH4 | February | 78 | 1.63 | 1.59 | 0.58 | -0.04 | 0.40 | -1.3 | 26.6 |
| 4 MO 2 | CSN | NH4 | March | 124 | 1.95 | 1.69 | 0.61 | -0.25 | 0.59 | -8.4 | 30.8 |
| 4 MO 2 | CSN | NH4 | April | 107 | 1.43 | 1.34 | 0.48 | -0.08 | 0.43 | -7.8 | 33.7 |
| 4 MO 2 | CSN | NH4 | May | 113 | 1.50 | 1.12 | 0.18 | -0.38 | 0.67 | -26.3 | 47.2 |
| 4 MO 2 | CSN | NH4 | June | 105 | 1.56 | 1.20 | 0.74 | -0.36 | 0.57 | -25.1 | 45.9 |
| 4MO2 | CSN | NH4 | July | 100 | 1.50 | 1.15 | 0.71 | -0.35 | 0.53 | -26.0 | 44.7 |
| 4MO2 | CSN | NH4 | August | 103 | 1.68 | 1.27 | 0.45 | -0.41 | 0.73 | -31.4 | 53.5 |
| 4 MO 2 | CSN | NH4 | September | 109 | 1.44 | 1.20 | 0.50 | -0.24 | 0.52 | -12.5 | 37.8 |
| 4 MO 2 | CSN | NH4 | October | 104 | 0.80 | 0.87 | 0.59 | 0.07 | 0.35 | 7.9 | 43.9 |
| 4 MO 2 | CSN | NH4 | November | 106 | 1.25 | 1.30 | 0.44 | 0.05 | 0.49 | 8.4 | 39.9 |
| 4 MO 2 | CSN | NH4 | December | 106 | 2.34 | 2.10 | 0.25 | -0.24 | 0.92 | -10.9 | 40.2 |
| 4 MO 2 | CSN | NO3 | January | 115 | 3.12 | 2.70 | 0.50 | -0.43 | 1.28 | 2.3 | 43.6 |
| 4 MO 2 | CSN | NO3 | February | 93 | 3.69 | 3.83 | 0.62 | 0.14 | 1.07 | 9.9 | 34.5 |
| 4 MO 2 | CSN | NO3 | March | 144 | 3.14 | 2.79 | 0.83 | -0.36 | 0.98 | -15.9 | 45.3 |
| 4 MO 2 | CSN | NO3 | April | 127 | 1.39 | 2.26 | 0.46 | 0.88 | 1.04 | 37.0 | 57.0 |
| 4 MO 2 | CSN | NO3 | May | 130 | 0.89 | 0.76 | 0.05 | -0.14 | 0.70 | -38.2 | 85.7 |
| 4 MO 2 | CSN | NO3 | June | 125 | 0.56 | 0.80 | 0.25 | 0.24 | 0.51 | -2.2 | 70.3 |
| 4 MO 2 | CSN | NO3 | July | 120 | 0.44 | 0.79 | 0.19 | 0.35 | 0.51 | 16.6 | 73.9 |
| 4MO2 | CSN | NO3 | August | 121 | 0.50 | 0.84 | 0.10 | 0.34 | 0.66 | -13.2 | 96.3 |
| 4MO2 | CSN | NO3 | September | 124 | 0.52 | 0.72 | 0.21 | 0.20 | 0.48 | -12.5 | 78.1 |
| 4MO2 | CSN | NO3 | October | 123 | 0.72 | 1.01 | 0.52 | 0.29 | 0.57 | -4.3 | 82.8 |
| 4 MO 2 | CSN | NO3 | November | 126 | 1.79 | 2.66 | 0.58 | 0.87 | 1.18 | 42.5 | 59.1 |
| 4 MO 2 | CSN | NO3 | December | 122 | 4.95 | 4.55 | 0.46 | -0.40 | 1.92 | -4.1 | 43.0 |
| 4 MO 2 | CSN | OC | January | 98 | 1.24 | 2.22 | 0.09 | 0.98 | 1.35 | 73.0 | 82.9 |
| 4 MO 2 | CSN | OC | February | 72 | 1.57 | 3.55 | 0.23 | 1.98 | 2.03 | 79.8 | 82.3 |
| 4 MO 2 | CSN | OC | March | 115 | 2.35 | 2.42 | 0.26 | 0.07 | 1.04 | 15.5 | 50.4 |
| 4 MO 2 | CSN | OC | April | 96 | 1.95 | 2.07 | 0.10 | 0.12 | 1.04 | 20.9 | 55.3 |
| 4 MO 2 | CSN | OC | May | 110 | 3.22 | 1.78 | 0.38 | -1.43 | 1.75 | -35.4 | 66.3 |
| 4 MO 2 | CSN | OC | June | 100 | 3.14 | 1.94 | 0.22 | -1.19 | 1.53 | -36.4 | 62.6 |
| 4 MO 2 | CSN | OC | July | 99 | 2.88 | 1.90 | 0.24 | -0.98 | 1.15 | -38.3 | 50.4 |
| 4MO2 | CSN | OC | August | 100 | 3.46 | 2.85 | 0.28 | -0.61 | 1.30 | -18.1 | 45.3 |
| 4MO2 | CSN | OC | September | 105 | 3.10 | 2.50 | 0.30 | -0.60 | 1.22 | -24.2 | 44.2 |
| 4 MO 2 | CSN | OC | October | 97 | 2.07 | 2.05 | 0.21 | -0.02 | 0.96 | 4.9 | 51.9 |
| 4MO2 | CSN | OC | November | 102 | 2.50 | 2.88 | 0.19 | 0.37 | 1.23 | 19.2 | 46.5 |
| 4MO2 | CSN | OC | December | 95 | 1.98 | 3.06 | 0.37 | 1.09 | 1.44 | 49.2 | 63.0 |
| 4 MO 2 | CSN | SO4 | January | 115 | 1.65 | 1.05 | 0.30 | -0.60 | 0.71 | -40.2 | 48.0 |
| 4 MO 2 | CSN | SO4 | February | 93 | 1.65 | 1.36 | 0.18 | -0.30 | 0.59 | -21.0 | 36.9 |
| 4 MO 2 | CSN | SO4 | March | 144 | 2.98 | 2.69 | 0.40 | -0.29 | 0.80 | -11.0 | 27.6 |
| 4MO2 | CSN | SO4 | April | 127 | 2.91 | 2.46 | 0.74 | -0.45 | 0.64 | -14.5 | 24.3 |
| 4 MO 2 | CSN | SO4 | May | 130 | 3.45 | 3.00 | 0.31 | -0.45 | 1.08 | -11.1 | 30.7 |
| 4MO2 | CSN | SO4 | June | 125 | 4.00 | 3.16 | 0.83 | -0.84 | 1.25 | -13.6 | 31.9 |
| 4MO2 | CSN | SO4 | July | 120 | 4.23 | 3.09 | 0.76 | -1.14 | 1.33 | -27.1 | 37.3 |
| 4 MO 2 | CSN | SO4 | August | 121 | 4.51 | 3.40 | 0.50 | -1.11 | 1.66 | -24.3 | 39.9 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean Pred. (ug/m3) | R <br> Square | Mean <br> Bias (ug/m3) | $\begin{gathered} \text { Mean } \\ \text { Error } \\ \text { (ug/m3) } \end{gathered}$ | Fract. Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4MO2 | CSN | SO4 | September | 124 | 3.77 | 3.19 | 0.66 | -0.58 | 1.12 | -7.5 | 30.6 |
| $4 \mathrm{MO2}$ | CSN | SO4 | October | 123 | 1.79 | 1.93 | 0.59 | 0.14 | 0.61 | 11.8 | 32.8 |
| 4 MO 2 | CSN | SO4 | November | 126 | 2.15 | 2.01 | 0.50 | -0.13 | 0.74 | -1.2 | 34.5 |
| 4 MO 2 | CSN | SO4 | December | 122 | 2.18 | 2.06 | 0.03 | -0.12 | 1.29 | -26.7 | 51.1 |
| 4 MO 2 | IMPROVE | EC | January | 75 | 0.22 | 0.29 | 0.58 | 0.08 | 0.09 | 30.6 | 37.8 |
| 4 MO 2 | IMPROVE | EC | February | 80 | 0.25 | 0.36 | 0.19 | 0.12 | 0.15 | 38.6 | 46.8 |
| $4 \mathrm{MO2}$ | IMPROVE | EC | March | 96 | 0.54 | 0.53 | 0.01 | 0.00 | 0.35 | 29.7 | 50.2 |
| 4 MO 2 | IMPROVE | EC | April | 94 | 0.38 | 0.57 | 0.27 | 0.19 | 0.23 | 31.1 | 43.1 |
| $4 \mathrm{MO2}$ | IMPROVE | EC | May | 92 | 0.37 | 0.36 | 0.05 | -0.01 | 0.16 | -2.8 | 39.3 |
| $4 \mathrm{MO2}$ | IMPROVE | EC | June | 88 | 0.32 | 0.45 | 0.41 | 0.13 | 0.19 | 29.2 | 47.8 |
| 4 MO 2 | IMPROVE | EC | July | 93 | 0.33 | 0.43 | 0.34 | 0.10 | 0.14 | 25.4 | 36.4 |
| 4MO2 | IMPROVE | EC | August | 102 | 0.34 | 0.55 | 0.24 | 0.21 | 0.23 | 43.9 | 48.9 |
| 4 MO 2 | IMPROVE | EC | September | 94 | 0.35 | 0.44 | 0.64 | 0.09 | 0.14 | 15.4 | 34.5 |
| 4 MO 2 | IMPROVE | EC | October | 97 | 0.27 | 0.44 | 0.59 | 0.17 | 0.17 | 36.9 | 40.8 |
| 4 MO 2 | IMPROVE | EC | November | 98 | 0.34 | 0.59 | 0.55 | 0.25 | 0.27 | 49.1 | 55.2 |
| $4 \mathrm{MO2}$ | IMPROVE | EC | December | 81 | 0.30 | 0.40 | 0.49 | 0.10 | 0.14 | 25.2 | 40.3 |
| 4 MO 2 | IMPROVE | NO3 | January | 72 | 2.19 | 2.20 | 0.58 | 0.00 | 0.87 | 14.0 | 47.2 |
| 4 MO 2 | IMPROVE | NO3 | February | 73 | 2.68 | 3.31 | 0.53 | 0.63 | 1.18 | 30.4 | 45.2 |
| 4 MO 2 | IMPROVE | NO3 | March | 91 | 2.75 | 2.67 | 0.83 | -0.08 | 0.82 | -15.7 | 47.4 |
| 4MO2 | IMPROVE | NO3 | April | 93 | 1.23 | 2.07 | 0.53 | 0.84 | 0.99 | 33.3 | 58.6 |
| 4 MO 2 | IMPROVE | NO3 | May | 95 | 0.75 | 0.58 | 0.04 | -0.17 | 0.67 | -55.5 | 97.8 |
| 4 MO 2 | IMPROVE | NO3 | June | 95 | 0.36 | 0.53 | 0.52 | 0.17 | 0.36 | -21.1 | 79.9 |
| $4 \mathrm{MO2}$ | IMPROVE | NO3 | July | 95 | 0.27 | 0.46 | 0.30 | 0.19 | 0.33 | -9.1 | 80.5 |
| $4 \mathrm{MO2}$ | IMPROVE | NO3 | August | 103 | 0.31 | 0.59 | 0.16 | 0.28 | 0.49 | -18.6 | 98.1 |
| 4 MO 2 | IMPROVE | NO3 | September | 94 | 0.27 | 0.36 | 0.28 | 0.08 | 0.25 | -33.6 | 76.7 |
| 4 MO 2 | IMPROVE | NO3 | October | 98 | 0.43 | 0.67 | 0.48 | 0.25 | 0.43 | -21.2 | 85.4 |
| 4 MO 2 | IMPROVE | NO3 | November | 97 | 1.36 | 2.24 | 0.45 | 0.88 | 1.16 | 54.3 | 71.8 |
| 4 MO 2 | IMPROVE | NO3 | December | 84 | 3.67 | 2.86 | 0.42 | -0.81 | 1.67 | -16.6 | 54.6 |
| $4 \mathrm{MO2}$ | IMPROVE | OC | January | 75 | 0.75 | 0.89 | 0.52 | 0.14 | 0.28 | 20.0 | 35.6 |
| $4 \mathrm{MO2}$ | IMPROVE | OC | February | 80 | 0.98 | 1.11 | 0.22 | 0.13 | 0.41 | 12.6 | 33.2 |
| 4 MO 2 | IMPROVE | OC | March | 96 | 2.76 | 1.73 | 0.00 | -1.03 | 1.95 | 2.8 | 51.0 |
| 4 MO 2 | IMPROVE | OC | April | 94 | 1.51 | 2.04 | 0.31 | 0.52 | 0.93 | 15.8 | 46.5 |
| 4 MO 2 | IMPROVE | OC | May | 92 | 1.78 | 1.04 | 0.08 | -0.74 | 1.04 | -50.7 | 61.6 |
| 4 MO 2 | IMPROVE | OC | June | 88 | 1.59 | 1.21 | 0.48 | -0.37 | 0.74 | -40.9 | 55.5 |
| 4 MO 2 | IMPROVE | OC | July | 93 | 1.69 | 1.16 | 0.35 | -0.53 | 0.65 | -39.0 | 45.6 |
| 4 MO 2 | IMPROVE | OC | August | 102 | 1.89 | 1.68 | 0.46 | -0.21 | 0.64 | -20.0 | 39.7 |
| 4MO2 | IMPROVE | OC | September | 94 | 1.81 | 1.59 | 0.71 | -0.23 | 0.61 | -33.9 | 46.1 |
| $4 \mathrm{MO2}$ | IMPROVE | OC | October | 97 | 1.20 | 1.27 | 0.55 | 0.07 | 0.56 | -14.7 | 48.1 |
| 4MO2 | IMPROVE | OC | November | 98 | 1.39 | 1.89 | 0.59 | 0.50 | 0.71 | 19.2 | 38.7 |
| 4 MO 2 | IMPROVE | OC | December | 81 | 1.11 | 1.14 | 0.49 | 0.03 | 0.35 | 1.0 | 31.7 |
| 4 MO 2 | IMPROVE | SO4 | January | 72 | 1.18 | 0.75 | 0.44 | -0.43 | 0.51 | -32.3 | 47.0 |
| $4 \mathrm{MO2}$ | IMPROVE | SO4 | February | 73 | 1.35 | 1.08 | 0.25 | -0.27 | 0.52 | -19.7 | 38.9 |
| $4 \mathrm{MO2}$ | IMPROVE | SO4 | March | 91 | 2.76 | 2.16 | 0.49 | -0.61 | 0.81 | -20.2 | 31.5 |
| 4 MO 2 | IMPROVE | SO4 | April | 93 | 2.85 | 2.34 | 0.74 | -0.51 | 0.69 | -19.1 | 25.6 |
| 4 MO 2 | IMPROVE | SO4 | May | 95 | 2.87 | 2.20 | 0.59 | -0.66 | 0.87 | -20.9 | 33.3 |
| 4MO2 | IMPROVE | SO4 | June | 95 | 3.38 | 2.71 | 0.85 | -0.67 | 1.04 | -14.8 | 34.1 |
| 4MO2 | IMPROVE | SO4 | July | 95 | 3.80 | 2.86 | 0.81 | -0.94 | 1.02 | -31.0 | 34.0 |
| 4MO2 | IMPROVE | SO4 | August | 103 | 3.98 | 2.78 | 0.69 | -1.20 | 1.63 | -25.6 | 44.0 |
| 4MO2 | IMPROVE | SO4 | September | 94 | 3.35 | 2.77 | 0.81 | -0.58 | 0.96 | -10.2 | 32.1 |
| 4MO2 | IMPROVE | SO4 | October | 98 | 1.38 | 1.43 | 0.61 | 0.05 | 0.44 | 10.2 | 29.7 |
| 4MO2 | IMPROVE | SO4 | November | 97 | 1.90 | 1.72 | 0.81 | -0.18 | 0.48 | 0.1 | 30.8 |
| 4MO2 | IMPROVE | SO4 | December | 84 | 1.69 | 1.13 | 0.24 | -0.56 | 0.77 | -33.8 | 50.6 |


