	Court Reporting Video 5-Litigation Technology Breckennidge, CO 80:42:4 www.adviegalt.ech.com	U.S. ENVIRONMENTAL PROTECTION AGE 10TH CONFERENCE OF AIR QUALITY MO	NCY DELS
	Court Reporting. Video & Litigation Technology Pittsburgh. PA www.adviegattr.ch.com	DAY THREE U.S. ENVIRONMENTAL PROTECTION AGE	NCY
5		109 W. ALEXANDER DRIVE	
CREPORTIN Litigation Technolog	The Reporters Group Stephenson, VA 226566 www.reportersgroup.com	RESEARCH TRIANGLE PARK, NORTH CARO MARCH 15, 2012	LINA
COURT	Maryland Court Reporting 5 Video Services U.C Baltimore, M.D. 2018 www.marylandreporting.com	8:30 A.M.	
	Courty Court Reporters. Inc. Stephenson VA 22656 www.county.court reporters.com		

\sim
2

1	CHEST SPEAKERS.
±	
2	Mark Bennett, CH2M HILL
3	Andy Berger, Tri-State Generation and Transmission
4	George Bridgers, US EPA - OAQPS
5	Pietro Catizone, TRC Environmental Corp.
6	Tony Colombari, Trinity Consultants
7	Allen Dittenhoefer, Environplan Consulting
8	Nicole Downey
9	Tyler Fox, US EPA - OAQPS
10	Ryan Gesser, Georgia-Pacific, LLC
11	Steve Gossett, Eastman Chemical Co.
12	Sergio Guerra, Wenck Associates
13	Steven Hanna, Hanna Consultants
14	Qiguo Jing, Trinity Consultants
15	Ashley Jones, Trinity Consultants
16	Eladio Knipping, Electrical Power Research Institute
17	Cindy Langworthy, Hunton & Williams, LLP
18	Mike Lebeis, DTE Energy
19	David Long, American Electric Power
20	Stephen Mueller, Tennessee Valley Authority
21	Robert (Bob) Paine, AECOM
22	George Schewe, Trinity Consultants
23	Lloyd Schulman, Exponent
24	Joe Scire, Exponent
25	Justin Walters, Southern Company

1	GUEST SPEAKERS:
2	Richard (Chet) Wayland, US EPA - OAQPS
3	Dana Wood, BP America Production Co.
4	Anand Yegnan, ERM
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	U.S. ENVIRONMENTAL PROTECTION AGENCY
2	10TH CONFERENCE OF AIR QUALITY MODELS
3	MARCH 15, 2012
4	MR. GEORGE BRIDGERS: Well, welcome
5	back, everybody. Hopefully everybody got a little bit
6	of rest. I know I did last night. I think the amount
7	of rest that I got last night was let's see, the
8	magnitude of rest was the same level of decrease in
9	the, or the increase in stringency of the NO2
10	standards, so tenfold increase of sleep, so it was
11	great. Today is we're going to change gears a
12	little bit. Today is where we get to listen to
13	everyone that has requested to come and speak. This is
14	a public presentation session. The format is a little
15	bit different because we will not offer or entertain
16	questions and answers so, hopefully, we can make it
17	through the thirtyish presentations somewhat on time.
18	We will have, I don't want to call it open-mic but we
19	will have, after all of the presented presentation
20	or the requested presentations, we will have time for
21	others in the audience that, if they have prepared
22	comments, they can come up to the microphone and offer
23	those. But I also interject that at any point that,
24	you know, comments can be submitted to the docket.
25	They don't actually have to be verbally read today.

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 4

1	Just to go through a little bit of
2	logistics. I did this yesterday morning without the
3	aid of the slide. I will do it this morning because we
4	have a few new people in here today. Just a reminder
5	that this is a public hearing, as I said. Everything
6	that's presented and said is part of the official
7	docket. Things are transcribed so be careful what you
8	say if you don't want it repeated years from now. We
9	also ask that as you come to the microphone, when
10	you're offering your public comment or during the
11	presentations, the presenters to announce themselves.
12	So, for the record, this is George Bridgers from the
13	U.S. EPA.
14	We're scheduled we're packed today.
15	We've had a couple of changes in the schedule that
16	we'll work with as we go along because of some
17	someone could not attend today because of a family
18	emergency, but they will be submitting their comments
19	to the docket. Let's see, I've already said there's no
20	Q&A and the other thing, this was mentioned yesterday
21	during the afternoon sessions, that we will be
22	extending the public comment period for the Conference

23 through April 30th. We won't do that through a Federal 24 Register printing. What we'll do is we will have a

25 memo that's signed and then add it to the docket. So

LOTH	CONFERENCE	OF	AIR	OUALITY	MODELS	03/15	/2012	CCR#16766-3
------	------------	----	-----	---------	--------	-------	-------	-------------

that's how it becomes official, but I also encourage 1 everyone that after the Conference that just because 2 3 April 30th has come and passed doesn't mean that we 4 can't continue to engage. I mean, that's part of what we're trying to do moving forward is to have this 5 6 collaborative effort as a community as we look for -7 forward to the different developments and changes that 8 may need to happen between now and the 11th Conference which, if everything goes beautifully, would be - what, 9 in October, 2014. And that's all I have to say there. 10 11 Let me back up a little bit because I think Chet wanted 12 to come say a few comments and then after that, we'll 13 launch right into the public presentations.

14 MR. CHET WAYLAND: Great. Thank you, 15 Unfortunately, this afternoon, I have to run George. 16 out for some other meetings and so I won't be here when 17 things wrap up at closing, so I wanted to take this 18 opportunity in the morning to thank everybody again for 19 coming. I've been able to sit in for most of the last 20 two days and I'm going to sit in for as much of today 21 as I can, and it's really been phenomenal to hear all of the issues that have been raised, the comments that 22 have come in, suggestions, presentations. 23 It's been 24 great, and I really appreciate everybody taking the 25 I heard a couple of things yesterday time to come.

porate o

that I just wanted to kind of, you know, elaborate on 1 2 and that's, you know, people are all coming up with 3 specific issues they'd like us to address. I think 4 Tyler was correct in saying we do have limited 5 resources and, you know, we have limited budgets and 6 different things like that, but if the community as a 7 whole through their comment process that comes in from 8 this conference can help us to prioritize which items are the ones that are the most important to you, then I 9 promise you we will take that prioritization and work 10 on it in that order. So, if folks can kind of, you 11 12 know, somehow gather around and try to come look at it 13 like this is the most important issue and this is second and this is third, then that will help us a lot 14 15 to say, okay, this is where we do need to put our 16 resources here at EPA and work on those specific 17 issues. And we're happy to do that and I promise you we will do that, if we can get some kind of a semi-18 consensus of, you know, what are the highest priority 19 20 issues to be looking at. 21 The other thing is the field study issue I think that's a great idea. 22 that came up. 23 Unfortunately, EPA does not have a lot of resources to 24 go ahead and do big field studies like we maybe had 25 ten, twenty years ago, but if there are others who want

to pull together and do field studies and work with us 1 2 or work together, I think that's great. The more data 3 you have, the better tools that we will always have. 4 So, I would encourage folks that are interested in that 5 to maybe collaborate with each other and, you know, 6 come up with some proposals and some ideas and some 7 protocols, and I think we'd be very supportive of 8 additional field studies for any of these tools. 9 So, and just to reiterate, I know some 10 folks made notice yesterday but for a little while in 11 the afternoon, Janet McCabe, our Deputy Assistant 12 Administrator for OAR, joined us. She was here for several other meetings and an SAB Panel in the morning 13 here and she just wanted to slide in. She had seen the 14 15 agenda and was very interested, and she stayed for 16 about a half hour or so and heard a lot of the Q&A on 17 NO2 and SO2 and then had some several -- several meetings with her afterwards. She's very interested in 18 19 this. She wanted me to let everybody know that she and 20 Gina McCarthy, our AA for OAR, are both very interested and aware of the NO2 and the SO2 and the PM2.5 issues. 21 They were thrilled that we were having this and that 22 23 this many people were coming. She got a lot out of the 24 short amount of time she was here yesterday, and I just

25 wanted to let folks know that she is generally watching

this and making sure that we are addressing these 1 issues that you guys are raising. So, with that, I 2 3 hope you guys have a good day today. I'm looking 4 forward to the, you know, presentations and again, 5 thank you all very much for coming. If today is like 6 the last two days, it's going to be great, and I really 7 appreciate all of your attendance. So, thank you. 8 MR. GEORGE BRIDGERS: Thank you, Chet. Well, we are going to actually transition right into 9 10 the public presentations so we can, hopefully, get a little bit ahead of schedule. So, the first handful of 11 12 sessions are from the AWMA AB-3 Committee. 13 MR. PIETRO CATIZONE: Good morning. Home stretch is here, I guess. I'm Pete Catizone. I'm 14 15 the Vice Chair of the Air Waste Management AB-3 16 Meteorology Committee and first of all, I'd like to 17 thank EPA for inviting AB-3 to be part of the 10th Modeling Conference and also inviting us to be part of 18 19 the Attendee committee that has been conferenced in the

20 last couple of months, to put together and help out 21 with the agenda. We're happy to do that. As you might 22 have seen from the references to AB-3 in the last 23 couple of days, AB-3 has been involved all along. I 24 know that we've been in most of the EPA conferences, 25 but we've also had specialty conferences, which I'll

talk about a little bit, typically the year after the 1 Modeling Conference to further focus and iron out some 2 3 of the modeling issues that face the group in the 4 industry. The AB-3 Technical Coordinating Committee is 5 part of the Tech Council of AWMA and we are very 6 active. We have more than 200 members currently in our 7 To be on the committee is not that committee. 8 difficult. You just need to attend one of the meetings or ask to be part of the meeting and/or be a member of 9 We have a wide, broad representation on our 10 the AWMA. 11 committee. We have government folks that participate, 12 industry folks and, of course, consultants are always 13 there.

14 The basic objectives of AB-3 is actually 15 We want to promote the best science we very simple. 16 possibly can and apply it as best as we can to the 17 issues and concerns that face us all. So, to that extent, we try to provide technical support in peer-18 19 review of papers for our annual meetings. We 20 participate in and support specialty conferences and 21 workshops, contribute to technical programs whenever we are asked to or can, and provide comments on regulatory 22 23 and relevant technical issues as we doing here today. 24 For this particular event, we assembled 25 a group of AB-3 members. They're all listed here.

Just for the record, the current Chair of AB-3 is Mark 1 I'm the Vice Chair and David Long is the 2 Bennett. 3 Secretary. I believe every one of those folks listed 4 here are here today and have provided in some way comments to this 10th Modeling Conference. 5 I'd like to 6 thank them for their time and effort to put in the 7 comments that we have already presented and the ones 8 we're going to present here today. It's purely a voluntary organization, so any time effort that's spent 9 is truly out of our own time. 10

11 We got involved talking about the 10th 12 Modeling Conference actually about a year ago and that resulted in meetings internally with AB-3 and then, 13 subsequently, we had a meeting with EPA staff OAQPS --14 a conference call on August 4, 2011. At that time we, 15 16 I think, discussed approximately fourteen or fifteen 17 different topics and issues that the membership was interested in either addressing or participating in 18 discussions with at the Modeling Conference. At that 19 20 time, we all thought the Modeling Conference would be 21 in October. We actually were able to put more information and provide better comments, I think, due 22 to the fact that it was delayed but, nonetheless, out 23 24 of those comments, about five different topics and I 25 believe seven or eight specific presentations came out.

A couple of those topics were asked by George to be 1 brought into the main agenda of the 10th Modeling 2 3 Conference, and those have been presented already. Ron 4 Peterson presented on Tuesday on the use of equivalent building dimensions in AERMOD, and Gail talked a little 5 bit about the system availability -- the modeling --6 7 the CALPUFF modeling system and the availability of 8 such also on Tuesday. Today nearly following my introduc -- my introduction is going to have Joe Scire 9 10 and Lloyd Schulman. Joe's going to have actually two 11 presentations, first on new developments and 12 evaluations of the CALPUFF model, basically folks in 13 the Inversion 6.4 work that he's done, and then also an assessment of EPA ETEX evaluation study. Lloyd is 14 15 going to further discuss the issues related to the 16 building downwash modeling with AERMOD. Later on 17 today, George Schewe is going to also have a presentation on AERMET versus AERMINUTE issues that 18 he's been working on. 19 20 There are other topics of interest. As 21 I said, in August we had talked about fourteen 22 different areas we were interested in, and some of

23 those have -- are still on our radar screen. Some of

these are leftovers from the last conference, so you

25 might have seen some of these comments and

24

1

2

3

4

recommendations before, but to the extent that they're still of interest to the membership, we thought we'd repeat them here. There are three listed here and I'll go through each one on subsequent slides. The last one

5 here relates to long-range transport database that we 6 know has been available but other than I believe Joe, 7 who got it through a FOIA request, we have not seen it. 8 I think the community would like to know whether that 9 information or database is available and, if so, how do 10 we go about getting it.

11 Regarding the Model Clearinghouse, we 12 are very happy that George has been brought on to address and manage the Clearinghouse, and we look 13 forward to that, but traditionally the concerns of the 14 15 AB-3 committee members has been that the Clearinghouse 16 process does not allow for technical input by the 17 affected parties, the applicants and the general. 18 Therefore, we believe that permitting authority just 19 states their opinion and ask for Clearinghouse approval without much involvement from the applicants. AB-3 20 would recommend that the affected parties be able to 21 provide comment along with the permitting authority's 22 23 correspondence to the Clearinghouse. I think that 24 getting involved would result maybe in a quicker and 25 faster resolution of the issues and, hopefully, the

1 resolution would have a common consensus on what the 2 result is as opposed to just having handed down a 3 requirement or a mandatory resolution.