| Domain | Network | Specie | Month | N | $\begin{gathered} \text { Mean } \\ \text { Obs. } \\ \text { (ug/m3) } \end{gathered}$ | Mean <br> Pred. (ug/m3) | R Square | $\begin{gathered} \text { Mean } \\ \text { Bias } \\ \text { (ug/m3) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { Error } \\ \text { (ug/m3) } \end{gathered}$ | Fract. Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4NE1 | CASTNET | NH4 | January | 41 | 0.79 | 0.74 | 0.53 | -0.05 | 0.18 | -3.8 | 20.2 |
| 4NE1 | CASTNET | NH4 | February | 37 | 1.00 | 1.07 | 0.66 | 0.08 | 0.24 | 12.4 | 22.9 |
| 4NE1 | CASTNET | NH4 | March | 50 | 0.90 | 1.12 | 0.62 | 0.22 | 0.29 | 21.1 | 27.5 |
| 4NE1 | CASTNET | NH4 | April | 41 | 0.93 | 0.91 | 0.69 | -0.02 | 0.19 | -5.2 | 21.2 |
| 4NE1 | CASTNET | NH4 | May | 41 | 1.14 | 0.83 | 0.81 | -0.31 | 0.36 | -24.6 | 31.1 |
| 4NE1 | CASTNET | NH4 | June | 48 | 1.56 | 1.10 | 0.62 | -0.46 | 0.50 | -35.8 | 38.6 |
| 4NE1 | CASTNET | NH4 | July | 39 | 1.63 | 1.12 | 0.71 | -0.51 | 0.53 | -41.9 | 42.8 |
| 4NE1 | CASTNET | NH4 | August | 42 | 1.76 | 1.15 | 0.72 | -0.61 | 0.64 | -44.6 | 46.6 |
| 4NE1 | CASTNET | NH4 | September | 53 | 1.42 | 1.00 | 0.62 | -0.42 | 0.48 | -33.3 | 39.5 |
| 4NE1 | CASTNET | NH4 | October | 41 | 1.13 | 0.94 | 0.77 | -0.18 | 0.27 | -22.0 | 29.3 |
| 4NE1 | CASTNET | NH4 | November | 40 | 1.08 | 1.05 | 0.52 | -0.02 | 0.27 | -4.8 | 24.4 |
| 4NE1 | CASTNET | NH4 | December | 42 | 1.04 | 1.00 | 0.71 | -0.03 | 0.24 | 3.7 | 22.5 |
| 4NE1 | CASTNET | NO3 | January | 41 | 0.98 | 1.33 | 0.44 | 0.35 | 0.50 | 44.5 | 55.6 |
| 4NE1 | CASTNET | NO3 | February | 37 | 1.86 | 2.40 | 0.50 | 0.55 | 0.85 | 37.5 | 46.1 |
| 4NE1 | CASTNET | NO3 | March | 50 | 1.05 | 1.75 | 0.34 | 0.69 | 0.85 | 47.3 | 59.8 |
| 4NE1 | CASTNET | NO3 | April | 41 | 0.48 | 1.16 | 0.19 | 0.69 | 0.74 | 76.2 | 82.1 |
| 4NE1 | CASTNET | NO3 | May | 41 | 0.42 | 0.33 | 0.29 | -0.10 | 0.23 | -44.7 | 70.7 |
| 4NE1 | CASTNET | NO3 | June | 48 | 0.22 | 0.36 | 0.07 | 0.14 | 0.28 | -9.3 | 96.1 |
| 4NE1 | CASTNET | NO3 | July | 39 | 0.14 | 0.20 | 0.12 | 0.07 | 0.12 | -4.3 | 72.7 |
| 4NE1 | CASTNET | NO3 | August | 42 | 0.20 | 0.27 | 0.03 | 0.07 | 0.22 | -5.4 | 103.0 |
| 4NE1 | CASTNET | NO3 | September | 53 | 0.34 | 0.41 | 0.10 | 0.08 | 0.30 | -25.3 | 77.9 |
| 4NE1 | CASTNET | NO3 | October | 41 | 0.43 | 0.52 | 0.28 | 0.09 | 0.31 | -14.3 | 67.9 |
| 4NE1 | CASTNET | NO3 | November | 40 | 1.21 | 1.77 | 0.49 | 0.56 | 0.68 | 47.0 | 54.4 |
| 4NE1 | CASTNET | NO3 | December | 42 | 1.46 | 2.01 | 0.61 | 0.55 | 0.85 | 60.8 | 70.4 |
| 4NE1 | CASTNET | SO4 | January | 41 | 1.86 | 1.17 | 0.33 | -0.69 | 0.72 | -44.9 | 46.6 |
| 4NE1 | CASTNET | SO4 | February | 37 | 2.07 | 1.20 | 0.62 | -0.87 | 0.87 | -50.5 | 50.5 |
| 4NE1 | CASTNET | SO4 | March | 50 | 2.52 | 1.89 | 0.71 | -0.62 | 0.67 | -25.5 | 29.0 |
| 4NE1 | CASTNET | SO4 | April | 41 | 2.60 | 1.84 | 0.64 | -0.76 | 0.82 | -31.7 | 35.2 |
| 4NE1 | CASTNET | SO4 | May | 41 | 3.36 | 2.63 | 0.94 | -0.73 | 0.84 | -15.6 | 24.8 |
| 4NE1 | CASTNET | SO4 | June | 48 | 4.58 | 3.40 | 0.79 | -1.18 | 1.26 | -27.5 | 30.9 |
| 4NE1 | CASTNET | SO4 | July | 39 | 4.99 | 3.60 | 0.76 | -1.39 | 1.42 | -30.9 | 31.6 |
| 4NE1 | CASTNET | SO4 | August | 42 | 5.41 | 3.75 | 0.67 | -1.66 | 1.77 | -32.0 | 34.7 |
| 4NE1 | CASTNET | SO4 | September | 53 | 4.30 | 3.06 | 0.85 | -1.24 | 1.28 | -29.9 | 33.5 |
| 4NE1 | CASTNET | SO4 | October | 41 | 3.56 | 2.81 | 0.90 | -0.76 | 0.77 | -20.1 | 21.1 |
| 4NE1 | CASTNET | SO4 | November | 40 | 2.37 | 1.72 | 0.41 | -0.66 | 0.73 | -30.8 | 34.1 |
| 4NE1 | CASTNET | SO4 | December | 42 | 2.19 | 1.38 | 0.85 | -0.81 | 0.81 | -46.4 | 46.4 |
| 4NE1 | CASTNET | TNO3 | January | 41 | 2.11 | 2.37 | 0.58 | 0.26 | 0.59 | 20.0 | 31.4 |
| 4NE1 | CASTNET | TNO3 | February | 37 | 3.22 | 3.35 | 0.69 | 0.13 | 0.69 | 10.3 | 21.6 |
| 4NE1 | CASTNET | TNO3 | March | 50 | 2.66 | 2.91 | 0.67 | 0.25 | 0.58 | 14.4 | 24.5 |
| 4NE1 | CASTNET | TNO3 | April | 41 | 2.02 | 2.30 | 0.79 | 0.28 | 0.41 | 16.6 | 21.2 |
| 4NE1 | CASTNET | TNO3 | May | 41 | 2.24 | 1.74 | 0.76 | -0.50 | 0.59 | -17.9 | 30.5 |
| 4NE1 | CASTNET | TNO3 | June | 48 | 1.95 | 1.74 | 0.59 | -0.21 | 0.49 | -8.7 | 28.3 |
| 4NE1 | CASTNET | TNO3 | July | 39 | 1.69 | 1.67 | 0.83 | -0.02 | 0.29 | 4.5 | 23.1 |
| 4NE1 | CASTNET | TNO3 | August | 42 | 1.88 | 1.94 | 0.79 | 0.06 | 0.36 | 7.1 | 21.6 |
| 4NE1 | CASTNET | TNO3 | September | 53 | 2.07 | 2.34 | 0.67 | 0.27 | 0.57 | 15.6 | 28.8 |
| 4NE1 | CASTNET | TNO3 | October | 41 | 2.05 | 2.57 | 0.87 | 0.52 | 0.60 | 26.0 | 30.0 |
| 4NE1 | CASTNET | TNO3 | November | 40 | 2.36 | 3.22 | 0.67 | 0.86 | 0.91 | 36.4 | 38.0 |
| 4NE1 | CASTNET | TNO3 | December | 42 | 2.63 | 2.99 | 0.77 | 0.36 | 0.63 | 22.2 | 28.6 |
| 4NE1 | CSN | EC | January | 229 | 0.78 | 2.13 | 0.53 | 1.36 | 1.37 | 85.0 | 89.2 |
| 4NE1 | CSN | EC | February | 178 | 0.62 | 1.61 | 0.69 | 0.99 | 1.01 | 75.1 | 79.8 |
| 4NE1 | CSN | EC | March | 251 | 0.78 | 1.68 | 0.52 | 0.90 | 0.95 | 63.0 | 70.0 |
| 4NE1 | CSN | EC | April | 209 | 0.58 | 1.48 | 0.56 | 0.90 | 0.93 | 67.9 | 78.8 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean Pred. (ug/m3) | R <br> Square | $\begin{gathered} \text { Mean } \\ \text { Bias } \\ (\mathrm{ug} / \mathrm{m} 3) \end{gathered}$ | $\begin{gathered} \text { Mean } \\ \text { Error } \\ (\mathrm{ug} / \mathrm{m} 3) \end{gathered}$ | Fract. <br> Bias (\%) | Fract. <br> Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4NE1 | CSN | EC | May | 219 | 0.63 | 1.43 | 0.53 | 0.79 | 0.83 | 62.3 | 72.1 |
| 4NE1 | CSN | EC | June | 210 | 0.64 | 1.52 | 0.56 | 0.88 | 0.90 | 72.4 | 76.6 |
| 4NE1 | CSN | EC | July | 198 | 0.71 | 1.51 | 0.42 | 0.80 | 0.84 | 67.1 | 71.1 |
| 4NE1 | CSN | EC | August | 225 | 0.88 | 2.05 | 0.45 | 1.17 | 1.18 | 71.1 | 73.0 |
| 4NE1 | CSN | EC | September | 222 | 0.97 | 1.58 | 0.11 | 0.61 | 1.04 | 46.2 | 76.0 |
| 4NE1 | CSN | EC | October | 213 | 0.88 | 2.02 | 0.30 | 1.14 | 1.26 | 66.8 | 78.3 |
| 4NE1 | CSN | EC | November | 212 | 1.10 | 2.33 | 0.42 | 1.23 | 1.29 | 62.5 | 69.4 |
| 4NE1 | CSN | EC | December | 223 | 1.02 | 2.50 | 0.50 | 1.48 | 1.51 | 69.1 | 73.6 |
| 4NE1 | CSN | NH4 | January | 229 | 1.59 | 1.49 | 0.35 | -0.10 | 0.60 | 3.2 | 37.3 |
| 4NE1 | CSN | NH4 | February | 178 | 1.52 | 1.50 | 0.66 | -0.02 | 0.47 | 8.4 | 29.7 |
| 4NE1 | CSN | NH4 | March | 252 | 1.60 | 1.72 | 0.61 | 0.13 | 0.51 | 14.7 | 32.4 |
| 4NE1 | CSN | NH4 | April | 207 | 1.22 | 1.02 | 0.53 | -0.20 | 0.47 | -7.2 | 40.0 |
| 4NE1 | CSN | NH4 | May | 218 | 1.29 | 0.88 | 0.58 | -0.41 | 0.51 | -27.9 | 44.1 |
| 4NE1 | CSN | NH4 | June | 213 | 1.98 | 1.28 | 0.77 | -0.70 | 0.76 | -40.2 | 46.2 |
| 4NE1 | CSN | NH4 | July | 203 | 2.35 | 1.35 | 0.58 | -1.00 | 1.07 | -46.8 | 54.7 |
| 4NE1 | CSN | NH4 | August | 231 | 2.25 | 1.37 | 0.64 | -0.87 | 0.98 | -39.3 | 52.5 |
| 4NE1 | CSN | NH4 | September | 227 | 1.51 | 1.08 | 0.61 | -0.43 | 0.62 | -16.3 | 44.0 |
| 4NE1 | CSN | NH4 | October | 219 | 1.71 | 1.46 | 0.61 | -0.25 | 0.64 | -4.9 | 36.7 |
| 4NE1 | CSN | NH4 | November | 221 | 1.57 | 1.50 | 0.69 | -0.07 | 0.42 | -7.1 | 26.9 |
| 4NE1 | CSN | NH4 | December | 221 | 2.26 | 1.97 | 0.55 | -0.30 | 0.67 | -9.3 | 31.3 |
| 4NE1 | CSN | NO3 | January | 257 | 2.41 | 2.66 | 0.44 | 0.25 | 1.09 | 20.8 | 50.1 |
| 4NE1 | CSN | NO3 | February | 205 | 2.63 | 3.35 | 0.55 | 0.72 | 1.26 | 32.1 | 46.4 |
| 4NE1 | CSN | NO3 | March | 284 | 2.13 | 3.11 | 0.49 | 0.99 | 1.40 | 41.3 | 59.2 |
| 4NE1 | CSN | NO3 | April | 237 | 1.06 | 1.35 | 0.35 | 0.29 | 0.74 | 31.8 | 66.5 |
| 4NE1 | CSN | NO3 | May | 248 | 0.79 | 0.46 | 0.14 | -0.34 | 0.47 | -59.3 | 79.7 |
| 4NE1 | CSN | NO3 | June | 243 | 0.86 | 0.41 | 0.19 | -0.45 | 0.57 | -88.7 | 102.0 |
| 4NE1 | CSN | NO3 | July | 231 | 0.79 | 0.36 | 0.15 | -0.43 | 0.56 | -97.3 | 109.0 |
| 4NE1 | CSN | NO3 | August | 264 | 0.80 | 0.48 | 0.27 | -0.32 | 0.58 | -79.0 | 103.0 |
| 4NE1 | CSN | NO3 | September | 257 | 0.86 | 0.63 | 0.52 | -0.23 | 0.52 | -71.9 | 91.4 |
| 4NE1 | CSN | NO3 | October | 249 | 1.12 | 1.18 | 0.38 | 0.06 | 0.70 | -12.9 | 69.7 |
| 4NE1 | CSN | NO3 | November | 251 | 1.94 | 2.34 | 0.61 | 0.40 | 0.79 | 23.1 | 42.8 |
| 4NE1 | CSN | NO3 | December | 249 | 3.28 | 3.94 | 0.48 | 0.66 | 1.48 | 25.5 | 50.2 |
| 4NE1 | CSN | OC | January | 209 | 2.28 | 5.10 | 0.28 | 2.83 | 2.95 | 77.3 | 81.8 |
| 4NE1 | CSN | OC | February | 160 | 1.88 | 5.03 | 0.61 | 3.16 | 3.22 | 94.5 | 96.7 |
| 4NE1 | CSN | OC | March | 232 | 1.79 | 3.76 | 0.46 | 1.97 | 2.05 | 75.4 | 79.7 |
| 4NE1 | CSN | OC | April | 177 | 1.31 | 2.55 | 0.35 | 1.24 | 1.46 | 70.6 | 86.6 |
| 4NE1 | CSN | OC | May | 207 | 2.37 | 2.11 | 0.26 | -0.26 | 1.14 | -0.1 | 55.0 |
| 4NE1 | CSN | OC | June | 207 | 3.13 | 2.01 | 0.40 | -1.12 | 1.38 | -42.7 | 57.9 |
| 4NE1 | CSN | OC | July | 198 | 3.32 | 1.98 | 0.18 | -1.34 | 1.61 | -50.8 | 62.4 |
| 4NE1 | CSN | OC | August | 224 | 3.24 | 2.96 | 0.24 | -0.29 | 1.44 | -3.3 | 51.7 |
| 4NE1 | CSN | OC | September | 216 | 2.29 | 2.30 | 0.10 | 0.01 | 1.22 | 6.8 | 50.8 |
| 4NE1 | CSN | OC | October | 210 | 1.75 | 2.74 | 0.24 | 0.99 | 1.37 | 41.4 | 62.7 |
| 4NE1 | CSN | OC | November | 210 | 2.25 | 3.96 | 0.10 | 1.71 | 2.19 | 52.4 | 68.9 |
| 4NE1 | CSN | OC | December | 217 | 2.71 | 5.82 | 0.27 | 3.11 | 3.28 | 68.7 | 75.3 |
| 4NE1 | CSN | SO4 | January | 257 | 2.44 | 2.20 | 0.13 | -0.25 | 1.04 | -14.0 | 37.1 |
| 4NE1 | CSN | SO4 | February | 205 | 2.17 | 1.68 | 0.50 | -0.49 | 0.69 | -26.3 | 34.7 |
| 4NE1 | CSN | SO4 | March | 284 | 2.74 | 2.39 | 0.42 | -0.35 | 0.85 | -7.9 | 32.9 |
| 4NE1 | CSN | SO4 | April | 237 | 2.62 | 1.92 | 0.44 | -0.70 | 0.98 | -26.6 | 40.0 |
| 4NE1 | CSN | SO4 | May | 248 | 3.07 | 2.61 | 0.74 | -0.47 | 0.85 | -7.6 | 28.9 |
| 4NE1 | CSN | SO4 | June | 243 | 5.12 | 3.82 | 0.88 | -1.30 | 1.47 | -24.5 | 32.0 |
| 4NE1 | CSN | SO4 | July | 231 | 6.02 | 4.02 | 0.71 | -2.00 | 2.22 | -32.0 | 42.1 |
| 4NE1 | CSN | SO4 | August | 264 | 5.99 | 4.04 | 0.71 | -1.95 | 2.29 | -26.9 | 42.5 |