4 Regarding the status of the modeling 5 guidance, we know that issuance of modeling guidances 6 have been lengthy at times and a lack of final guidance 7 sometimes for the user committee can result in the 8 viability of projects and the projects' schedules can be affected. Specifically, we're talking about SO2, 9 the draft guidance that was out since September 22, 10 2011. However, the final guidance we haven't seen and 11 12 we heard yesterday I believe that we don't have a 13 specific date for that to be issued. Also, the 14 secondary PM2.5 guidance that has been promised several 15 times and expected to be out as of this conference, we 16 have not seen yet. We are very interested in seeing 17 that. AB-3 believes that a collaborative effort might help in expediting the process of some of these issues, 18 19 and we just want to know how can we help? How can we 20 get involved to help EPA recognize the limited 21 resources you do have, to not only set the priorities 22 as Chet said, but also provide support and technical 23 input whenever we can. 24 Finally, I'd like to announce as Tyler

25 mentioned the other day that, in fact, AB-3 has been

1	
1	asked and is considering and planning the 5th Modeling
2	Conference. We are we actually discussed this last
3	night at our meeting. We are planning to have it late
4	this year, early next year as Tyler suggested. It's
5	likely to be more the beginning of next year than late
6	this year due to the schedule that we already have. As
7	the last one, I think to accommodate and encourage the
8	participation of EPA staff, we'll likely have it here
9	in Raleigh. If there's a particular venue that seems
10	appropriate, let us know. Otherwise, we'll find one or
11	maybe the same as we had last time, and for information
12	on that and for a call for papers for that, you can
13	stay tuned to wma.org. Thank you.
14	MR. LLOYD SCHULMAN: Good morning. My
15	name is Lloyd Schulman with Exponent in Natick,
16	Massachusetts. Today I'm going to be sending some
17	comments on building downwash and AERMOD. I'd like to
18	acknowledge my co-author with these comments, Joseph
19	Scire. The outline of the comments is going to be
20	
0.1	talking about the recent change. I guess a year ago
21	talking about the recent change. I guess a year ago Version 11059 to AERMOD, which we found is leading to
21	talking about the recent change. I guess a year ago Version 11059 to AERMOD, which we found is leading to significant but unverified increases in predicting
21 22 23	talking about the recent change. I guess a year ago Version 11059 to AERMOD, which we found is leading to significant but unverified increases in predicting concentrations for, mostly for wide buildings, but also
21 22 23 24	talking about the recent change. I guess a year ago Version 11059 to AERMOD, which we found is leading to significant but unverified increases in predicting concentrations for, mostly for wide buildings, but also we want to talk about, even without this code change,

over-predictions for very wide buildings and I'm going
 to present some slides about that also.

3 I won't dwell on the GEP stack height. 4 I think we all know this guite well. The only point I 5 wanted to bring out was that people talk about the 40 6 percent increase for excessive concentrations but that 7 has to be paired with contribution or causing a 8 violation of the standards, so you have to avoid that. That's the definition of excessive concentration. 9 The 10 change that was put forth about a year ago with Model 11 Change Bulletin Number 4, basically what it does -- you 12 don't have to read all the italics -- basically what it does is it says that you have to model downwash now for 13 all stack heights, whether they're below or above the 14 15 GEP formula height, and the previous policy was to only 16 model downwash effects for stacks that were less than 17 the GEP formula height. Now we heard on Tuesday that the change was made to eliminate discontinuities for 18 19 stacks that were straddling the formula height and that 20 the change will be justified by a pending clarification 21 memorandum. But as far as I know, we haven't seen any consequence analyses. There hasn't been any public 22 23 comment or review and we feel that this is a very 24 significant change to the model that should warrant 25 more than a clarification memorandum in our Model

Change Bulletin. Now, I quess I'll 1 2 start off by saying, yes, there is downwash at formula 3 height. I think that's well known. It's part of the 4 definition of excessive concentrations, but that's not really the key question. The key question is does 5 6 PRIME model it correctly for stacks above formula 7 height, and we think that it doesn't for many cases, 8 and I'll be talking about that today. The PRIME algorithm was developed mostly for buildings that width 9 to height ratios that were quite small. I'm going to 10 list on the next slide of what those were, but they 11 12 were all less than 4.4 and it was sub-GEP stacks. Now we're applying the model to stacks and building shapes 13 that are outside of that range. There was already a 14 15 problem that everyone's been well aware of for very 16 wide buildings because of the unrealistically long 17 projective lengths for BPIPPRM. Roger talked about that on Tuesday and proposed an effective length remedy 18 19 that looks like it's a step in the right direction. 20 We're very encouraged by that, but we know it needs 21 further testing and confirmation. But this change now in the allowing downwash for all buildings, including 22 these wide buildings, is only going to exacerbate that 23 problem, and I'll demonstrate that with some case 24 25 studies.

Γ

1	This is the width to height ratio for
2	the evaluation databases. The one that we relied on
З	most in developing PRIME was Bowline Point. We had
4	half the data for independent - for developmental data
5	for evaluating the model and half the data was for
6	independent evaluation. We also relied quite heavily
7	on the Snyder's wind tunnel data and Alaska north
8	slopes. So, most of the data that we used to develop
9	the model are for buildings that were not very wide at
10	all, and we got quite good agreement at least for the
11	sub-G, the stack heights with the data sets.
12	So, what I'm going to do now is talk
13	about a case analysis that's based on an actual source.
14	The numbers are roughly about what they are for that
15	source. It's a buoyant source. It's a very low
16	building. It's twenty meters high, 220 meters wide.
17	So, the width to height ratio is about eleven. The
18	existing stack height is above the formula the
19	formula height, of course, would be two and a half
20	times the twenty which would be fifty meters would be
21	the formula height for this structure. It's a little
22	bit higher than that but because it's below the sixty-
23	five meters, they get credit for that stack height and
24	have to model it now with downwash, whereas before
25	there was no downwash model with that stack height.

And what I'm going to do is vary the -- both the stack 1 2 heights for that structure between something sub-GEP 3 and up to a number that's sixty-five meters, which 4 would be three and a quarter times the stack height, 5 and vary the width as well from a very narrow building, 6 which is half the height to one that's twenty times the 7 height. And we did a one-year simulation, calculated 8 the maximum concentrations without the buildings and with the buildings and those are the results I'm going 9 10 to present in the next couple of slides.

11 This slide's a little busy but I'll try 12 and explain it. The -- on the vertical axis is the 13 concentration. The ratio -- concentration that the building -- with the building and to without the 14 15 building and on the horizontal axis is the ratio of 16 stack height to the building height. So, the excessive 17 concentration threshold which is 40 percent is right here going across because this is the concentration 18 19 ratio is the 40 percent, and the vertical dashed line 20 is the formula height for this structure, which is two 21 and a half times the building height. So, everything to the right of this vertical line with -- previous to 22 the change would not have been modeled with downwash, 23 24 and everything to the left of the line would have been 25 modeled with downwash. So in the first slide, I'm

1 showing just the narrow structures which are kind of in 2 the range of what we tested PRIME for and you can see, 3 for example, that I'll look at the width to height 4 ratio of three and at two and a half times the building 5 height, you're looking at about a 25 percent increase 6 with the building as opposed to without the building. 7 And for the other stacks, the other buildings like the 8 cube and the one that's half, which are narrower, as 9 you expect, you get even lesser effects and they are 10 all below the 40 percent.

11 I also wanted to mention this line. 12 This line comes from the EPA's guideline on GEP --13 GEP's guidance for the termination of GEP stack height. It was put out in 1985 by Bill Snyder. Alan Huber was 14 15 probably involved in it as well, and this is based on 16 work done by Rex Britter, Hunt and Puttock on a symposium paper they presented in 1976. It shows what 17 they call the theoretical estimate of the maximum 18 19 increase that you'd expect for any -- any building 20 width to height ratio, and it's developed for a very 21 long building. In fact, I believe it was a twodimensional obstacle that they used to develop their 22 23 mathematical estimates of what that would be, and you 24 can see that all the numbers are below that line. Now 25 when we jump to the wider structures that go from four

to six to eight up to the twenty and look at the 1 variation with building width and with stack height, 2 3 you can see that except for the width to height ratio 4 of four, almost all of them are -- again, I want to 5 point out this dashed line is the Britter line which is 6 supposed to be the theoretic less than the maximum 7 increase. Almost all of the points are well above that 8 and we're getting values for the very widest structures that are eleven and twelve times higher than what would 9 10 have been gotten without a building. And again, all 11 these points over here on the right side of this 12 vertical dashed line are points that previous to the 13 change in the model would not have been modeled. They would have been down here at one because you wouldn't 14 15 have modeled downwash. So, with this change in the policy to avoid the discontinuity, you've introduced or 16 17 exacerbated a problem that we knew about and made it a lot worse for a lot of sources. 18

So, just to go over this quickly, the EPA has done research on building width to height ratios. In the guideline for the determination of GEP stack height, it does say that the maximum ground level concentrations should not be increased by more than 40 to 8 percent for a stack that's at formula height. You see that that's not met with the previous work and the 1 theoretical estimate of Britter, if you looked at the 2 lines and tried to figure out what it was, it's about 3 85 percent increase at two and a half building heights 4 which is formula height and about a 50 percent increase 5 at three times the building height per stack, about 6 three times the building height.

7 The research by Alan Huber's paper from 8 1989 was also discussed on Tuesday and it was used to evaluate this effective length parameter and it does 9 offer a good dataset, but the summary of that paper at 10 11 the end said that as the width to height ratio 12 increased from above the two from four to eight, the maximum ground level concentration was downwind 13 decreased at all distances, and that when you started 14 15 to get width to height ratios greater than eight, it 16 had little effect. And this -- this kind of makes 17 sense because if you look at a building that's say a cube and you put it at a forty-five degree angle to the 18 19 wind, you're going to get like a wedge shape that's 20 going to create a Delta wind effect and you're going to 21 get these strong vortices coming off the leading edge and around the ends that are going to be a very strong 22 23 downdraft that streamlines, and you're going to bring 24 strong downwash to that problem. When you start to get 25 a very wide building and put it at an angle, you're

going to lose that Delta wind effect and I think this 1 2 is what this study is showing, and the air around the 3 sides of the wide building never make it into the 4 middle anyway if your stack is in the middle. If your 5 stack is in the corner, it's a little bit of a 6 different issue, but that's why we need more research. 7 This is a -- now I want to try and 8 explain why we're getting these problems like -- Roger touched on it a little bit. It's the affected - it's 9 10 the projected length issue, but this kind of illustrates the problem. This is the actual structure, 11 12 and it's a long building. It's ten times wider than it 13 is high. Stack is two and a half times the building 14 height, but when you have a wind at a forty-five degree 15 angle to that structure, this becomes the projected 16 length from BPIPPRM, and now your stack, which is on 17 the upwind edge of the real building, is in the middle of the new projected building that goes into PRIME and 18 19 the cavity which would have started somewhere over here 20 is now starting way down here. So, everything is 21 skewed away from what it really is and it creates problems with predictions from PRIME. What I did was 22 23 take the worst hour for the width to height ratio 24 building of ten. I looked at 1-hour, just to see what

was going on and what I did is I varied the length of

25

1	the of the building. I started to bring it in from
2	the downwind edge forward, and if you look at the
З	this high number, this is the number that you would
4	have gotten with the projected length as presented by
5	BPIPPRIME, and you get a very high increase
6	concentration with the building over no building. So,
7	you're getting a very large increase with that
8	building. The reason is, is that as the plume has more
9	time to travel before it reaches the near wake, it's
10	spreading more in the vertical and more of that plume
11	is being captured in the cavity and giving a very high
12	concentration. As you start to shrink that length, it
13	drops very rapidly and it seems to be a switch point,
14	in this case where the length to height ratio is about
15	five and a half. There's a switch point and now the
16	maximum jumps to the far wake, and it's pretty flat
17	because most of the mass is in the elevated plume and
18	the far wake is further away. It's much further out
19	where the maximum is. It's a pretty flat curve. It
20	does drop off and now this length that I used here is
21	the length that would be comparable to what the long
22	wind fetch would be for that angle for that building,
23	and you're getting a much lower number with an increase
24	of about two. This is consistent with the kinds of
25	things that Roger was talking about with the effective

1 length, and it's an important thing to get the length
2 right in this model.

3 Also, I just wanted to go quickly 4 through some work that was done earlier for a Alcoa, Tennessee smelter where they had measured data for two 5 6 years. Most of the emissions were from point sources, 7 and the simulations were made with BLP AERMOD and 8 CALPUFF and measured at -- comparing it to monitor concentrations. This is an overview of the plant and 9 you can see its line sources. It's quite long. 10 Most aluminum reduction facilities have width to height 11 12 ratios of about twenty, and the results that we found 13 for the 1-hour, this is a quantile quantile plot, and the dashed line is the observations at that monitor. 14 15 BLP and CALPUFF did quite well. They over-predict by, 16 I don't know, about 50 percent maybe at the top end of 17 the distribution. AERMOD was over-predicting by about a factor of two at the top end, but maybe by a factor 18 19 of ten somewhere here at about the ninety to ninety-20 fifth percentile.

When you look at the annual numbers you see the same kind of behavior. AERMOD is about a factor of ten over what was observed for the annual numbers for the two years of the study. CALPUFF and BLP, which are using a different downwash model for

this, it's the BLP downwash, do quite well because they 1 don't have this effective length problem. 2 So, the 3 findings from that study for very wide buildings were 4 that when you look at very wide buildings, you're 5 getting numbers that really are comparable to what 6 we've seen with our case analyses. The fact is, we got 7 overpredictions of about ten to twelve, and in this 8 study that we're getting overpredictions of about the same amount. So, it's kind of a comparable result with 9 10 measured data that supports what we're seeing with our case study, and BLP and CALPUFF, the BLP algorithms did 11 12 quite well. So, our recommendation from this is that 13 EPA should allow the use of the alternative models and Section 3.2 petitions. 14

15 So, this brings up a couple of 16 questions. For example, if you -- if you did a fluid 17 modeling study and found the stack height that gave you that 40 percent increase, then you put it into AERMOD, 18 you had a fairly wide building, you could wind up with 19 20 an order of magnitude increase for that stack height. 21 Now what do you do? Do you model -- do you keep that stack height that you got from the wind tunnel and get 22 23 an order of magnitude increase or do you get a higher 24 credit and say, well, AERMOD says that the value is ten 25 times higher, so I'm going to be able to raise my stack

Γ

1	even more. And in the end, aren't we really trading
2	one discontinuity for another for these buildings?
З	So, the conclusions I have is that the -
4	- the change to the downwash procedures in AERMOD are
5	significant. We showed with the case study that there
6	was about a sevenfold increase for width to height
7	ratios of eight, and a twelvefold increase for even
8	higher, with the height ratios for stacks of formula
9	height. And these results are inconsistent and, in
10	fact, they are contrary to what we've seen from the
11	wind tunnel studies and theoretical estimates by
12	Britter for basically two-dimensional structures which
13	have a cap of about 85 percent at formula height.
14	There hasn't been any peer review or comment on this
15	change to the model and we think the clarification memo
16	really isn't sufficient and it should be studied
17	further before it's released. Our recommendation is
18	that we should remove this from the regulatory version
19	until it can be further studied because of the fact
20	that it's causing even greater problems with some of
21	these wider structures and also because we really
22	haven't even evaluated it for narrow structures the
23	stacks above formula height. And I think a suggestion
24	I would make would be that we should bundle with the
25	work that Roger's doing now with the effective building

length, since they're really intertwined. I mean, the 1 wide building problem is intertwined with the effective 2 3 length parameter that Roger's talking about versus the 4 projected length that's in the model now, and we feel 5 that the best course would be to correct the wide 6 building problem looking at something like the 7 effective length parameter and then with that 8 improvement, then go in and evaluate it for different stack heights and show that it works and release this 9 all as one package. We're not -- we're not against 10 11 modeling stacks above formula height with downwash 12 effects because they exist, but we want to get it 13 right. 14 MR. GEORGE BRIDGERS: Thanks, Lloyd. 15 Now we have a couple of presentations, again under the 16 auspice of the AB-3 Committee, from Joe Scire. 17 MR. JOE SCIRE: Okay, good morning. Ι have two talks. The first talk is about the -- it's an 18 19 assessment of the EPA evaluation study that was 20 recently -- recently released and, in particular, I'll 21 be focusing on the ETEX portion of that study. ETEX is the European tracer study and it covers the area shown 22 23 in this figure. It actually covers a very large domain 24 and it involved -- it was designed actually for

25 evaluating emergency response type models. So,

1 accidental releases are emergency responses. Ιn 2 particular, the concern was nuclear material released 3 from accidents from nuclear power plants. In this 4 particular experiment, ETEX-1, the tracer was released 5 for twelve hours, starting at about four p.m. local 6 time, and there were samples taken at 168 samplers all 7 over western and central Europe and -- most of these 8 samplers were well beyond 300 kilometers. In fact, 9 some of the samples were taken as far as 2,000 10 kilometers away. So, to put this in perspective, most 11 of the applications with CALPUFF are done for Class 1 12 type studies, and this -- within about 300 kilometers, 13 and this is a 300 kilometer box, just to give you a sense of what that -- that looks like. 14 This 15 application on the CALPUFF side is something that is well-beyond the kind of applications for which is 16 17 normally used. Five different models were evaluated 18 focusing on ETEX-1. There have been a number of papers 19 and presentations over several years on the results of 20 these evaluations presented by EPA or, more recently, 21 by Environ as well. The information that I received 22 and I'd analyzed was obtained through a Freedom of 23 Information Act request, which was made in October of 24 2010 and the data were received in August of 2011. The 25 study used the new EPA processor MMIF to drive CALPUFF

1 that used 36 kilometer MM5 data. These statistics we
2 heard about a little bit yesterday. There were two
3 that I'm focusing on, the figure in merit -- the figure
4 of merit in space and the rank statistic. I just
5 wanted to mention about the figure of merit in space,
6 it basically determines what's the overlap between a
7 predicted and an observation.

8 The results that were presented in the 9 EPA report or the Environ report, I wasn't sure what to 10 call it so I called it EPA Environ, they -- they were -11 - they looked pretty bad for CALPUFF. They had the 12 lowest figure of merit score and CAMx had the best. 13 The other models were somewhere in between. In terms of the rank, it looked pretty bad for CALPUFF again. 14 15 The rank was pretty low, less than -- one about .7 and, 16 again, CAMx came out in the top and the other models 17 were somewhere in between. So, I, once we had the data, we could then look at this and -- and really 18 19 figure out what was going on. 20 As people have mentioned a number of

times over the last few days, the details are important, so we finally had something we could work with. We had data and it is probably a year old now, so I don't know if it's exactly what was used in the final report or not, but all I can talk to is what we

1	received under the Freedom of Information Act request.
2	There were a veritable number of configurations for
З	each model. CAMx was run 20 different ways, and the
4	rank used was the highest of those 20 different runs.
5	The HYSPLIT was run nine different ways. Its rank was
6	assigned a value of 1.8. Although it had higher
7	performance in some other cases, that's not the one
8	that was presented in the summary slides. SCIPUFF, we
9	could only find one run and FLEXPART, and then CALPUFF
10	had about six runs. On CAMx, there were runs with the
11	Plume-in-grid and without it without it produced the
12	highest score and that's the one that was presented.
13	With the pick the scores were, in some cases,
14	substantially lower. HYSPLIT arranged from some pretty
15	low scores, one up to the highest score of any of the
16	models in those runs, which was 2.1.
17	Okay, so what did we do? Well, the
18	first thing we did is we ran CALPUFF the way EPA ran
19	it, tried to determine could we reproduce the results.
20	We couldn't exactly, but we felt it was close enough.
21	So, we think we understood what the model parameters
22	used were. So then what we did is we did some
23	sensitivity runs. Clearly, the problems I'll show you
24	is that CALPUFF had the model plume going off on the
25	left side of a diversion flow. And if you want a left

side of the branch, it went off to where the observed 1 2 plume didn't go. If you were in the center or the 3 right side, then the material went a different 4 direction. This was very important because by making 5 certain changes to the way PUFF's splitting was done 6 and also correcting some -- some areas in the input 7 files, we were able to get numbers that were 8 substantially better on this figure of merit score, and it's really almost a binary thing. Either you get it 9 10 going the right way or you miss it entirely. So, it 11 doesn't mean that you have to change a lot to change 12 the results substantially. 13 On the -- the rank, which is a weighting of four different parameters, we did some tests. 14 We 15 think this is the one that would most closely 16 correspond to the way we would run it in this 17 particular application, and we're -- in this case, the results again changed dramatically. Small change of 18 19 where the plumes go is at the beginning, other release 20 matters a lot. 21 We also ran the model in a CAMx type of way with an initial dilution associated like in a layer 22 23 in model, there would be a dilution over the 36 24

24 kilometer grid cell, and we find that if we add initial 25 dilution, we'd get numbers that were really quite high. I'm not saying that's the way we'd run the model, but it does help to explain to a certain extent why CAMx does fairly well because it's a highly diffusive model when you run it in a Eulerian model mode without the plumbing grid.

6 Okay, so how did we go about this? What 7 Well, in analyzing the winds, it's very happened? clear that ETEX-1 is very sensitive to exactly where 8 the puff goes at the very beginning. Small changes in 9 the trajectory will result in either a complete miss, 10 11 which is what happened in the EPA runs or not. So, 12 what you do and how you initiate the splitting is very 13 important. You really want to do a lot of horizontal splitting at the beginning and get lots of puffs. 14 Some 15 of the models do that effectively immediately like your 16 layering grid will immediately dilute the plumes over 17 thirty-six kilometers by thirty-six kilometers. So, it's less sensitive to the exact, maybe deficiencies in 18 the wind because you have a wider plume to start with. 19 20 Also, the performance measures are very 21 highly dependent on time and pure space statistics. So, the amount of overlap that you get matters a lot. 22 23 We also looked at MMIF versus CALMET. We found that we 24 had some better runs with CALMET, and I'll go into why 25 a little bit later in the talk, and then we looked at

1	the resolution. In fact, the meteorology at thirty-six
2	kilometers didn't pass the performance tests that were
3	done to evaluate its performance relative to the
4	guidelines. So, and I think that it is quite coarse,
5	especially when you're talking about the near-field,
6	and then we as I said, we'll go through some things
7	that I found that needed to be changed about the setup.
8	So, I have four runs the way it was run by EPA and
9	Environ. Well, the way it was run by EPA and then
10	analyzed by Environ. Then different runs looking at
11	thirty six kilometer MM5 data with enhanced splitting,
12	and then we also rated with twelve kilometer MM5 data
13	because we believed the the Met data is a
14	significant factor in the performance, at least for
15	CALPUFF, and then again with the enhanced splitting.
16	This is the result from the EPA runs. These are the
17	observations. You can kind of see the colored area
18	with this plume going all over this part of Europe.
19	CALPUFF went off into left field because it took the
20	branch and got caught in that, and the puffs did not
21	split property. The puffs basically went as a group
22	unsplit the wrong way. SCIPUFF had was fairly
23	diffusive and covered a large area, FLEXPART, HYSPLIT
24	and CAMx. If you you're up here and all your
25	observations are down here, your scores are basically

1 close to zero.

2 So, the first run we did was to fix 3 certain errors in the configuration, but random with 4 MM5 data, EPA's MM5 data, although running CALMET 5 rather than MIFF. And you can see what you -- what you 6 started to see is rather than this blob going up here, 7 this is the -- the original run at T plus thirty-six 8 hours and T plus sixty hours. This is the modified run at the same two times. You start to see this plume 9 10 extending in a proper direction over central Europe. 11 Second run, we optimized the splitting in the near-12 field and we got even better results here. So, the 13 original run and a revised run. In all of these 14 slides, the left-hand column is the original EPA run in 15 every slide and on the right-hand slide is the revised 16 Run number three we use here better MM5 data run. 17 twelve kilometers resolution. Then we start to get a really good pattern. It looks quite decent. Together 18 19 with splitting, we're getting something that performs 20 fairly well and then, finally, the last one is we, again, optimized the splitting in the near-field. 21 The 22 first twelve hours of release are actually critical in 23 this, and you see that the -- the paths are quite 24 different.

25

Okay, MM5, what are the problems with

Well, okay, thirty-six kilometers is a pretty 1 it? 2 coarse resolution. The dispersion models are not all 3 equally sensitive to it. If you have a Eulerian model 4 and you spread things out, it's less sensitive maybe to 5 certain areas in the -- in the model winds. It doesn't 6 mean you'll get a better result for regulatory purposes 7 but you're less likely to get a miss. The twelve 8 kilometer MM5 simulations had better resolution and they performed better. And when I say they performed 9 better, there were some data at the release site. 10 Α 11 sonic anemometer at eighteen meters, which is the blue 12 trace, a sonar with four level -- three levels up to 13 one hundred meters, and then the green line is the MM5 data. So, what this is showing is the wind direction 14 15 and this red line here is the twelve-hour release 16 period. So, this is a critical time period. This is 17 where the tracer was released and it was allowed to get 18 transported downwind. You can see that the MM5 winds 19 were off by about thirty degrees, and it can make a big 20 difference between missing and hitting that -- that branch point. And then -- then the wind speeds also 21 were off quite a bit. You're seeing the MM5 winds 22 23 being quite light relative to the sonic anemometer in 24 the sonar data. When we used the twelve kilometer MM5 25 data, the MM5 did better. It had a better match to the
1 winds measured at the release site.

Okay, Environ's report indicates that 2 3 they conclude in, I believe incorrectly, that the 4 meteorological errors that were noted in the evaluation 5 were not the primary cause of poor performance. Ιt 6 certainly was a big factor in the performance of 7 CALPUFF. In -- we also showed that with tests with the 8 better winds especially, but even with the old winds, when you correct certain errors and had proper puff 9 splitting, the results improve quite a bit. 10

11 I also will not have time to talk about 12 this today, but I think the performance measures that are being used are not really as -- are not as relevant 13 as they should be for regulatory modeling. I think 14 15 they overemphasize the peering in time and space and 16 they don't account for other factors which it can be sometimes even more important than that. But that will 17 be another talk at another time. 18

19 Okay. So, I mentioned errors. What 20 were the errors? Well, we looked at the files. There 21 were some datums that were incorrect. In some places, the data was specified as NWS-84. In other places, 22 23 WGS-84. The tracer released in the CALPUFF run was 24 over the wrong time period. It was over thirteen hours 25 rather than the correct twelve hours. So, and also the averaging periods when you had an absurd three-hour average concentration and the predicted three average concentration, they weren't the same three hours. They were misaligned by one hour. So, there was an overlap that they weren't strictly speaking correct.

6 The stack diameter in the CALPUFF one 7 was set at one meter but it actually is not. It's a 8 very small stack and that's a picture of the release. It's more like one inch. That isn't actually that big 9 of a deal in the results in that particular issue, but 10 one that is is the puff release rate. There's been 11 12 some discussion yesterday about slugs and why does it help and why does it perform well. If you use the 13 integrated puff model in CALPUFF and you only emit one 14 15 puff per hour, which is the way this was run, you take 16 a full time step worth of emissions, 3,600 seconds of 17 emissions and packed into a single unit, a single puff, and send it on its way. And in a case where you're 18 19 measuring overlap with observed plumes, that's not a 20 very good way to do it because by definition, you're 21 too much mass for a ride. Too early and you won't have the trailing mass coming out at the end. So, that's 22 23 responsible for some of the problems is that the 24 configuration it had, one puff released -- releasing 25 the mass rather than many puffs. And then there were

some other issues with documentation not being quite
 correct about whether trained adjustments were made or
 were not. They actually were made.