| Domain | Network | Specie | Month | N | Mean Obs. (ug/m3) | Mean <br> Pred. (ug/m3) | R Square | Mean <br> Bias (ug/m3) | Mean <br> Error (ug/m3) | Fract. <br> Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4NE1 | CSN | SO4 | September | 257 | 3.85 | 2.86 | 0.58 | -0.99 | 1.47 | -15.2 | 40.3 |
| 4NE1 | CSN | SO4 | October | 249 | 3.96 | 3.53 | 0.67 | -0.43 | 1.22 | -3.0 | 29.8 |
| 4NE1 | CSN | SO4 | November | 251 | 2.70 | 2.34 | 0.53 | -0.36 | 0.95 | -20.5 | 34.7 |
| 4NE1 | CSN | SO4 | December | 249 | 3.10 | 2.28 | 0.36 | -0.82 | 1.18 | -32.7 | 45.0 |
| 4NE1 | IMPROVE | EC | January | 136 | 0.48 | 0.89 | 0.72 | 0.41 | 0.46 | 30.2 | 49.3 |
| 4NE1 | IMPROVE | EC | February | 132 | 0.46 | 0.87 | 0.76 | 0.42 | 0.44 | 35.8 | 47.4 |
| 4NE1 | IMPROVE | EC | March | 164 | 0.38 | 0.74 | 0.62 | 0.36 | 0.38 | 41.4 | 51.2 |
| 4NE1 | IMPROVE | EC | April | 134 | 0.33 | 0.64 | 0.74 | 0.31 | 0.36 | 30.6 | 57.3 |
| 4NE1 | IMPROVE | EC | May | 143 | 0.45 | 0.63 | 0.67 | 0.18 | 0.32 | 10.9 | 53.7 |
| 4NE1 | IMPROVE | EC | June | 144 | 0.48 | 0.72 | 0.71 | 0.23 | 0.38 | -0.1 | 50.2 |
| 4NE1 | IMPROVE | EC | July | 144 | 0.42 | 0.66 | 0.71 | 0.23 | 0.36 | 2.9 | 55.4 |
| 4NE1 | IMPROVE | EC | August | 154 | 0.49 | 0.79 | 0.69 | 0.31 | 0.40 | 15.3 | 44.2 |
| 4NE1 | IMPROVE | EC | September | 136 | 0.39 | 0.72 | 0.67 | 0.33 | 0.38 | 25.6 | 51.8 |
| 4NE1 | IMPROVE | EC | October | 145 | 0.37 | 0.83 | 0.79 | 0.46 | 0.49 | 38.8 | 54.8 |
| 4NE1 | IMPROVE | EC | November | 148 | 0.43 | 0.83 | 0.77 | 0.40 | 0.43 | 41.4 | 50.1 |
| 4NE1 | IMPROVE | EC | December | 134 | 0.47 | 0.97 | 0.72 | 0.51 | 0.54 | 41.4 | 50.1 |
| 4NE1 | IMPROVE | NO3 | January | 143 | 0.86 | 1.29 | 0.49 | 0.43 | 0.64 | 34.3 | 72.6 |
| 4NE1 | IMPROVE | NO3 | February | 133 | 1.32 | 2.36 | 0.53 | 1.03 | 1.13 | 53.7 | 62.0 |
| 4NE1 | IMPROVE | NO3 | March | 164 | 0.94 | 1.56 | 0.58 | 0.62 | 0.85 | 31.7 | 76.2 |
| 4NE1 | IMPROVE | NO3 | April | 139 | 0.57 | 0.78 | 0.31 | 0.20 | 0.51 | 14.4 | 79.7 |
| 4NE1 | IMPROVE | NO3 | May | 146 | 0.44 | 0.26 | 0.27 | -0.18 | 0.27 | -74.8 | 96.4 |
| 4NE1 | IMPROVE | NO3 | June | 137 | 0.38 | 0.24 | 0.20 | -0.14 | 0.29 | -96.3 | 118.0 |
| 4NE1 | IMPROVE | NO3 | July | 141 | 0.29 | 0.15 | 0.05 | -0.14 | 0.25 | -102.0 | 126.0 |
| 4NE1 | IMPROVE | NO3 | August | 157 | 0.29 | 0.22 | 0.13 | -0.07 | 0.28 | -81.1 | 122.0 |
| 4NE1 | IMPROVE | NO3 | September | 141 | 0.32 | 0.27 | 0.28 | -0.05 | 0.30 | -88.2 | 116.0 |
| 4NE1 | IMPROVE | NO3 | October | 141 | 0.43 | 0.51 | 0.52 | 0.08 | 0.37 | -45.3 | 98.7 |
| 4NE1 | IMPROVE | NO3 | November | 149 | 0.79 | 1.23 | 0.69 | 0.44 | 0.58 | 34.3 | 72.0 |
| 4NE1 | IMPROVE | NO3 | December | 136 | 1.09 | 1.86 | 0.58 | 0.77 | 1.01 | 65.3 | 89.2 |
| 4NE1 | IMPROVE | OC | January | 136 | 1.09 | 2.11 | 0.58 | 1.02 | 1.17 | 36.0 | 55.7 |
| 4NE1 | IMPROVE | OC | February | 132 | 1.41 | 2.51 | 0.71 | 1.10 | 1.22 | 37.0 | 50.3 |
| 4NE1 | IMPROVE | OC | March | 163 | 1.04 | 1.79 | 0.55 | 0.75 | 0.84 | 39.1 | 51.0 |
| 4NE1 | IMPROVE | OC | April | 134 | 0.79 | 1.12 | 0.48 | 0.33 | 0.60 | 13.3 | 56.7 |
| 4NE1 | IMPROVE | OC | May | 142 | 1.48 | 1.16 | 0.26 | -0.32 | 0.72 | -15.7 | 49.9 |
| 4NE1 | IMPROVE | OC | June | 144 | 1.86 | 1.15 | 0.48 | -0.71 | 0.92 | -57.5 | 66.1 |
| 4NE1 | IMPROVE | OC | July | 144 | 1.58 | 1.03 | 0.34 | -0.55 | 0.85 | -58.5 | 71.7 |
| 4NE1 | IMPROVE | OC | August | 155 | 1.80 | 1.59 | 0.52 | -0.21 | 0.75 | -23.7 | 46.7 |
| 4NE1 | IMPROVE | OC | September | 136 | 1.26 | 1.24 | 0.44 | -0.03 | 0.60 | -23.9 | 48.9 |
| 4NE1 | IMPROVE | OC | October | 145 | 0.96 | 1.26 | 0.55 | 0.31 | 0.61 | -5.0 | 48.5 |
| 4NE1 | IMPROVE | OC | November | 148 | 1.01 | 1.63 | 0.58 | 0.62 | 0.74 | 34.9 | 48.2 |
| 4NE1 | IMPROVE | OC | December | 134 | 1.14 | 2.21 | 0.49 | 1.07 | 1.19 | 43.8 | 54.7 |
| 4NE1 | IMPROVE | SO4 | January | 143 | 1.52 | 1.38 | 0.37 | -0.14 | 0.56 | -12.0 | 30.9 |
| 4NE1 | IMPROVE | SO4 | February | 133 | 1.68 | 1.25 | 0.64 | -0.44 | 0.53 | -24.4 | 33.6 |
| 4NE1 | IMPROVE | SO4 | March | 164 | 2.05 | 1.82 | 0.77 | -0.23 | 0.52 | -3.5 | 28.8 |
| 4NE1 | IMPROVE | SO4 | April | 139 | 2.02 | 1.57 | 0.52 | -0.45 | 0.78 | -15.5 | 38.5 |
| 4NE1 | IMPROVE | SO4 | May | 146 | 2.53 | 2.25 | 0.81 | -0.28 | 0.72 | 0.1 | 29.1 |
| 4NE1 | IMPROVE | SO4 | June | 137 | 4.50 | 3.38 | 0.83 | -1.12 | 1.42 | -16.6 | 35.1 |
| 4NE1 | IMPROVE | SO4 | July | 141 | 4.11 | 3.07 | 0.76 | -1.04 | 1.35 | -20.0 | 37.4 |
| 4NE1 | IMPROVE | SO4 | August | 157 | 4.89 | 3.43 | 0.69 | -1.46 | 1.97 | -17.4 | 46.6 |
| 4NE1 | IMPROVE | SO4 | September | 141 | 2.87 | 2.26 | 0.71 | -0.61 | 1.14 | -0.7 | 40.9 |
| 4NE1 | IMPROVE | SO4 | October | 141 | 2.68 | 2.44 | 0.76 | -0.25 | 0.89 | 6.1 | 33.1 |
| 4NE1 | IMPROVE | SO4 | November | 149 | 1.70 | 1.42 | 0.64 | -0.27 | 0.48 | -11.1 | 29.4 |
| 4NE1 | IMPROVE | SO4 | December | 136 | 1.93 | 1.41 | 0.49 | -0.52 | 0.72 | -28.5 | 40.7 |