4 So, these things were all corrected plus 5 the other things and then we modeled the -- the results 6 with these new configurations. So, I wanted to mention 7 one other thing. There are some statements in the 8 Environ report about MMIF and CALMET and, basically, one of the presentations says that -- that, these are 9 taken directly from that. Concerns have been raised 10 11 regarding CALMET. There are many options so you can 12 get multiple answers. That's true. You can draw many 13 options. CALMET has been shown to degrade meteorological model performance. I'm not quite sure 14 15 what that means. We don't see that happening, and we 16 find that maybe there was some errors made in the 17 attempt to achieve a pass-through MM5 data into CALPUFF 18 through CALMET in the EPA runs. They -- EPA developed 19 this tool which, by the way, I think is a very good 20 development, especially for the fact that it is 21 interfaced to the graphical display tools. So, I have no real problems with MMIF, but I guess what I'm trying 22 to address is some of the comments related to CALMET. 23 24 They go on to say MMIF will bypass CALMET and its 25 problems. Well, I don't know. We got better results

1	with CALMET, and these problems if you feel don't exist
2	if you run CALMET properly. So, CALMET, if it's
3	properly configured in its pass-through mode, does not
4	change the MM5 winds at all. It passed through exactly
5	at the same point in space to the same point in space
6	in CALPUFF. I mentioned about the other day about
7	MMIF, MMIF always does spacial interpolation of the MM5
8	winds. MMIF by its design does not place the CALPUFF
9	and CALMET grid points at the same location as MM5.
10	It's displaced by half a cell. So, if you have NX Plan
11	Y MM5 grid points, MMIF will produce NX minus one by NX
12	NY minus one grid points for CALPUFF. As a result
13	of that, you always do interpolation, whereas if you do
14	a true passing with CALMET, putting the CALMET grid
15	points at the location of the MM5 cross - dark points
16	where the winds are defined, that doesn't occur.
17	CALMET will pass through MM5 data on MM5 grid points.
18	MMIF does not exactly. It does this interpolation.
19	Both programs will do vertical interpolation because
20	they the two models have different grids and that's
21	unavoidable. To make it clear, this is the
22	configuration to do a CALMET pass-through. These are
23	the settings that you have to place on CALMET to have
24	CALMET go through and just provide the MM5 data
25	unchanged. We did a couple tests. We took the ETEX

experiment, took a bunch of grid points. We ran it 1 2 through MMIF. We ran it through CALMET and we took 3 those grid points and compared the original MM5 wind 4 direction with the output coming from MMIF, and what 5 you see is pretty highly correlated but there are some 6 differences and some scatter, and it's because of the 7 horizontal interpolation that's being done. That is 8 not necessary to do that, but it is being done. In terms of CALMET, in true pass-through mode, they match 9 exactly. The same with wind direction. This is -- I'm 10 sorry, this is wind direction. This is wind speed. 11 12 Same thing. The interpolation causes some change in 13 terms of what CALPUFF sees coming out of MM5. Okay. So, to conclude, EPA and Environ 14 15 did this study. They focused on ETEX-1 and we focused 16 on ETEX-1 for our analysis. What we found was that the

17 relatively simple unqualified conclusions, CALPUFF is the worst, CAMx is the best, isn't supported by the 18 19 data. I think it's more -- a broader range and, of 20 course, you always have to run the models to try to 21 model the physics properly. There were some errors, there were some inappropriate model configuration 22 23 settings, and the data driving the model was really not 24 adequate by the EPA's own definition of the model stats 25 program. When we changed the configuration, it did

1	much better and then with the MM5 at twelve kilometers,
2	it also did even better.
3	What I would say is for a recommendation
4	is that this process and these comments are coming very
5	late in the process. A lot of this work was done over
6	three or four years, and it was due to the lack of
7	access to the data sets that we couldn't really comment
8	on it. We saw the plots and the figures, but you have
9	to go into the details to actually understand how the
10	models were run and offer it suggestions or
11	corrections. So, consistent with AB-3, what we're
12	recommending, or what I'm recommending here, is full
13	and timely access to all model evaluation data for the
14	entire modeling community. Now I have this data set
15	but others don't. I think everybody would benefit
16	having the ability really poke around to see how these
17	models were run and make suggestions. I also think
18	that the evaluation process would benefit by the
19	involvement of the model developers, at least to have a
20	level of fairness. I mean, one model's run twenty
21	times by a group that it does the evaluation, another
22	model is only run once. I think to be fair in the
23	evaluation process, our input can only help you do a
24	better study.
25	For future work, we're planning to look

2

3

4

5

at the other data sets. There's a lot of information in that report. It's a work over three or four years and it will take some time to analyze, but we'll report on those findings in future papers and conferences and also, I just want to mention about the evaluation

6 measures. I think this question was whether these are
7 the correct measures to use for this kind of problem.
8 That's the end. Thank you very much.

9 MR. JOE SCIRE: Okay, I'm back. This talk is concerning new developments and evaluation 10 studies that have been done with the CALPUFF model, and 11 12 I'm talking about Version 6.42b. This is the version that has been funded by a number of groups, actually, 13 going back to API funding, AER to do some initial work 14 15 with a version of this work that I did when I was at 16 TRC, Phase I, and now work continuing at my current 17 company which is Exponent Phase II. West Associates 18 funded the implementation. The electric part, Research 19 Instituting has funded some of the evaluation work. As 20 an overview, 6.42b, for we have to be careful, people refer to Version 6 as 6.4. The current version is 21 6.42b that reflects all of this work. It includes the 22 23 current version of the ISORROPIA aerosol scheme 2.1 24 similar to what's in the Eulerian models CAMx and CMAQ. 25 It includes EQuIS phase chemical conversion of SO2 in

Γ

1	rain droplets and then rain to sulfate, and this scheme
2	was adapted by AER, extracted from RAD and then put
З	into a version of CALPUFF. One of the new changes with
4	this new Version 6.42b is that it couples the output of
5	MM5 WRF with liquid water content data to feed directly
6	into the EQuIS face chemistry. Previous versions just
7	used a constant assumed liquid water content. And then
8	there's some other enhancements as well. New RIVAD
9	scheme, tracking ozone depletion of the plume, and then
10	as a secondary organic aerosol module that is based on
11	a CALTECH as OA routines that's in CMAQ. We evaluated
12	the new version of the model relative to an existing
13	dataset that's been used quite a bit and also a new
14	dataset, the Cumberland 1999 dataset, and then we did
15	some sensitivity into comparison tests between the
16	chemistry and CALPUFF with that in CMAQ 5.0. For the
17	SWWYTAF first dataset, this is a full simulation. 17
18	out of 700 17 17 out of 76 sources in
19	southwest Wyoming and surrounding areas with two
20	monitors in the area for air quality and a number of
21	monitors for acid deposition, sulfur and nitrogen
22	deposition. I can't talk about everything in 15
23	minutes, so I'm going to focus on the air quality data
24	and I'm also going to focus on nitrate in particular.
25	This is the modeling domain, the

Г

1	monitor's here in this area, complex train all over the
2	place, and a lot of the sources in this region but also
3	in Utah, Idaho and northern Colorado. We ran the model
4	different ways. Well, we ran the current chemistry,
5	the modified new chemistry with and without the ammonia
6	limiting method. We tried the new aerosol chemistry
7	and the old aerosol chemistry, background ammonia,
8	constant as maybe the land managers would request and
9	then seasonally varying, and then EQuIS faced chemistry
10	looking at the effect on concentrations of both the
11	the the wet removal brought by scavenger coefficient
12	(Inaudible) phase removal through the EQuIS faced
13	chemistry module. Liquid water content before, it was
14	just a constant for precipitating and non-precipitating
15	clouds. Now we're using full data from MM5 in this
16	case. She modeled both of those. We had seasonal
17	ammonia. Now these were based on new measurements for
18	a different year than the simulation year but these
19	were considered better data for ammonia because they're
20	actual measurements in that area. Doug Bloom gave a
21	paper on this. I think it was a year ago at an AWMA
22	Conference. Okay, to get to the bottom line here. We
23	have the results from CALPUFF - old chemistry, old
24	scavenging and any observation at this site of nitrate,
25	this is particulate nitrate, .1 observed and about .53.

Г

1	So, you'll probably hear or have heard about lots of
2	complaints about overprediction and, depending on how
3	you run CALPUFF, you certainly can get that, you know,
4	with the old chemistry. If you run the model, this
5	line, as most class-run analyses would have to be run,
6	you wouldn't use varying ammonia. You would use
7	constant ammonia, and the results are slightly worse by
8	doing that. Incrementally, we implemented each of the
9	changes and evaluated its effect separate from others.
10	When you put in, in this case ALM, which has been
11	around for ten years or so, the the concentrations
12	are better relative to the observations but still more
13	than effect at three over-predicting. When you use the
14	new ISORROPIA chemistry for nitrate formation, even
15	without ALM, you do much better. When you use the
16	ISORROPIA and use the EQuIS faced chemistry, you do a
17	little bit better. When you combine these effects and
18	use the MM5 liquid water content, then you're doing
19	fairly well here and then if you use ammonia limiting
20	with that, you're over here. Even with constant
21	ammonia, if you just focus on the chemistry with none
22	of the other improvements, you still you do much
23	better. So just the new chemistry alone without better
24	ammonia or any other improvement goes from from this
25	to this, much closer to the observations. Still

1	conservative but closer to the observations.
2	Similar result at a different site. The
3	same story. I won't repeat it. So, to summarize,
4	CALPUFF using constant ammonia with the old chemistry
5	is over-predicting quite a bit. This is one of the
6	concerns of the electric power industry in particular
7	related to best available record for technology
8	demonstrations that are due soon. This is really the
9	reason why there's been a request to review and approve
10	at least on a case-by-case basis the new chemistry for
11	these types of applications. The ISORROPIA 2.1
12	improves things substantially. Use of seasonally
13	varying ammonia also improves performance. The reason
14	is ammonia tends to be highest in the summer and lowest
15	in the winter, and the wintertime is when a lot of
16	nitrate forms because it likes to form at low
17	temperatures. So, the variability is quite important
18	in terms of ammonia. EQuIS faced chemistry, the land
19	managers have expressed a lot of interest in this
20	because they've always wanted to have an EQuIS faced
21	chemistry capability for these classified assessments
22	and in this office now. ALM is less important for us
23	it appears, than for the MESOPUFF scheme. The degree
24	of overprediction with ISORROPIA is less than MESOPUFF
25	scheme. That's fine. That might be the reason why.

Г

1	The second study we did was with the
2	Cumberland field study. The aircraft flying through a
3	plume, this has been described earlier in the meeting,
4	and I'm not going to get into talking about the data so
5	much. What we did is we extracted what we could
6	from the dataset. There are some significant
7	limitations to the data, but I'll summarize it here.
8	If you look at say the this gray area, this is the
9	amount of NOx that's been converted to nitric acid plus
10	nitrate, and you see with MCHEM=6, which is a new
11	chemistry, the performance is better than with the old
12	chemistry where it's not matching the observations so
13	well, especially at greater distances.
13 14	well, especially at greater distances. This is another day in the study,
13 14 15	well, especially at greater distances. This is another day in the study, similar sort of result here. The new chemistry does
13 14 15 16	<pre>well, especially at greater distances.</pre>
13 14 15 16 17	<pre>well, especially at greater distances.</pre>
13 14 15 16 17 18	<pre>well, especially at greater distances.</pre>
13 14 15 16 17 18 19	<pre>well, especially at greater distances.</pre>
13 14 15 16 17 18 19 20	<pre>well, especially at greater distances.</pre>
13 14 15 16 17 18 19 20 21	<pre>well, especially at greater distances.</pre>
13 14 15 16 17 18 19 20 21 22	<pre>well, especially at greater distances.</pre>
 13 14 15 16 17 18 19 20 21 22 23 	<pre>well, especially at greater distances.</pre>

25 3.4 percent. The new chemistry is a little bit on the

1 -- a little bit less than that. The old chemistry in 2 MESOPUFF is over the upper limit and the MESOPUFF 3 chemistry is actually under the limit as well, but less 4 close to the computed value. We found that we couldn't 5 really use them to predict the observed nitrate in this 6 case. There was some measuring problems and that's 7 discussed in some of the documents.

8 The final thing I would like to mention 9 in the last four minutes is to talk about some 10 sensitivity tests. The question is we have a couple of 11 evaluations. CMAQ is a well-established model used 12 widely. How well does the new chemistry compute the 13 CMAQ when the inputs provided are the same in terms of 14 the concentrations? There were some differences in 15 ISORROPIA in CMAQ versus that which is in CALPUFF. There were some bug fixes in the CMAQ version. There's 16 17 -- there's expected to be a new version of ISORROPIA out soon by the model developers of that scheme --18 19 that's something that it would be maybe useful to 20 include in CALPUFF in the future as well. What we did 21 is we used the Monte Carlo driver to look at a whole 22 range of conditions. In fact, three million conditions 23 and predict the values out of the CALPUFF sub-routines 24 and the CMAQ's sub-routines, just to say these -- the 25 implementations of these schemes the same in the two

1	models and, in fact, it turns out they are. The ratio
2	of the predictions are less than .01 percent and 99
З	percent of the three million tests done over a large
4	range of temperature and other conditions. For CHEMEQ,
5	because the schemes are different, that's using a
6	different scheme, that doesn't show the same agreement
7	as you would expect it not to. Although 63 percent of
8	the simulations with the old chemistry in CALPUFF were
9	within .01 percent of the ISORROPIA and CMAQ. So, the
10	old chemistry wasn't that bad. There were maybe 35
11	percent of the time, it was it gave different
12	results. But a lot of times it gave similar results to
13	the new chemistry. This is a scatter plot of that
14	showing CMAQ result versus CALPUFF result, and there's
15	a little bit of scatter but pretty close to being a one
16	a one-to-one line. This the old chemistry. There
17	are huge numbers of points along this line. Hundreds
18	of thousands and millions. There's not too many points
19	elsewhere, but it just shows when the old chemistry is
20	wrong, it can be quite wrong. It can be predicting a
21	hundred percent nitrate and ISORROPIA or CMAQ's
22	predicting zero and vice versa. So, although they
23	it doesn't do poorly all the time, under some
24	conditions it does.
25	Okay, so to summarize CALPUFF Version

6.42 includes significant improvements in the 1 2 chemistry. The evaluation work shows that it does very 3 well for a full year dataset. In Wyoming, it 4 eliminates some of the issues related to large over-5 prediction of nitrate and in the Cumberland field 6 study, the -- the comparison looked favorable. Ιt 7 looked like it performed better under most conditions 8 than the alternatives and the old chemistry.

9 The conclusion from this is that the new chemistry just based on their origin and pedigree, in a 10 sense, well established algorithms. They're -- they're 11 12 the peer-reviewed literature. They're used widely by many different models, and they're almost universally 13 accepted as better science by the modeling community. 14 15 CALPUFF 6.42b is back-ably compatible with Version 5.8. 16 Again, it can be subject to confirmation and additional 17 If it's not, it can be made so, but every test tests. we've done it has been. And we recommend that it 18 19 should be adopted as replacement for Version 5.8 in that the use of the chemistry in BART applications is 20 something that should be at least considered and 21 allowed if appropriate as a non-guideline tool but one 22 that is ready for use today, and that's when these 23 types of applications have to be made. Okay, thank you 24 25 very much.

Г

1	MR. GEORGE BRIDGERS: Thank you, Joe.
2	That concludes the talks this morning that were
3	scheduled by the AWMA AB-3 Committee or at least their
4	sponsorship. In the 9:45 to 9:55 slot, unfortunately,
5	CV had a family medical emergency and couldn't be with
6	us today. He'll be submitting his comments to the
7	docket, as I had said earlier. So, if you want to call
8	it cap and trade or a little bartering, we're shifting
9	things around just a little bit. Andy Berger's way
10	down the list at 3:45 but we - we had some discussions
11	since you don't have a presentation, you just
12	okay, so he's just going to offer some some comments
13	and then we'll get back on track. So, let me just put
14	a stoic thing there.
15	MR. ANDY BERGER: Good morning
16	everybody. Thank you, George. My name's Andy Berger.
17	I'm employed by Tri-State Generation and Transmission
18	Association, an electric utility in Denver. CV sends
19	his regards. As George mentioned, he had a family
20	emergency and was not able to attend. My comments
21	being substantially similar to CV's, wanted to
22	consolidate those into one time slot. So, I'll be
23	actually offering comments on behalf of West Associates
24	in CV's place. The comments are what CV would say if
25	he was here. Some prepared comments about CALPUFF and

4 in speaker.

1

2

3

5 My comments are on behalf of West 6 Associates as Western Energy Supply and Transmission 7 Associates on the need to adopt specific enhancements 8 to the regulatory version of CALPUFF, as you heard Joe mention a minute ago. Some of us in the electric 9 utility industry have concerns about the application of 10 the model for BART determinations and reasonable 11 12 progress work under the Regional Haze Rule. You've heard some of the results of -- of previous evaluations 13 described earlier in this conference. West Associates 14 15 is an association of -- of investor-owned, publically-16 owned and cooperative electric utilities in the western 17 U.S. West Associates was heavily involved in studying visibility issues for several decades. For example, in 18 19 the '90s, technical data and information on visibility 20 impairment assembled by West Associate members in EPRI were used by the Grand Canyon Visibility Transport 21 22 Commission in preparing its report on visibility 23 protection. EPA heavily relied on the Commissioner's -24 - Commission's report in preparing the Regional Haze 25 That rule calls for using the CALPUFF model to Rule.

assess potential visibility impacts on emission 1 2 controls -- of emissions controls at major point 3 sources. Coupled with met data, the model predicts 4 conversion of SO2 and NOx emissions to sulfate and nitrate particles that degrade visibility. Over the 5 6 past, as you heard Joe mention, several investigators 7 compelled - compared field measurements of sulfates and 8 nitrates of corresponding values predicted by CALPUFF Version 5.8. Those studies concluded that the -- that 9 model over-predicts particular nitrate formation by as 10 much as a factor of 3 to 4 under wintertime conditions. 11 12 In the preamble to the 2005 BART Rule, 13 EPA acknowledged that CALPUFF 5.8 may overestimate the amount of nitrate that is produced from NOx emissions 14 15 from point sources. For example, allow me to quote 16 from the EPA's final rule. "The simplified chemistry 17 in the CALPUFF model tends to magnify the actual visibility effects of that source" and "we understand 18 19 the concerns of commenters that the chemistry modules 20 of the CALPUFF model are less advanced than some of the more recent atmospheric chemistry simulations. 21 In its next review of the guideline on air quality models, EPA 22 will evaluate these and other newer approaches." 23 24 At the 9th Modeling Conference in 2008, 25 a study sponsored by the American Petroleum Institute,

API recommended using a new chemistry module to reduce 1 CALPUFF 5.8's over-prediction of nitrates. After an 2 3 April 2010 API and EPA modeling group meeting to 4 discuss various air quality modeling issues, CALPUFF modeler, the developer of the CALPUFF model, Joe Scire, 5 6 was asked to test and evaluate the new chemistry 7 Those tests and evaluations were successfully module. 8 completed in November 2010, and CALPUFF Version 6.4 with the new chemistry and certain code fixes was 9 placed in the public domain on the TRC website. 10 11 In December 2010, Joe met with federal 12 land managers in Denver and described the evaluations he completed with CALPUFF 6.4 in comparison to 5.8. At 13 that meeting, the federal land managers in attendance 14 15 reacted positively to the improvements made to the 16 model and offered to perform testing of the model 17 revisions.

18 About a year ago on February 16, 2011, 19 representatives from the TRC modeling group, API, and 20 West Associates met with EPA and federal land managers. 21 The TRC team made detailed presentations on their tests 22 and evaluations using a demonstration of the backward 23 compatibility of CALPUFF 6.4 compared to 5.8 with the chemistry version turned off, as you heard Joe mention 24 a minute ago. At that time, EPA informed West 25

Associates and API that the proposed enhancements to the model with new chemistry will have to go through the standard rule-making process, and that could take upwards of three to four to five years. EPA also recommended that certain additional tests of CALPUFF 6.4 be made with plume measurements, and you heard Joe talk about those evaluations. Under a pending consent decree between EPA and the National Parks Conservation Association, by November of this year EPA is required to approve regional haze state implementation plans or SIPs or promulgate federal implementation plans or FIPs if the SIPs are disapproved for various states around the west. West Associates recommends and requests that EPA conduct its own test, evaluation and evaluations of the newer version of the CALPUFF model as soon as practicable before some of these final best-available retrofit technology determinations are made later this I understand from one of the talks yesterday year. that some of that work is underway. If those tests duplicate the finding that Joe described -- findings that Joe described this morning, EPA should move expeditiously to designate CALPUFF 6.42b as a regu --

24 determinations, at least on a case-by-case basis. Such

as the regulatory version of the model for BART

25 an

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1	approach would be consistent with the process EPA has
2	used with recent changes to the AERMOD model and to do
3	otherwise would mean continue continued use of an
4	inaccurate regulatory tool well beyond a decade after
5	problems with that tool are recognized. In the
6	meantime, due to the due to the demonstrated
7	superior superiority of the chemistry in CALPUFF
8	6.42b, and its more accurate predictions of particulate
9	nitrate formation, EPA should encourage and carefully
10	consider modeling demonstrations using this version of
11	the model.
12	That concludes my comments. Thank you.
13	MR. GEORGE BRIDGERS: All right. Let's
14	see if we can get this laptop fired back up. Sorry,
15	just another Now we'll have comments on behalf of
16	API by Steve Hanna.
17	MR. STEVE HANNA: Okay, thank you.
18	Thank you. As George mentioned, these comments are on
19	behalf of the API and they are a very general
20	comprehensive set of comments because API members are
21	affected by and have to worry about all different types
22	of models and source scenarios and so on. So, this is
23	a little different from most of the talks which focus
24	in on some specific thing, and we're going to try and
25	talk about all subjects. It's sort of an overview of

2

3

4

5

6

7

8

9

10

11

12

58 modeling, and we will be providing the written comments by the end of next month. And I'd also like to say that this is a team effort with myself leading a group including Bruce Egan and Bob Paine, and this is managed by Cathy Kalisz of the American Petroleum Institute and the Chair of the Committee is Chris Rabideau and many other members of the Committee are sitting out in the audience here. So, these have been worked on by several people and probably most of the things I'm going to be saying here in the next fifteen minutes or so have been covered in the past two days or will be covered by specific talks future today, but it all

comes down to with the increasingly stringent standards 13 that you no longer can have any room for over-14 15 predictions or slight problems with the monitoring or the modeling. So, there's a -- there's a lot of 16 17 concerns with the new standards that we're sure we're working with the best models and they've been 18 19 thoroughly evaluated and are not over-predicting and 20 also incorporating the monitoring as much as possible. 21 So, how can we continue to improve with This is just a lot of general things but I think 22 this? it's important to set priorities that -- in the past 23 24 two days people have suggested, well, it'd really be 25 nice to do this and that and -- and the EPA is

1 responded by, well, we'll, yes, thank you. We'll 2 consider all of this, and we're very busy and so on. 3 But I think there needs to be some effort, maybe 4 including the stakeholders as well as the EPA staff and 5 just helping to set the priorities on the things that 6 maybe should be looked at next.

7 There have been comments made at each of 8 the previous Air Modeling Conferences, back to number 9 one probably, on -- and these comments are still appropriate about complete documentation and guidance, 10 11 workshops and so on. Previously, we had encouraged the collaborations, and there has been quite a bit of that 12 that's happened in the past three years including the 13 NO2 PVMRM type collaborations. It still could be 14 15 improved, though, obviously. One example is the low 16 wind issues that have been brought up, and there 17 probably needs to be a little more work together on some of those, and I have five of these sort of general 18 19 slides and then I'll get into the specific technical 20 issues and, of course, the PM 2.5 guidance. At the 21 time we wrote this, we expected there would be the 22 guidance but then we still encouraged having the 23 minimum of 60 days and the API Committee has a thread 24 going through all of these comments encouraging the use 25 of monitoring data together with the modeling data but

really not relying on 100 percent on modeling and then 1 2 various issues about recognizing the accuracy 3 limitations and using actual emissions instead of 4 potential to emit. And there have been several recent 5 studies that have been mentioned already that the API 6 has sponsored like the NO2 work or evaluations, the 7 ambient ratio method that Mark Podrez presented 8 yesterday, the low wind speed study that Bob Paine has mentioned. These are all sponsored by API together 9 10 with other groups.

11 So, let me get into the technical list 12 of topics and -- broke it down into these categories, 13 so I'll -- I have a couple of slides on each one of these categories and then some comments on each one. 14 15 And starting out with AERMOD and moving up through the 16 scale of models. There's a few slides on AERMOD, 17 actually, and there's been much talk already about the low wind question, which is primarily been generated by 18 19 the fact that we're now using anemometers with lower 20 thresholds, so we suddenly have to model with a lot of 21 low winds, and we're discovering that they are overpredicting and there has been suggestions made by the 22 API UR Committee, but in listening to the discussions 23 24 in the past couple of days, I was thinking that there's 25 really maybe a fives fit -- five phase approach and

some of these are hit on here, and Bob Paine has 1 2 mentioned some of these already, and one is better 3 estimating the use start, which is increasing it. 4 And all of these, by the way, tend to 5 reduce the concentrations because we're seeing big 6 factor of ten over-predictions in the -- the Oak Ridge, 7 the Idaho Falls and some of the AGA low wind cases. 8 Increasing the minimum Sigma V and Sigma W would help quite a bit and are justified by observations. There's 9 10 that - the interpolation procedure between the pancake 11 and the discrete plume that I think was originally just 12 suggested by Venkatram, was why don't you try this constant and see how it works, and now it appears to be 13 14 flipping over the -- to the discrete too quickly, so, 15 just a change in that interpolation formula would help 16 a lot. And there seems to be a problem with downwash 17 which can, even at very low wind speeds, it's assuming there's downwash occurring. And from a physical point 18 19 of view, you would think that as the wind dies, the --20 the eddies behind the building are going to die also. 21 So, those corrections we would suggest and we will include them in the detailed write-up. 22 23 The next slide I think Bob used but, you 24 know, we usually say something like, try to model that

25 but actually, if you looked at an hourly average,

1	there's quite a bit of lateral dispersion going on.
2	That's what's spreading the whole thing out laterally
З	and that's, I guess, part of the pancake assumption.
4	But you this is something that you probably could
5	model if you use these suggestions.
6	The urban dispersion is another question
7	that's coming up more and more and, currently, AERMOD
8	relies on the PRIME just by looking around at the
9	nearest buildings and doing downwash, but the rest of
10	the community in other countries and agencies are using
11	these new urban dispersion models that account for
12	urban canopy formulas. SCIPUFF's an example of
13	something that does that, and right and also right
14	up in the some different offices in this building,
15	the research division has moved working on
16	incorporating this exact type of thing, and some new
17	urban models that they're going to be using for Detroit
18	and Atlanta and so on for health studies, and some
19	collaboration between them and OAQPS, and the
20	stakeholders could probably help to just very quickly
21	incorporate and improve urban model.
22	This is a picture of Oklahoma City where
23	there is a big field experiment done with tracers at
24	the black the release was at the black dot there,
25	and what I this is a model prediction we're seeing

1 here of a Lagrangian particle model and the -- and what 2 we're finding is important to do -- to account for is 3 that large lateral spread you can see a very broad 4 initial spread and you also can see it -- the plume 5 mixing into the wakes of the nearby buildings. So, 6 this can all be in an -- accounted for in -- with 7 current modeling systems.

8 The chemistry we talked a lot about 9 yesterday and various ways of improving the NO2 chemistry. Further testing of PVMRM, and then possibly 10 incorporating slightly improved models like SCICHEM. 11 12 Oh, and then the bottom thing about the -- the field data are really inadequate and is seen to -- one of our 13 major recommendations is somebody "ought to support a 14 15 field experiment where there are detailed samplers and 16 we know what the emission is" and so on.