| Domain | Specie | Threshold | Month | N | Mean <br> Obs. <br> (ppb) | Mean <br> Pred. <br> (ppb) | R <br> Square | Mean <br> Bias <br> (ppb) | Mean <br> Error <br> (ppb) | Fract. Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4ATLANTA1 | O3_8hrmax | GE60 | January |  |  |  |  |  |  |  |  |
| 4ATLANTA1 | O3_8hrmax | GE60 | February |  |  |  |  |  |  |  |  |
| 4ATLANTA1 | O3_8hrmax | GE60 | March | 79 | 65.0 | 50.6 | 0.12 | -14.4 | 14.7 | -27.6 | 28.1 |
| 4ATLANTA1 | 03_8hrmax | GE60 | April | 75 | 65.0 | 57.6 | 0.44 | -7.3 | 7.9 | -12.7 | 13.6 |
| 4ATLANTA1 | O3_8hrmax | GE60 | May | 174 | 68.7 | 60.6 | 0.19 | -8.1 | 9.2 | -14.7 | 16.2 |
| 4ATLANTA1 | O3_8hrmax | GE60 | June | 202 | 71.5 | 62.9 | 0.48 | -8.6 | 9.4 | -13.7 | 14.9 |
| 4ATLANTA1 | O3_8hrmax | GE60 | July | 75 | 68.0 | 60.0 | 0.16 | -8.1 | 11.9 | -15.1 | 20.3 |
| 4ATLANTA1 | O3_8hrmax | GE60 | August | 223 | 76.2 | 73.1 | 0.38 | -3.0 | 9.0 | -5.1 | 12.6 |
| 4ATLANTA1 | O3_8hrmax | GE60 | September | 77 | 68.5 | 66.7 | 0.30 | -1.8 | 6.9 | -3.3 | 10.3 |
| 4ATLANTA1 | O3_8hrmax | GE60 | October | 15 | 66.0 | 61.9 | 0.40 | -4.1 | 4.6 | -6.6 | 7.5 |
| 4ATLANTA1 | O3_8hrmax | GE60 | November |  |  |  |  |  |  |  |  |
| 4ATLANTA1 | O3_8hrmax | GE60 | December |  |  |  |  |  |  |  |  |
| 4ATLANTA1 | O3_8hrmax | NONE | January |  |  |  |  |  |  |  |  |
| 4ATLANTA1 | O3_8hrmax | NONE | February |  |  |  |  |  |  |  |  |
| 4ATLANTA1 | O3_8hrmax | NONE | March | 370 | 50.5 | 42.5 | 0.24 | -8.0 | 9.4 | -17.8 | 21.4 |
| 4ATLANTA1 | O3_8hrmax | NONE | April | 358 | 51.2 | 48.8 | 0.48 | -2.4 | 6.3 | -3.9 | 13.3 |
| 4ATLANTA1 | 03_8hrmax | NONE | May | 362 | 59.6 | 55.0 | 0.30 | -4.6 | 8.0 | -7.9 | 15.8 |
| 4ATLANTA1 | 03_8hrmax | NONE | June | 350 | 61.1 | 57.7 | 0.53 | -3.4 | 8.6 | -4.1 | 15.7 |
| 4ATLANTA1 | 03_8hrmax | NONE | July | 354 | 49.7 | 50.0 | 0.28 | 0.3 | 9.6 | 0.3 | 20.4 |
| 4ATLANTA1 | O3_8hrmax | NONE | August | 357 | 66.0 | 65.1 | 0.55 | -0.9 | 9.3 | -2.0 | 15.9 |
| 4ATLANTA1 | O3_8hrmax | NONE | September | 354 | 50.2 | 53.4 | 0.58 | 3.2 | 7.6 | 8.2 | 16.3 |
| 4ATLANTA1 | O3_8hrmax | NONE | October | 369 | 36.9 | 39.4 | 0.71 | 2.5 | 5.6 | 8.0 | 16.7 |
| 4ATLANTA1 | O3_8hrmax | NONE | November |  |  |  |  |  |  |  |  |
| 4ATLANTA1 | O3_8hrmax | NONE | December |  |  |  |  |  |  |  |  |


| Domain | Specie | Threshold | Month | N | Mean <br> Obs. <br> (ppb) | Mean <br> Pred. <br> (ppb) | R <br> Square | Mean <br> Bias <br> (ppb) | Mean <br> Error <br> (ppb) | Fract. <br> Bias (\%) | Fract. <br> Error <br> (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4CALNEX1 | O3_8hrmax | GE60 | January |  |  |  |  |  |  |  |  |
| 4CALNEX1 | O3_8hrmax | GE60 | February | 13 | 79.2 | 44.0 | 0.00 | -35.2 | 35.2 | -57.2 | 57.2 |
| 4CALNEX1 | O3_8hrmax | GE60 | March | 443 | 66.4 | 59.4 | 0.14 | -7.0 | 9.0 | -12.0 | 15.0 |
| 4CALNEX1 | O3_8hrmax | GE60 | April | 717 | 67.3 | 61.7 | 0.25 | -5.6 | 8.0 | -9.3 | 12.6 |
| 4CALNEX1 | O3_8hrmax | GE60 | May | 1981 | 69.2 | 63.0 | 0.24 | -6.2 | 8.2 | -9.8 | 12.6 |
| 4CALNEX1 | O3_8hrmax | GE60 | June | 1937 | 72.3 | 69.3 | 0.28 | -3.0 | 9.0 | -5.0 | 12.8 |
| 4CALNEX1 | O3_8hrmax | GE60 | July | 1755 | 72.8 | 71.6 | 0.35 | -1.3 | 9.6 | -2.6 | 13.4 |
| 4CALNEX1 | O3_8hrmax | GE60 | August | 1931 | 71.2 | 67.2 | 0.23 | -4.0 | 10.4 | -6.8 | 15.2 |
| 4CALNEX1 | O3_8hrmax | GE60 | September | 1047 | 70.5 | 64.3 | 0.10 | -6.2 | 10.5 | -9.5 | 15.5 |
| 4CALNEX1 | O3_8hrmax | GE60 | October | 157 | 65.6 | 54.2 | 0.00 | -11.4 | 12.0 | -19.8 | 20.7 |
| 4CALNEX1 | O3_8hrmax | GE60 | November | 34 | 64.1 | 60.7 | 0.00 | -3.4 | 6.8 | -5.9 | 11.1 |
| 4CALNEX1 | O3_8hrmax | GE60 | December | 2 | 63.8 | 32.3 | 1.00 | -31.5 | 31.5 | -65.5 | 65.5 |
| 4CALNEX1 | O3_8hrmax | NONE | January | 5369 | 29.7 | 33.2 | 0.42 | 3.5 | 5.9 | 13.3 | 21.7 |
| 4CALNEX1 | O3_8hrmax | NONE | February | 4854 | 35.0 | 36.5 | 0.37 | 1.5 | 5.4 | 5.6 | 16.7 |
| 4CALNEX1 | O3_8hrmax | NONE | March | 5426 | 44.4 | 44.1 | 0.50 | -0.3 | 5.9 | -0.6 | 13.8 |
| 4CALNEX1 | O3_8hrmax | NONE | April | 5533 | 49.2 | 47.8 | 0.49 | -1.4 | 6.1 | -2.8 | 12.8 |
| 4CALNEX1 | O3_8hrmax | NONE | May | 5889 | 55.1 | 53.9 | 0.55 | -1.2 | 6.7 | -1.6 | 12.4 |
| 4CALNEX1 | O3_8hrmax | NONE | June | 5689 | 53.7 | 55.0 | 0.64 | 1.3 | 8.0 | 2.8 | 15.0 |
| 4CALNEX1 | O3_8hrmax | NONE | July | 5827 | 50.0 | 54.7 | 0.61 | 4.7 | 10.1 | 9.8 | 20.7 |
| 4CALNEX1 | O3_8hrmax | NONE | August | 5751 | 52.6 | 55.8 | 0.48 | 3.2 | 10.1 | 6.6 | 19.2 |
| 4CALNEX1 | O3_8hrmax | NONE | September | 5681 | 48.8 | 51.6 | 0.44 | 2.8 | 8.3 | 6.3 | 16.6 |
| 4CALNEX1 | O3_8hrmax | NONE | October | 5781 | 39.7 | 42.1 | 0.35 | 2.4 | 6.8 | 6.3 | 17.7 |
| 4CALNEX1 | O3_8hrmax | NONE | November | 5266 | 31.8 | 38.8 | 0.42 | 7.0 | 9.0 | 21.5 | 27.7 |
| 4CALNEX1 | O3_8hrmax | NONE | December | 5108 | 29.5 | 31.5 | 0.42 | 2.0 | 5.4 | 8.7 | 20.4 |