17 This hasn't been discussed too much at 18 this meeting so far, but there -- the whole question of 19 how you extrapolate an airport meteorological 20 observation over to an actual site is an open question 21 now, and there are some ways to do this so as you can avoid problems with the current method where if you 22 23 assume a low roughness at the airport and you go over to another area with higher roughness, the current 24 25 method you'd end up with higher wind speeds at stack

height and really in the atmosphere over a rougher 1 2 area, you would have lower wind speeds at any given 3 height. So, that sort of goes the opposite direction. 4 And prognostic meteorological models are thought by 5 some to be a silver bullet here but they are -- have 6 some errors also and should be carefully tested. 7 The straight line assumption we've 8 talked about a lot and the current 50 kilometer limit -- this I can see as sort of a catch-22 because 50 9 kilometers is very arbitrary but if we reset it and 10 11 allow you to decide on the limit based on the current wind speed, it becomes very arbitrary, and who knows 12 13 what's going to happen and what do you do beyond 20 kilometers. So, there's a lot of issues with that. 14 15 You could just use the Lagrangian Puff model for all distances. 16

17 The emissions question has been covered 18 in the past two days also. The issue of using 19 allowable emissions, which leads to over-predictions 20 versus the actual, and yesterday Bob Paine talked about the use of the Monte Carlo random estimates of 21 22 emissions more realistically covered the spread. То 23 switch to CALPUFF, that also comes under this 50 24 kilometer limit and, in principle, the PUFF models 25 ought to work just fine at shorter distances. In fact,

	IUTH CONFERENCE OF AIR QUALITY MODELS U3/15/2012 CCR#16/66-3 65
1	SCIPUFF has been evaluated at using the prairie grass
2	data and works just fine. To get somewhat some
3	perfect agreement with AERMOD, some work has probably
4	needed with CALPUFF. And there are a lot of other
5	models in the second bullet that's mentioned that are
6	available and used in Europe for regulatory assessments
7	and also in the U.S.
8	The chemistry Joe Scire just talked
9	about and it was covered in other talks. So, it
10	appears definitely this chemistry's being improved and
11	we applaud that development.
12	Now, moving to CMAQ and CAMx, the
13	regional models that they aren't really talked about
14	in this conference, and I've heard it said, well, they
15	have their own meeting, like the CMAS meeting. But
16	then after we thought about that a little bit, those
17	are really just technical forums and you don't allow
18	for the the public is not allowed at those
19	conferences to just show up like they are here and
20	stand up and make comments that are put into some sort
21	of a public record. So that I think that ought to
22	be this sort of thing ought to be expanded to
23	include CMAQ and CAMx.
24	The question of Plume-in-Grid model that
25	there that's also been covered extensively and it

appears that SCICHEM is being considered here. 1 2 The next topic is prognostic 3 meteorological models, and this seems to be the way everybody's going these days. It seems like a good 4 5 idea, especially if you can get the grid size down but, 6 remember, these are the models that are forecasting our 7 weather every day, so just think about that. So that 8 the minimum, and there have been studies done, the wind 9 speed uncertainty is the meter per second. There's -mixing depths are uncertain and so on. 10 This was an example of a study I did, I'll show later, where the 11 12 mixing depths in the afternoon are a little uncertain. And there's a problem with grid resolution when you 13 have terrain around, so you have to watch out for that. 14 15 So, the bottom line is you shouldn't make major changes 16 unless this is really thoroughly looked at and 17 evaluated. The background concentrations is a big 18

19 concern with the API, and we're recommending use of 20 properly sited local monitors and more than one so you 21 can really determine the upwind area. And model 22 evaluation and databases -- I think the -- we've heard 23 a lot about the quantile quantile and that this should 24 be expanded. The long-range transport evaluations that 25 were described expanded the set but, as everybody said,

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16/66-3 67
1	it could be modified a little bit and include more
2	significance tests. There's some model acceptance
3	criteria which the military insists that you have in
4	your models, and that would be a lot of fun if you ever
5	had to impose that.
6	So, the final recommendations that
7	I've covered most of these things is about the ARM2
8	be adopted and the tier two methods improvements to
9	PVMRM are still needed. The whole low wind speed needs
10	to be fixed, and there's been some suggestions made,
11	model evaluations improved, improved in monitoring
12	systems, use of actual emissions, and then in
13	continuing the increase of communications and
14	collaborations. And so that's the last slide saying
15	contact Cathy Kalisz if you want information about the
16	API. Thank you.
17	MR. GEORGE BRIDGERS: Thank you, Steve,
18	and then the final presentation before the morning
19	break, on behalf of the AF&PA is Ryan Gesser.
20	MR. RYAN GESSER: Thank you. I
21	having only ten minutes and wanting to keep on schedule
22	for the break, I don't have time to deliver my opening
23	monologue this morning. So it's in the record from
24	yesterday, you can go back and check that. So, just
25	suffice to say that again I appreciate the opportunity

to provide comments today. I'm Ryan Gesser speaking on 1 2 behalf of American Forest and Paper Association or 3 AF&PA and, obviously, today I'm focusing on NO2 and 4 SO2. And a similar slide I showed yesterday, in the context of discussing PM 2.5, that the industry is 5 6 generally well-controlled with respect to that 7 pollutant. I think we would make the case that it's the same for SO2 and NO2 that we're generally well-8 controlled in industrial operations, although obviously 9 10 we are major sources. All of the regulatory programs 11 that I alluded to yesterday that require controls for 12 PM 2.5 also require controls for SO2 and NO2 and, 13 likewise, there's regulations coming down the road, be it Boiler MACTs or the various regional haze programs 14 15 which offer opportunities and may lead to further 16 reductions, not just to particulate but of SO2 and NOx 17 emissions as well.

18 Like many industrial sectors, pulp paper mills can find it difficult to demonstrate compliance 19 20 with the applicable NAAQS following the current EPA 21 modeling guidance. Yesterday, in the context of PM 2.5, I said it was difficult and then proceeded to 22 23 paint a very bleak picture, I guess. Today I'm saying 24 it's difficult but I'm about to tell a better story or 25 a more optimistic story for -- for how our industries

has an outlook on demonstrating compliance with these 1 standards using the models. That said, of course, it's 2 3 not absolute. There are many mills that will have challenges demonstrating compliance with these 4 standards with the guidance and modeling tools that we 5 6 have. And many of the same -- the same consequences or 7 implications would apply where there's new projects 8 that can't move forward until the modeling issues are resolved, and that's obviously a concern. And if we're 9 speaking about SO2, then obviously we have to recognize 10 the SIP development process that's underway. We have 11 12 draft quidance but not final quidance at this point, so that is obviously a program that mills that aren't 13 undertaking projects for growth will still have to 14 15 evaluate their impacts under their existing operations. 16 So, again, we find ourselves in a 17 situation of having to explore whether additional 18 controls may be required. I think our outlook in most 19 cases suggests that that's not likely to be the case. 20 Where we do have modeling issues that need to be 21 resolved, we're optimistic that, in most cases, they would be resolved by the on-paper reductions of on-22 23 paper permitted limits on our maximum allowable 24 emissions that, again, we have to model under 25 regulatory context where we might have to accept some

1 reduced flexibilities in terms of operations, and 2 especially fuels moving from higher sulfur fuels to 3 lower sulfur fuels, but we're optimistic cautiously 4 that that would -- that would be mainly on paper 5 exercises to do that.

6 Yesterday, we heard the presentation 7 from EPA's AERMOD implementation workgroup or AWIG. In 8 that presentation, they did not call specific attention to our sector. Thank you. But we were included in the 9 report, and so I wanted to take a moment just to 10 acknowledge that, and we're going to talk about -- I'm 11 12 about to talk about our outlook for answer to an NO2 based on some work that we've done. And it looks 13 different than what is presented in the AWIG report, 14 15 and since that did go into the record and it is part of 16 the report, you might see I wanted to offer some 17 additional information from that. I want to be clear that we don't have a critical review, and we're not 18 trying to be critical of this finding necessarily 19 20 because, obviously, the report just came out. We 21 haven't fully evaluated it, and we don't fully have all of the inputs to evaluate it, but we reach a different 22 conclusion than you would reach looking at this 23 24 information. So, we did want to take the opportunity 25 to discuss that.

1	Just to summarize what was reported in
2	those findings, like you saw, they've the group
З	looked at various modeling scenarios and cases for the
4	different sectors, and ours wasn't a particularly
5	optimistic picture. In what was called a base case,
6	the impacts for SO2 were found to be up at a level
7	above 900 micrograms. Of course, the standard is
8	closer to 200 micrograms, so that's that's not a
9	very optimistic picture. And then in various
10	combinations of control strategies of stack height
11	increases, the results improve but there weren't any
12	scenarios that were shown to get below the NAAQS
13	standards. So, that obviously is is a concerning
14	conclusion, and it was a little bit surprising in that
15	that's not what we were expecting, and that's not what
16	we see when we look at our own analyses for typical
17	mills. So, there's some of those details there. You
18	know, if we have the opportunity to review those with
19	the group, I think we'd be happy to do it but, you
20	know, we're going to show some different results here.
21	What I would just note from that report is that the
22	emissions that were modeled totaled about 777 pounds
23	per hour in a base case and 372 pounds per hour in a
24	base case. And that jumped out at us right away that
25	that seemed to be somewhat higher than what we would

have expected for -- for a typical mill, but yet it 1 2 still could have been legitimate. I want to make that 3 clear that when you follow the guidance and model emissions at their full permitted allowable emission 4 rates, you can certainly see emission rates that high 5 6 if you have a permit condition that allows a very high 7 sulfur fuel such as coal or oil in certain 8 circumstances, and certainly that -- that does exist for some mills, but it's not typical of our -- of our 9 10 typical process that burns primarily biomass, which has very low SO2 emissions, and also is sort of inherently 11 a closed loop and tends to remove sulfur dioxide from 12 the process just in the inherent way that the process 13 is designed. So, again, we were a little surprised or 14 15 -- that the results were so high but not surprised when 16 we saw that the emission rates that were being modeled. So, again, I have a number of cases 17 18 I don't have time to go through them all, but here. 19 what I would point out in summary is that the various 20 ones we looked at had emission rates based on permits 21 or what we think would be acceptable for permits and, in these other cases, they're closer to about a 100 22 23 pounds per hour or maybe up to 280 pounds per hour in 24 that case. And in those cases when we modeled them,

the outputs we got were -- the results at the highest

25
fourth high level, not including a background, were 1 2 closer to about a 100. Not much higher than a 100 -- a 3 108 in this case, a 118 in the other. And so that, 4 obviously, is below the standard if the yellow 5 highlighting is showing up there, I kind of displayed 6 that as caution because in some cases the background 7 concentration is also on that level. So, just adding a 8 conservative background, we still might have an issue to work through. 9

10 But one other case in the middle here that did have a higher result is one where we saw 11 12 emissions on the levels that were shown in the AWIG 13 study. We still got a lower model result overall, although this obviously would have been below the 14 15 standard, but this is a case where we looked at the 16 permit limits and said, yeah, you know, these permit 17 limits are really high. They might be based on old SIP limits or fuels that aren't burned anymore. So, when 18 19 we looked at a controlled case that didn't necessarily 20 require controls but would be more representative of 21 emission levels at what might be considered backed or 22 at least some kind of control, those model impacts came 23 well below the standards. So, we saw that as a better 24 sign.

25

It's worth noting, you know, these are

sources that when they were originally permitted with 1 the three hour and twenty-four hour NAAQS, they were 2 3 well less, 50 percent or less than those standards. 4 You would now -- this one would have been two times the 5 current 1-hour NAAQS, so this is a message we already 6 knew that even sources that might have been considered 7 well under the NAAQS in the past under the old 8 standards can have a challenge with the new standards. 9 So, one thing that this leads us to recognize is -- is that the -- the idea of variable 10 11 emissions processing, we recognize there's a number of 12 implementation challenges but we can see how that would be useful. I'm interested in exploring it to account 13 for that sort of fuel variability where coal or higher 14 15 sulfur fuels may be fired at some limited times, but 16 most of the time the emissions would be representative of cleaner fuels and, therefore, that distribution 17 18 would be interesting to represent.

I wanted to touch briefly on NO2. This was not a subject of the AWIG study, but I thought I would mention it because we've obviously looked at it from the industry perspective and, you know, the order of emissions that we looked at these various examples are a few 100 pounds an hour, and these are major sources, combustion sources. And when we applied the

1	current tier two methodology, if this had been done by
2	AWIG, I wouldn't have been surprised to see a high
З	result there. We do often see values that exceed the
4	1-hour NO2 standard by a factor of two or more under
5	the tier two assumptions, but if we then go and apply
6	the tier through approach, whether it's OLM or PVMRM,
7	we do see results that are much lower and far below the
8	standard. And this is largely due to accounting for
9	the NO2 to NOx in-stack ratio that's characteristic of
10	our sources. What stack testing we've done usually
11	seems to come out pretty consistently at a ratio of
12	around 2 percent and so that that's a very low
13	number even if you modeled at say 5 percent
14	conservatively, which is I think what we had in these
15	studies. You see the results that are a lot more a
16	lot lower and that we think more representative.
17	So, the recommendation really is just
18	that we're encouraged to hear about the improvements
19	and attention that these tier three NO2 models are
20	getting. We obviously support their use and and to
21	any any measures that can be taken to sort of
22	streamline that process, whether that be getting
23	approvals not at a state level and not requiring a
24	case-by-case review in every instance. We think that
25	would be encouraging and help facilitate this process,

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 76
1	and as these kind of data become more readily
2	available, I certainly expect that that process to
3	become smoother.
4	So, again, just in summary of the the
5	comments here, we appreciate the work that the AWIG
6	group did, but we were a little concerned that it may
7	have overstated our impact. So, we're happy to work to
8	to refine that or address that in their report, if
9	it's if they're willing to do that. And we also
10	appreciate the efforts that we're heard about to
11	improve the NO2 models and the other issues in model
12	performance that have been gotten a lot of attention
13	this week. So, as always, we promote reasonable
14	implementation of the guidance and we're happy to
15	participate in that process. So, I'll conclude there,
16	and thank you very much.
17	MR. GEORGE BRIDGERS: Well, thank you
18	Ryan and to all the presenters this morning. We've
19	ended this first session right on time. So, at this
20	time, let's go ahead and take a fifteen minute break
21	and we'll be back at at 10:40.
22	(WHEREUPON, a brief recess was taken).
23	MR. GEORGE BRIDGERS: We're going to
24	start back up the second session of the morning with
25	Bob Paine from AECOM.

Γ

1	MR. BOB PAINE: Thank you. The first
2	two ten minute presentations will be presentations
3	sponsored by EPRI. Eladio Knipping and Naresh Kumar
4	were the project administrators. And you're going to
5	see a couple of new terms here, AERMINUTEPLUS and
6	sharp, which we'll go into here. And this
7	AERMINUTEPLUS sort of sort of brings back the memory
8	of CTDM which was made CTDMPLUS slide some twenty-five
9	years ago by Steve Perry. And we've augmented their
10	AERMINUTES to make it do some hourly meteorological
11	periods and developed a sub-hourly AERMOD run procedure
12	which we fitted into the acronym SHARP. We selected
13	databases for this evaluation and some test procedures
14	and some preliminary evaluation results. So, why do we
15	want to develop such a capability when we know that we
16	have this is obviously a problem for low wind speeds
17	because in under high wind speeds, you have, you know,
18	fairly persistent flows and the wind doesn't fluctuate
19	too much. But you could have a large fluctuation
20	during the course of an hour and if you have the data,
21	why not try to use that data? And then certainly in
22	low winds, we low wind speeds during the course
23	of a full hour, winds can go in several directions and
24	resulting in multiple concentration called the lobes.
25	This is actually courtesy of Joe Scire. Three years

Г

1	ago, and he presented this AERMOD depiction of a the
2	meander or pancake plume in the middle of that source,
З	and the coherent plume above that. Now, the coherent
4	plume in many cases has a much higher concentration
5	than the the meander plume and therefore it only
6	goes in one direction. And here's a plume footprint
7	from the Bull Run experiment with a fairly good gassy
8	and plume shape, but if you consider this hour where we
9	had I think at least four lobes. It didn't happen very
10	often but it can happen. We found at Bull Run that
11	most of the time the plumes were reasonably gassy but
12	sometimes, you can get this, and you can't do that with
13	a a model like this two slides ago. So, we
14	developed this procedure called AERMINUTEPLUS to take
15	the two minute averages and develop averages that are
16	sub-hourly averages of the winds, and just if you
17	divide two into sixty, well, you can have as few as two
18	periods of thirty minutes long or many as thirty two
19	minutes long, and our procedure will allow the user to
20	take any combination in between as long as the number
21	divides into sixty. The output files of this procedure
22	looked like copies of hourly files but, for example, if
23	you add two thirty minutes files, you'd have two files
24	and the first file would be minutes zero to thirty, and
25	the other one would be minutes thirty one to sixty for

Γ

1	each hour of the year. And then you would run AERMOD
2	with each one as many times as you had to get each part
3	of the hour. Then there's a procedure. I'm going to
4	go through these steps here. You take output from
5	AERMINUTEPLUS. You run AERMOD multiple times for each
6	part of the hour. Each run is the same minutes of each
7	hour. We have a bin merge procedure that takes the
8	output concentrations and averages them, and then we
9	also are configuring out the process calm periods
10	consistent with the AERMOD's approach so that if you
11	had more than fifty percent of the periods that were
12	calm, you'd have to make that hour would not be able
13	to be used as a definitive hour for AERMOD results.
14	The third step is to take this merge concentration file
15	and put it into a process that we called post-one hour
16	to get the required design concentrations. We had
17	decided to evaluate this procedure then using
18	evaluation databases that had tracer releases from a
19	single stack. We wanted to avoid building downwash
20	wash issues, and we needed obviously sub-hourly
21	meteorological data. We wanted to have databases with
22	significant plume meander otherwise it's not very
23	exciting, and we had two databases we had budget for, a
24	low level release and an elevated release. One
25	emphasized stable conditions, the other unstable, and

they were predominantly affected by light winds, and 1 these databases were the Three Mile Island. 2 Thev 3 actually had a tracer release prior to constructing 4 this facility back in 1971. We -- we had only five 5 hours but they were very interesting hours of very low 6 wind stable conditions and sometimes they had to use 7 smoke handles to figure out which way the wind was 8 blowing, the winds were that light. And then Bull Run and EPRI database from 1982 dominated by unstable 9 conditions, tall stack releases. We used one hundred 10 11 sixty two hours in the half of the database reserved 12 for development. Now, the Three Mile Island only had one arc of receptors whereas Bull Run had twelve arcs 13 from point five to fifty kilometers. 14 15 Here's an example of the Three Mile 16 Island set up, and each of these spokes is actually a 17 concentration in -- in every twenty degrees, and you can see that in one hour you have and -- and these rays 18 are the wind directions through the hour and these are 19

the magnitudes of the concentrations at various directions. Obviously, that coherent plume model wouldn't do too well in this case. We ran AERMOD in each case for five-minute averages and so far we've only chosen the five-minute periods, so there are twelve - twelve of those periods within an hour. We

1 directed the plume -- for the 1-hour average runs, we 2 directed the plume toward the stack with the highest 3 concentration to give the model the best chance of 4 succeeding.

5 With the sub-hourly runs, since the wind 6 directions vary, we took them at face value. And we 7 used a variety of tests which I won't go into detail 8 here because of the time limitations, but I'm going to 9 focus on the bias and -- and -- and what I call a 10 goodness of fit like is the plume width too tight, too 11 loose and just right?

12 Now, Three Mile Island, there were five 13 databases. The red bar is the highest on the arc for observed. Blue is the hourly AERMOD and sort of like 14 15 the greener mustard is the sub-hourly for five minute 16 averages and we can see that the hourly model over-17 predicted in all cases. The sub-hourly model overpredicted for most cases, slightly under on the first 18 19 hour. These are all stable hours, very light winds. 20 The average over-prediction ratio for the hourly model 21 was twelve point six for the five minute, sub-hourly model - three point seven, so the -- but the -- one --22 23 one way to do the goodness of fit is to say, well, what 24 percentage of the values were more than fifty percent 25 of the peak? Observations fourteen percent. Hourly

1 model only seven percent. The footprint is too tight, 2 too concentrated. The five hourly sub-hourly models a 3 little too loose, and we speculate where maybe if we 4 went to ten minutes, we might get a better fit.

5 Okay, Bull Run overall results. There's 6 a variety of arcs and we noted from previous work on 7 convective conditions that the hourly AERMOD models 8 does well, and we found that in fact the predicted observed ratio is a little bit higher than one overall, 9 but it's -- it's not too bad whereas the five minutes 10 11 of hourly model was a little low, but we see that also 12 it's -- a footprint is a little loose whereas an hourly model is too tight a little bit. So, we speculated 13 where maybe if we went to a ten minute average we might 14 15 get a better fit to the sub-hourly model to the 16 observations.

17 So, concluding remarks on this subhourly evaluation. We've developed a capability that 18 19 EPRI will -- it's still evaluating, but we'll certainly 20 consider providing to EPA. We've done a limited evaluation on two databases that featured both stable 21 and unstable light winds. We can see for -- certainly 22 for stable conditions, so we have another stable light 23 24 wind database adding to the others ones I talked about 25 the first day that indicates AERMOD needs some

improvement. Now, one way to do it is to divide the 1 hour up into sub-hour periods, and so this is one 2 3 approach. We find that in all cases the hourly 4 predicted plume for it is generally too tight especially in stable conditions. The five minute 5 6 period may be too loose of a fit and you might -- we 7 might try a ten minute period if we have opportunity to 8 do that. Obviously I would recommend further testing. And that's the end of that presentation. 9

10 MR. BOB PAINE: Okay, people have always wanted to know how far is the short range model 11 12 applicable, and someone came up once with a fifty 13 kilometer distance and we're still trying to figure out where that came from. This is another EPRI funded 14 15 investigation. I'm talking -- going to talk about the 16 limitations of short range models. Can we make a puff 17 model a plume model equivalent to do some testing on where do the models actually start to diverge and at 18 19 what distance. And so we looked at both puff and --20 puff trajectories and concentration comparisons for 21 this study. Obviously, as you know, plume models 22 assume city-state conditions, so we have a lighthouse beam effect. Every hour, the lighthouse beam shifts to 23 24 a different direction. The previous hour's light beam 25 is forgotten, and worse case conditions, and especially 1 associated with low winds are -- are persistent or what 2 I would say impossible distances, but impossible equals 3 fifty kilometers at this -- at this point. This study 4 tried to more carefully quantify what's a reasonable 5 distance for how far these models are applicable, and 6 I'm looking at both AERMOD and ISC is -- is good 7 representations of a city-state plume model.

8 So, one way to do this is to take a noncity state model like CALPUFF and make it a equivalent 9 10 to a city-state model for constant meteorological 11 conditions, and then run a year's worth of data hour by 12 hour and see where, at what distance do the models start to diverge in terms of their predictions. 13 Now, we tried to make AERMOD and CALPUFF equivalent and we 14 15 didn't have enough money to do it -- to make them 16 equivalent. We -- we -- we tried to make the 17 horizontal and vertical dispersion equivalent but AERMOD's formulations, especially for convective 18 19 conditions is -- it's complicated and in its -- we just 20 gave up in that effort.

But we had much better results between ISC and CALPUFF and since ISC and AERMOD are reasonably comparable in flat terrain, we decided to go with ISC versus CALPUFF to do this -- this test of city-state versus non-city-state models. So, we -- we found the

best results between ISC and CALPUFF were for non-1 buoyant sources and flat terrain since there are some 2 3 plume rise differences between the two models. And we 4 ended up looking at thirty-five out of one hundred meter non-buoyant release heights as being good 5 6 candidates for testing. The big difference is not 7 exceeding a four percent and usually not two percent 8 for distances beyond two kilometers, and we -- we will give a two kilometer applicability or more to a city-9 10 state model.

11 We used two met databases, one year 12 each, and one was a - a sort of a valley orientation, the Willamette Valley for Salem, Oregon with pronounced 13 preference for north or south winds, and then 14 15 Evansville, Indiana, more of an isotropic wind regime This database used pre-ASOS, pre-AERMINUTE but 16 here. 17 this was fully developed with AERMINUTE 2007 where it says 1986 for Salem. First of all, we conducted a 18 19 segmented plume analysis by connecting hourly time 20 travel using ten minutes -- ten meter data from each 21 database. After the air parcels left a one hundred kilometer by one hundred kilometer domain, we didn't 22 23 further track them. We wanted to see, well, how far do 24 these air parcels go after one, two, three, four, 25 etcetera hours. We found that more than ninety percent

1	of the time they don't go much more than twenty or
2	thirty kilometers at most, often less. Even after four
3	or five hours, fifty percent or more could still be
4	within fifty kilometers of the release point if you
5	would consider recirculations, and certainly they
6	they can travel in non-straight trajectories. For
7	example, Salem, Oregon, we have the twenty kilometer,
8	the thirty kilometer radius distances. After after
9	once after one hour, most of the air parcels didn't
10	travel more than twenty kilometers, and these are
11	since these are whole knots, you're going to see
12	basically concentric circles whereas with the AER -
13	AERMINUTE process, Evansville, we're going to see more
14	of a cloud of points, but again, each each radius
15	here is ten kilometers further out. Most again are
16	within twenty kilometers, especially even within ten
17	kilometers. Even after five hours, we see that half
18	the half the half the puffs are still around
19	whereas, of course, the lighthouse model, they are
20	they are gone every hour. That's Salem, Oregon and
21	this is Evansville. Again, certainly a - a - a non-
22	city-state puff model will give you a more of a - an
23	accurate depiction, and here's another way to look at
24	it. After end, you know, one, two, three, four hours
25	going from front to back and the probability of

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 87
1	distance travel, after one hour for Salem, Oregon,
2	we're seeing ten percent or less going beyond twenty or
3	thirty kilometers, obviously growing with increased the
4	number of hours of transport. And similarly, we see
5	for Evansville, Indiana.
6	Again, so going out to fifty kilometers,
7	hardly any air parcels get out that far, at least
8	looking at the ten meter winds. But we're assuming in
9	city-state models that they do.
10	Now we're going to the model prediction
11	comparison part. We ran CALPUFF in ISC equivalent
12	mode, assuming flat terrain to get the models
13	equivalent for city-state meteorology. We used polar
14	receptors out to fifty kilometers and looked at certain
15	popular statistics for the daily one-hour max such as
16	the ninety-ninth or ninety-eighth. I'm going to look
17	at the ninety-ninth percentile. The fourth highest for
18	some of the next few slides. Here's the pattern for
19	Salem, Oregon for a source of the middle and the colors
20	are such that they the hotter colors are higher
21	concentrations, so you can see that the concentrations
22	would - of course, there's there's there's a
23	whole in the middle because that source is released at
24	some height above the ground and maximum concentration
25	here may be out, oh, with well, within ten

1	kilometers is ten, twenty, thirty, forty and fifty
2	kilometer rings. But you can see when we go to CALPUFF
3	and and remember, this is a even though we're not
4	doing terrain, this is flat terrain, the winds are
5	influenced by the by the valley. And so, when we go
6	to CALPUFF, we're going to see that the lower
7	concentrations creep in because the winds, once they
8	start out, the puffs once they start out, might go to
9	the left or right after one hour of transport. And if
10	we take the ratio of these two concentration patterns,
11	these are the one hour, four highest four find
12	that's when our max is at each receptor. The color
13	scheme here on the ratio is such green. This green is
14	from one to one point five. Anything that's gray or
15	blue is below one and there's hardly any of those. So,
16	the ISC versus CALPUFF ratio, well, that is the city-
17	state model to the non-city-state model is showing that
18	we're we're conservation, but once we get to the
19	browns, we're we're in factions two over, and those
20	start to creep in in several directions, especially
21	along the directions toward which the winds might
22	diverge. Certainly beyond twenty kilometers, I would
23	say, we're getting many directions where we're starting
24	to get factions of two relative over-prediction, model
25	to model over-predictions.