| Domain | Specie | Threshold | Month | N | Mean <br> Obs. <br> (ppb) | Mean <br> Pred. <br> (ppb) | R <br> Square | Mean <br> Bias <br> (ppb) | Mean <br> Error <br> (ppb) | Fract. Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4DET1 | O3_8hrmax | GE60 | January |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | GE60 | February |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | GE60 | March |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | GE60 | April | 15 | 68.3 | 57.9 | 0.35 | -10.3 | 10.3 | -17.0 | 17.0 |
| 4DET1 | O3_8hrmax | GE60 | May | 105 | 72.7 | 62.3 | 0.29 | -10.4 | 12.0 | -15.5 | 17.8 |
| 4DET1 | O3_8hrmax | GE60 | June | 128 | 72.7 | 59.2 | 0.21 | -13.5 | 14.0 | -21.1 | 21.8 |
| 4DET1 | O3_8hrmax | GE60 | July | 56 | 68.0 | 56.2 | 0.09 | -11.8 | 13.6 | -19.9 | 22.4 |
| 4DET1 | O3_8hrmax | GE60 | August | 64 | 72.2 | 60.6 | 0.30 | -11.6 | 14.1 | -18.8 | 22.0 |
| 4DET1 | O3_8hrmax | GE60 | September | 55 | 68.2 | 52.3 | 0.16 | -15.9 | 17.0 | -27.8 | 29.3 |
| 4DET1 | O3_8hrmax | GE60 | October |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | GE60 | November |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | GE60 | December |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | NONE | January |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | NONE | February |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | NONE | March | 27 | 31.8 | 25.2 | 0.25 | -6.6 | 7.6 | -23.8 | 28.1 |
| 4DET1 | O3_8hrmax | NONE | April | 353 | 42.0 | 39.8 | 0.53 | -2.2 | 5.7 | -4.9 | 14.4 |
| 4DET1 | O3_8hrmax | NONE | May | 366 | 51.6 | 47.7 | 0.71 | -4.0 | 6.9 | -7.4 | 14.0 |
| 4DET1 | O3_8hrmax | NONE | June | 354 | 55.4 | 49.5 | 0.58 | -6.0 | 8.9 | -10.3 | 16.8 |
| 4DET1 | O3_8hrmax | NONE | July | 362 | 48.2 | 43.5 | 0.40 | -4.7 | 8.6 | -10.5 | 19.2 |
| 4DET1 | O3_8hrmax | NONE | August | 368 | 46.1 | 43.2 | 0.52 | -2.9 | 9.5 | -8.8 | 22.5 |
| 4DET1 | 03_8hrmax | NONE | September | 350 | 43.4 | 39.6 | 0.48 | -3.9 | 8.6 | -6.1 | 21.7 |
| 4DET1 | 03_8hrmax | NONE | October | 91 | 31.5 | 34.6 | 0.58 | 3.1 | 6.8 | 9.0 | 22.8 |
| 4DET1 | 03_8hrmax | NONE | November |  |  |  |  |  |  |  |  |
| 4DET1 | O3_8hrmax | NONE | December |  |  |  |  |  |  |  |  |


| Domain | Specie | Threshold | Month | N | Mean <br> Obs. <br> (ppb) | Mean Pred. (ppb) | R <br> Square | Mean <br> Bias <br> (ppb) | Mean Error (ppb) | Fract. Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4MO2 | O3_8hrmax | GE60 | January |  |  |  |  |  |  |  |  |
| 4MO2 | 03_8hrmax | GE60 | March | 37 | 65.4 | 54.6 | 0.56 | -10.9 | 10.9 | -18.1 | 18.1 |
| 4MO2 | O3_8hrmax | GE60 | April | 279 | 65.0 | 60.3 | 0.14 | -4.7 | 5.4 | -7.5 | 8.6 |
| 4MO2 | 03_8hrmax | GE60 | May | 474 | 65.9 | 58.1 | 0.07 | -7.8 | 8.7 | -13.7 | 15.0 |
| 4MO2 | 03_8hrmax | GE60 | June | 498 | 72.6 | 61.1 | 0.21 | -11.4 | 12.3 | -18.8 | 20.0 |
| 4MO2 | 03_8hrmax | GE60 | July | 335 | 68.4 | 65.1 | 0.24 | -3.3 | 7.0 | -5.5 | 10.7 |
| 4MO2 | O3_8hrmax | GE60 | August | 674 | 70.6 | 67.1 | 0.14 | -3.5 | 8.7 | -6.3 | 13.3 |
| 4MO2 | O3_8hrmax | GE60 | September | 444 | 67.7 | 60.5 | 0.22 | -7.2 | 8.8 | -11.9 | 14.1 |
| 4MO2 | 03_8hrmax | GE60 | October | 79 | 63.7 | 56.7 | 0.10 | -7.0 | 7.5 | -12.6 | 13.3 |
| 4MO2 | 03_8hrmax | GE60 | November | 3 | 60.7 | 46.3 | 0.92 | -14.4 | 14.4 | -26.9 | 26.9 |
| 4MO2 | O3_8hrmax | GE60 | December |  |  |  |  |  |  |  |  |
| 4MO2 | 03_8hrmax | NONE | January | 1061 | 27.2 | 24.8 | 0.33 | -2.4 | 5.0 | -9.0 | 20.3 |
| 4MO2 | O3_8hrmax | NONE | February | 1017 | 33.4 | 31.0 | 0.49 | -2.4 | 5.2 | -7.2 | 17.4 |
| 4MO2 | O3_8hrmax | NONE | March | 1293 | 40.7 | 39.1 | 0.46 | -1.6 | 5.7 | -4.1 | 15.7 |
| 4MO2 | O3_8hrmax | NONE | April | 2316 | 47.1 | 48.4 | 0.59 | 1.3 | 4.9 | 3.5 | 11.0 |
| 4MO2 | 03_8hrmax | NONE | May | 2367 | 49.0 | 46.1 | 0.44 | -2.8 | 7.4 | -7.2 | 17.7 |
| 4MO2 | 03_8hrmax | NONE | June | 2287 | 48.7 | 48.4 | 0.44 | -0.3 | 9.1 | -0.1 | 20.5 |
| 4MO2 | 03_8hrmax | NONE | July | 2337 | 48.8 | 52.1 | 0.46 | 3.3 | 7.4 | 6.7 | 15.3 |
| 4MO2 | O3_8hrmax | NONE | August | 2324 | 51.7 | 55.9 | 0.44 | 4.2 | 9.9 | 8.6 | 20.1 |
| 4MO2 | 03_8hrmax | NONE | September | 2265 | 46.0 | 46.8 | 0.59 | 0.8 | 7.6 | 3.7 | 18.9 |
| 4MO2 | 03_8hrmax | NONE | October | 2360 | 36.4 | 38.9 | 0.50 | 2.5 | 6.6 | 8.4 | 19.8 |
| 4MO2 | 03_8hrmax | NONE | November | 1128 | 29.7 | 31.4 | 0.49 | 1.7 | 5.5 | 7.6 | 20.3 |
| 4MO2 | 03_8hrmax | NONE | December | 980 | 24.8 | 22.4 | 0.36 | -2.4 | 6.3 | -11.3 | 30.8 |


| Domain | Specie | Threshold | Month | N | Mean <br> Obs. <br> (ppb) | Mean <br> Pred. <br> (ppb) | R <br> Square | Mean <br> Bias <br> (ppb) | Mean <br> Error <br> (ppb) | Fract. <br> Bias (\%) | Fract. Error (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4NE1 | O3_8hrmax | GE60 | January |  |  |  |  |  |  |  |  |
| 4NE1 | O3_8hrmax | GE60 | February |  |  |  |  |  |  |  |  |
| 4NE1 | O3_8hrmax | GE60 | March | 20 | 63.3 | 42.8 | 0.05 | -20.5 | 20.5 | -40.6 | 40.6 |
| 4NE1 | 03_8hrmax | GE60 | April | 372 | 67.2 | 55.3 | 0.28 | -11.9 | 12.2 | -20.9 | 21.3 |
| 4NE1 | 03_8hrmax | GE60 | May | 1291 | 70.8 | 59.0 | 0.33 | -11.8 | 12.3 | -18.9 | 19.5 |
| 4NE1 | 03_8hrmax | GE60 | June | 1334 | 71.4 | 61.8 | 0.28 | -9.6 | 10.8 | -15.0 | 16.7 |
| 4NE1 | 03_8hrmax | GE60 | July | 1248 | 70.1 | 62.8 | 0.27 | -7.3 | 9.7 | -11.6 | 14.9 |
| 4NE1 | 03_8hrmax | GE60 | August | 1410 | 71.1 | 65.0 | 0.15 | -6.1 | 10.2 | -9.8 | 15.3 |
| 4NE1 | 03_8hrmax | GE60 | September | 869 | 69.0 | 58.8 | 0.05 | -10.2 | 11.5 | -16.6 | 18.4 |
| 4NE1 | 03_8hrmax | GE60 | October | 110 | 64.8 | 52.2 | 0.02 | -12.7 | 13.0 | -23.4 | 24.0 |
| 4NE1 | O3_8hrmax | GE60 | November |  |  |  |  |  |  |  |  |
| 4NE1 | O3_8hrmax | GE60 | December |  |  |  |  |  |  |  |  |
| 4NE1 | 03_8hrmax | NONE | January | 1643 | 24.8 | 22.7 | 0.67 | -2.1 | 4.4 | -9.6 | 22.8 |
| 4NE1 | O3_8hrmax | NONE | February | 1468 | 31.4 | 26.3 | 0.61 | -5.1 | 5.9 | -17.1 | 21.5 |
| 4NE1 | 03_8hrmax | NONE | March | 1703 | 39.9 | 33.1 | 0.44 | -6.8 | 7.4 | -19.5 | 21.6 |
| 4NE1 | 03_8hrmax | NONE | April | 4482 | 43.9 | 40.8 | 0.45 | -3.1 | 6.7 | -6.8 | 16.5 |
| 4NE1 | O3_8hrmax | NONE | May | 4701 | 52.1 | 48.4 | 0.61 | -3.7 | 7.2 | -5.8 | 14.6 |
| 4NE1 | O3_8hrmax | NONE | June | 4563 | 50.5 | 47.5 | 0.69 | -3.1 | 7.2 | -5.0 | 14.8 |
| 4NE1 | O3_8hrmax | NONE | July | 4770 | 50.8 | 49.4 | 0.59 | -1.4 | 7.6 | -2.2 | 15.5 |
| 4NE1 | 03_8hrmax | NONE | August | 4733 | 49.4 | 49.0 | 0.67 | -0.3 | 8.0 | -0.6 | 17.7 |
| 4NE1 | 03_8hrmax | NONE | September | 4692 | 45.1 | 44.1 | 0.59 | -1.0 | 7.3 | 0.2 | 17.0 |
| 4NE1 | 03_8hrmax | NONE | October | 3562 | 35.7 | 36.9 | 0.45 | 1.2 | 6.7 | 3.9 | 20.1 |
| 4NE1 | O3_8hrmax | NONE | November | 1483 | 26.7 | 26.9 | 0.69 | 0.2 | 3.7 | 2.8 | 17.2 |
| 4NE1 | O3_8hrmax | NONE | December | 1444 | 25.5 | 20.8 | 0.74 | -4.7 | 5.6 | -23.7 | 30.9 |

Appendix B: Model Performance for the Annual 20074 km Domain Simulations

November 15, 2013

This Appendix section presents graphical model performance evaluation.

SO4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Winter [No Cutoff]


Figure 1: Mean bias for Winter SO4

SO4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Winter [No Cutoff]


Figure 2: Mean error for Winter SO4


Figure 3: Fractional bias for Winter SO4

## SO4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Winter [No Cutoff]



Figure 4: Fractional error for Winter SO4

SO4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Spring [No Cutoff]


Figure 5: Mean bias for Spring SO4

SO4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Spring [No Cutoff]


Figure 6: Mean error for Spring SO4


Figure 7: Fractional bias for Spring SO4


Figure 8: Fractional error for Spring SO4

SO4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]


Figure 9: Mean bias for Summer SO4

SO4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]


Figure 10: Mean error for Summer SO4

SO4 FB (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]


Figure 11: Fractional bias for Summer SO4

SO4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]


Figure 12: Fractional error for Summer SO4


Figure 13: Mean bias for Fall SO4


Figure 14: Mean error for Fall SO4

SO4 FB (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Fall [No Cutoff]


Figure 15: Fractional bias for Fall SO4

SO4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Fall [No Cutoff]


Figure 16: Fractional error for Fall SO4


Figure 17: Mean bias for Winter NH4


Figure 18: Mean error for Winter NH4


Figure 19: Fractional bias for Winter NH4


Figure 20: Fractional error for Winter NH4


Figure 21: Mean bias for Spring NH4


Figure 22: Mean error for Spring NH4


Figure 23: Fractional bias for Spring NH4


Figure 24: Fractional error for Spring NH4

## NH4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]



Figure 25: Mean bias for Summer NH4

## NH4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]



Figure 26: Mean error for Summer NH4


Figure 27: Fractional bias for Summer NH4

## NH4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]



Figure 28: Fractional error for Summer NH4


Figure 29: Mean bias for Fall NH4


Figure 30: Mean error for Fall NH4


Figure 31: Fractional bias for Fall NH4

NH4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Fall [No Cutoff]


Figure 32: Fractional error for Fall NH4

NO3 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Winter [No Cutoff]


Figure 33: Mean bias for Winter NO3


Figure 34: Mean error for Winter NO3


Figure 35: Fractional bias for Winter NO3

NO3 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Winter [No Cutoff]


Figure 36: Fractional error for Winter NO3


Figure 37: Mean bias for Spring NO3

NO3 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Spring [No Cutoff]


Figure 38: Mean error for Spring NO3

NO3 FB (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Spring [No Cutoff]


Figure 39: Fractional bias for Spring NO3

NO3 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Spring [No Cutoff]


Figure 40: Fractional error for Spring NO3

## NO3 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]



Figure 41: Mean bias for Summer NO3

## NO3 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]



Figure 42: Mean error for Summer NO3

## NO3 FB (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]



Figure 43: Fractional bias for Summer NO3

## NO3 FE (\%) for run 2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]



Figure 44: Fractional error for Summer NO3


Figure 45: Mean bias for Fall NO3


Figure 46: Mean error for Fall NO3


Figure 47: Fractional bias for Fall NO3


Figure 48: Fractional error for Fall NO3


Figure 49: Mean bias for Winter OC


Figure 50: Mean error for Winter OC


Figure 51: Fractional bias for Winter OC


Figure 52: Fractional error for Winter OC


Figure 53: Mean bias for Spring OC


Figure 54: Mean error for Spring OC


Figure 55: Fractional bias for Spring OC


Figure 56: Fractional error for Spring OC


Figure 57: Mean bias for Summer OC


Figure 58: Mean error for Summer OC


Figure 59: Fractional bias for Summer OC


Figure 60: Fractional error for Summer OC


Figure 61: Mean bias for Fall OC


Figure 62: Mean error for Fall OC


Figure 63: Fractional bias for Fall OC


Figure 64: Fractional error for Fall OC


Figure 65: Mean bias for Winter EC


Figure 66: Mean error for Winter EC


Figure 67: Fractional bias for Winter EC


Figure 68: Fractional error for Winter EC


Figure 69: Mean bias for Spring EC


Figure 70: Mean error for Spring EC


Figure 71: Fractional bias for Spring EC


Figure 72: Fractional error for Spring EC


Figure 73: Mean bias for Summer EC

EC ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4EAST1 for Summer [No Cutoff]


Figure 74: Mean error for Summer EC


Figure 75: Fractional bias for Summer EC


Figure 76: Fractional error for Summer EC


Figure 77: Mean bias for Fall EC


Figure 78: Mean error for Fall EC


Figure 79: Fractional bias for Fall EC


Figure 80: Fractional error for Fall EC


Figure 81: Mean bias for Summer 8hr Max Ozone


Figure 82: Mean error for Summer 8hr Max Ozone


Figure 83: Fractional bias for Summer 8hr Max Ozone


Figure 84: Fractional error for Summer 8hr Max Ozone
;O4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


Figure 85: Mean bias for Winter SO4

3O4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


Figure 86: Mean error for Winter SO4

SO4 FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


CIRCLE=CSN; TRIANGLE=IMPROVE; SQUARE=CASTNET;

Figure 87: Fractional bias for Winter SO4

SO4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


CIRCLE=CSN; TRIANGLE=IMPROVE; SQUARE=CASTNET;

Figure 88: Fractional error for Winter SO4


Figure 89: Mean bias for Spring SO4
;O4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 90: Mean error for Spring SO4

SO4 FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


CIRCLE=CSN; TRIANGLE=IMPROVE; SQUARE=CASTNET;

Figure 91: Fractional bias for Spring SO4

SO4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


CIRCLE=CSN; TRIANGLE=IMPROVE; SQUARE=CASTNET;

Figure 92: Fractional error for Spring SO4


Figure 93: Mean bias for Summer SO4

O4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


CIRCLE=CSN; TRIANGLE=IMPROVE; SQUARE=CASTNET;

Figure 94: Mean error for Summer SO4


Figure 95: Fractional bias for Summer SO4

SO4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 96: Fractional error for Summer SO4

SO4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 97: Mean bias for Fall SO4

SO4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 98: Mean error for Fall SO4

SO4 FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


CIRCLE=CSN; TRIANGLE=IMPROVE; SQUARE=CASTNET;

Figure 99: Fractional bias for Fall SO 4

SO4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


CIRCLE=CSN; TRIANGLE=IMPROVE; SQUARE=CASTNET;

Figure 100: Fractional error for Fall SO4


Figure 101: Mean bias for Winter NH4


Figure 102: Mean error for Winter NH4

NH4 FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


Figure 103: Fractional bias for Winter NH4

NH4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


Figure 104: Fractional error for Winter NH4

JH4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 105: Mean bias for Spring NH4


Figure 106: Mean error for Spring NH4

NH4 FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 107: Fractional bias for Spring NH4

NH4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 108: Fractional error for Spring NH4

H4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 109: Mean bias for Summer NH4

H4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 110: Mean error for Summer NH4


Figure 111: Fractional bias for Summer NH4

NH4 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 112: Fractional error for Summer NH4

NH4 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 113: Mean bias for Fall NH4

NH4 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 114: Mean error for Fall NH4


Figure 115: Fractional bias for Fall NH4


Figure 116: Fractional error for Fall NH4

JO3 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


Figure 117: Mean bias for Winter NO3


Figure 118: Mean error for Winter NO3

NO3 FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


Figure 119: Fractional bias for Winter NO3

NO3 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Winter [No Cutoff]


Figure 120: Fractional error for Winter NO3

JO3 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 121: Mean bias for Spring NO3

JO3 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 122: Mean error for Spring NO3

NO3 FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 123: Fractional bias for Spring NO3

NO3 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 124: Fractional error for Spring NO3


Figure 125: Mean bias for Summer NO3


Figure 126: Mean error for Summer NO3


Figure 127: Fractional bias for Summer NO3

NO3 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 128: Fractional error for Summer NO3

NO3 MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 129: Mean bias for Fall NO3

NO3 ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 130: Mean error for Fall NO3


Figure 131: Fractional bias for Fall NO3

NO3 FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 132: Fractional error for Fall NO3


Figure 133: Mean bias for Winter OC


Figure 134: Mean error for Winter OC


Figure 135: Fractional bias for Winter OC


Figure 136: Fractional error for Winter OC

OC MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 137: Mean bias for Spring OC

OC ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 138: Mean error for Spring OC


Figure 139: Fractional bias for Spring OC


Figure 140: Fractional error for Spring OC

IC MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 141: Mean bias for Summer OC

IC ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 142: Mean error for Summer OC

OC FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 143: Fractional bias for Summer OC

OC FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 144: Fractional error for Summer OC


Figure 145: Mean bias for Fall OC


Figure 146: Mean error for Fall OC

OC FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 147: Fractional bias for Fall OC

OC FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 148: Fractional error for Fall OC


Figure 149: Mean bias for Winter EC


Figure 150: Mean error for Winter EC


Figure 151: Fractional bias for Winter EC


Figure 152: Fractional error for Winter EC


Figure 153: Mean bias for Spring EC


Figure 154: Mean error for Spring EC

## EC FB (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]



Figure 155: Fractional bias for Spring EC

EC FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Spring [No Cutoff]


Figure 156: Fractional error for Spring EC
:C MB (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 157: Mean bias for Summer EC
:C ME (ug/m3) for run2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 158: Mean error for Summer EC


Figure 159: Fractional bias for Summer EC

EC FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Summer [No Cutoff]


Figure 160: Fractional error for Summer EC


Figure 161: Mean bias for Fall EC


Figure 162: Mean error for Fall EC


Figure 163: Fractional bias for Fall EC

EC FE (\%) for run 2007ee_07f_cmaq501_V5g_4CALNEX1 for Fall [No Cutoff]


Figure 164: Fractional error for Fall EC


Figure 165: Mean bias for Summer 8hr Max Ozone


Figure 166: Mean error for Summer 8hr Max Ozone


Figure 167: Fractional bias for Summer 8hr Max Ozone


Figure 168: Fractional error for Summer 8hr Max Ozone