1 Looking at Evansville, more of an isotropic wind pattern. This is -- this is ISC highest 2 3 forth highest pattern here. Just looking at the color 4 scheme, let me go to CALPUFF. Again, less coverage by 5 the higher concentrations in many directions. The 6 pattern just shrinks because the -- the controlling 7 conditions are not persisted as far as were the city-8 state models. So, the ratio again, we see hardly any colors that are gray or blue. I've got a little sliver 9 here. Again, we're seeing factor of two model to model 10 over-predictions, ISC versus CALPUFF. It's starting to 11 12 creep in. Even ten kilometers. It would certainly be 13 on twenty kilometers, so we're seeing that the pattern is that the ratio's start to diverge, especially when 14 15 you get to, I would say twenty kilometers would be opt 16 in several directions. 17 So, conclusions are we saw some of the results for both of these different meteorological 18

19 databases, the concentration ratios were close to one 20 within five kilometers, within a factor of two within 21 twenty kilometers, let's say, but beyond twenty 22 kilometers, we saw several directions where we got 23 ratios exceeding two. Sometimes much higher than two. 24 And we didn't even consider terrain. This is just flat 25 terrain but the winds are influenced by terrain for

Salem. So, I'm throwing out the idea that from this 1 limited experiment, twenty or thirty kilometers, you 2 3 know, giving -- giving some generous benefit, might be 4 the extent to which you want to trust a single hour, 5 you know, a city-state single hour's travel. You know, 6 the travel doesn't go much beyond twenty or thirty 7 kilometers in a single hour, and even after four or 8 five hours, with a true city-state model, you get many parcels that are still within fifty kilometers. 9

10 Our results suggest that you might want to consider really twenty kilometers may be a more 11 12 reasonable limit for the appropriate applicability of the city-state model. We are working on a new 13 debugging output for AERMOD. It will tell you for each 14 15 hour, each source, some useful information. The -- not 16 only the wind direction and the winds -- the effective 17 wind speed and the effective SIGMA W and SIGMA V, but also the partial penetration fraction, the meander 18 19 fraction, the downwash fraction, but also how far does 20 the -- this puff go, this plume go at an hour and how 21 far is it to the receptor? And so that, that debugging information will be useful for users to determine, 22 well, is the model really doing the right thing for 23 this hour for this receptor, the peak receptor for each 24 25 source for each hour.

1 So, we're looking forward to developing 2 that and -- and -- and providing that to EPA and 3 hopefully getting that into a future version of AERMOD. 4 Okay, I think that's it.

5 MR. BOB PAINE: Okay, the last talk in 6 my series will be a model of AOA -- should add an 7 actually monitoring network in North Dakota. Going to 8 talk about why we did this study, describe the database. Model results using, you know, the proposed 9 10 modeling for NAAQS compliance. Results from 11 refinements and a problem with low wind speed stable 12 conditions. Obviously, we've talked about many issues with modeling versus monitoring, so we decided, well, 13 let's test the model where there are monitors, and 14 15 where there are multiple sources. So, a real live test 16 of the EPA proposed procedures.

17 We had this opportunity because we had hourly data and many electrical generating stations. 18 19 This study was, by the way, funded by Base & Electric 20 Power Cooperative. There were two nearby sources and 21 then there were other sources within fifty kilometers. There were five monitors and there was an on-site tower 22 23 close by the sources. Here's the map showing the -here's the distance scale here. The five monitors are 24 25 these yellow diamonds. The two source groups here that Г

1	were close by, and Low Valley and Great Plains Synfuels
2	Plant. A few other EGU's, one on Coyote and the met
3	station I think was one of these two here. Zooming
4	out we have a few other sources. Some of these
5	actually, I'm going to focus on later. Actually, I
6	just influenced the concentrations way over here.
7	First run-through we used a lot of
8	emissions of all sources, soon to be constantly
9	emitting. We placed receptors only at the Monterey
10	sites except for a some runs that characterized the
11	spacial patterns. Now four of the five monitors were
12	elevations sort of near the local stack base but the
13	fifth was about a hundred meters higher, and we see
14	that, looking at the terrain, this particular receptor
15	here, the monitor here was about a hundred kilometers
16	above, but most of these other ones were close to stack
17	base, but we see the pattern of terrain, the pattern of
18	concentration prediction there was a similar concert of
19	high concentrations in the high terrain. That's
20	interesting, you might say, but look at the
21	concentrations. This particular monitor was about a
22	hundred meters higher in elevation but the
23	concentrations these are the design concentrations
24	over a five-year period, they actually had the lowest,
25	although within five percent. There was hardly any

1	gradient of concentration, but the model, look what the
2	model is doing, using liable emissions. Our our
3	ratio with terrain included of the model to monitored
4	accounts for both the the emission, liable emissions
5	versus actual emissions but this terrain issue was
6	was highly interesting, even though this monitor
7	actually showed the lowest concentrations. So, we
8	looked into that a little bit more. In fact, we just
9	modeled it as all flat. The actual terrain slope is
10	about two percent anyway. What we modeled was flat and
11	low and behold, everything was more consistent. The
12	concentrations were consistent. The model was
13	consistent even though over-predicting. At least it
14	was relatively consistent. So, that's one one, you
15	know, one recommendation is, well, if the terrain isn't
16	that tortuous, just model it as flat. Then we used
17	actual out of the emissions and we got even better
18	results for this. There's one monitor here where we
19	think some of the there are there's one source
20	that has a bypass stack, and sometimes that stack may
21	have sub-hourly emission parameters that that may
22	have to be tweaked to get that a little bit better, but
23	we're seeing the combination of flat terrain and actual
24	emissions makes a big difference in the model
25	performance for these five monitors.

1 So, for all -- overall conclusions are 2 that, well, at the -- one of the monitors, I just said 3 the remaining over-prediction might be associated with 4 uncertainty of exhaust parameters or in bypass stack conditions, but the model performance improves greatly 5 with the use of actual emissions and flat terrain for 6 7 the -- the slope is reasonably gentle. We have one 8 more significant problem that we looked into, and by the way, this was, this whole study was submitted to 9 the docket that was due December 2nd. It's also going 10 to be in a AW May paper in this June's conference. 11 We 12 found that with very light winds, mechanical mixing heights can be much less than the plume height. 13 We we saw problematic emissions where the mechanical 14 15 mixing eye was three meters. And we found some sources 16 that were forty kilometers away or -- or contributing a 17 large amount to the predicted impact. Because those plumes, the stack bases were low enough so that the 18 plumes by that time being assumed to be perfectly level 19 of model, we're hitting the terrain. 20 The plume 21 dispersion was very restricted for plumes above a low 22 mechanical mixing height, and we found that the result 23 was when the plume finally intersected the terrain 24 forty kilometers away, it came up with a high

concentration there was somewhat anomalous.

25

94

Now, what

we did is we did the test with a generic tall stack, 1 modeled it with both flat terrain and a one percent 2 3 slope in all directions, like a very shallow cone. We 4 modeled an entire year in meteorology and got the peak 5 concentration on each ring of receptors up to fifty 6 kilometers, and I'm going to show you the plots for 7 this -- these concentration pattern. The peak 8 concentration is the functional distance for flat terrain and this one percent slope. This is the flat 9 10 terrain case now. For an elevated stack, you would 11 expect, yeah, the concentration peaks at a reasonably 12 close distance of, well, a kilometer or so, and then if it, you know, tails off with distance. 13

14 Now, let's add onto that the case where 15 we have a one percent slope and low and behold, what is 16 We have a - a bump. When the plume finally hits this? 17 the terrain some twenty, you know, thirty kilometers 18 away, this is what AERMOD is doing. I don't believe 19 that that's really happening in real life, but this is 20 what the elo -- and we traced this to a stable 21 nighttime hour with extremely low mixing height. So, I -- I -- I'm puzzled. Well, I'm not, maybe I'm not 22 23 puzzled. I guess, I -- I think it's an issue that has 24 to be looked into, as to do we believe that plumes go 25 perfectly level in areas of very low sloped terrain.

And so in each of the identifying an issue that EPA
needs to look into.

3 So, conclusions from this test are that AERMOD has an unusual prediction result, and I think 4 the problem is caused by the very low mixing height 5 6 that leads to compact plumes. Now, you can imagine 7 that if you have low level sources that are closer to 8 low terrain, maybe we're seeing this issue all over the place with light winds, low stacks and we're getting 9 like a slight terrain rise for stacks that are five 10 11 meters high. Same thing might be happening with all 12 sorts of sources all over the place. When the mixing height is below building obstacles, why doesn't, you 13 know, shouldn't -- shouldn't the mixing heights make 14 15 other mixing heights respond to the fact that we have a 16 building canopy? It seems like there's a way maybe to 17 get the building canopy into the model. 18 So, then since the plume stays perfectly

18 So, then since the plume stays perfectly 19 level, maybe we should have a policy not to consider 20 terrain in such cases because we are getting a better 21 result for both the monitored part of this study I 22 looked at earlier, and we would avoid this bump at 23 thirty kilometers that we saw in this test. That's the 24 end of that talk.

25

MR. GEORGE BRIDGERS: Thank you, Bob,

1	for all three of those presentations. Moving right
2	along. Allen, the floor is yours.
З	MR. ALLEN DITTENHOEFER: Thank you,
4	George. I'd like to acknowledge my co-author, Michael
5	Hirtler, also of Environplan Consulting. On behalf of
6	the coke industry, the American Coke and Coal Chemicals
7	Institute, we prepared a brief presentation to discuss
8	some of the technical issues and challenges in modeling
9	a buoyant line sources. Earlier in the week, I was
10	pleased to see that EPA has listed this modeling as one
11	of its priorities in improvements to AERMOD. This is,
12	you know, is of critical importance to certain
13	industries such as the metals industry where we have a
14	lot of buoyancy associated with heated fugitive
15	emissions, such sources like electric arc furnaces,
16	basic oxygen furnaces and aluminum reduction plants.
17	You've got roof monitors, roof vents and positive
18	pressure baghouses configured in long lines where
19	you've got buoyancy associated with the with these
20	emissions. Coke batteries also. You have not only the
21	release or volumetric flow of hot gasses coming out of
22	the leaks from these ovens but you also have the hot
23	surface, which provides convective heat transfer and
24	the applications, of course, with now with the 1-
25	hour SO2 and NO2 standards, we need to more accurately

model these types of sources. When you model these 1 sources using a non-buoyant volume source 2 3 configuration, you get large exceedances of the 4 standards. Also, there are obvious PSD new review 5 applications. Next year, EPA is going to be doing its 6 risk and technology review for the coke industry on the 7 pushing batter -- quenching and battery stack mack. 8 So, we need more realistic models to conduct that modeling and so on. 9 10 Now, as you know, AERMOD does not treat 11 buoyant line sources and previous approaches have used 12 some type of a hybrid approach where you first estimate 13 plume rise using a buoyant line source algorithm and most commonly the EPA BLP model has been used. But 14 15 then you take those effective stack heights from the --16 from the plume rise algorithm at BLP and then 17 incorporate them into a dispersion model such as, well, back -- back in the 2005 time frame, ISC was used in 18 the sub-part L Coke oven residual risk studies. Now, 19 20 of course, we have AERMOD. Now, what are some of the relevant 21 22 features of BLP? This -- this model was actually

24 It treats the enhanced plume rise of buoyant line

developed thirty years ago for the aluminum industry.

23

25 sources, and -- a line source as compared to a -- an

1	unobstructed stack release, you have one less degree of
2	freedom in the entrainment of ambient air, so you've
3	got enhanced rise compared to a stack plume. You also
4	have you get a plume enhancement when you have
5	multiple line sources aligned in parallel. The plume
6	rise is dependent on the wind direction relative to
7	that configuration of line sources, the line source
8	length, the number of parallel lines and their spacing.
9	And BLP is also capable of treating vertical wind shear
10	on plume rise and incorporation of building downwash,
11	but one major drawback of BLP, it does not treat
12	complex terrain. So, many of these types of facilities
13	are located in complex terrain settings. You need to
14	have a model, dispersion model, that can adequate treat
15	complex terrain.
16	Just briefly, what to show that the
17	BLP line source of algorithm, plume rise algorithm
18	differs from stack sources. We note that in a line
19	source, we have dependence on the distance, linear
20	dependence whereas in a stack plume, you have a two-
21	thirds dependence, and this this illustrates the
22	enhancement that you get on a line source. A key
23	parameter in this modeling is the buoyancy parameter.
24	For a stack buoyancy parameters are fairly easy to
25	define. You can do a stack test and measure the

volumetric flow and the temperature, and you know 1 2 pretty much have it in a -- for a line source, 3 particularly for complex sources like coke batteries, 4 you don't have a well-defined method of calculating the It's a function of the dimensions 5 buoyancy parameter. 6 of the line source and exit velocity and, of course, 7 temperature difference. Now, for coke batteries, you 8 have two components of this buoyancy parameter. You have a convective heat transfer component, and this is 9 -- this is due to the heating of the ambient air 10 11 surrounding the hot coke oven surfaces, and you have a 12 myriad of surfaces. You have, of course, the top of the oven, you have the sides, and the doors and buck 13 stays and off-tape piping that's found on top of the --14 15 of the batteries. So you need to calculate what heat 16 transfer is occurring off of these hot surfaces and 17 then, secondly, there's a volumetric flow associated with the fugitive emissions, and there are a myriad of 18 19 sources of fugitive emissions along a battery which can 20 extend a hundred meters or so. Whenever you charge an 21 oven, there are door leaks along the battery, topside leaks, every fifteen minutes or so a battery is pushed 22 23 -- I mean an oven is pushed where massive hot coke is 24 pushed out of the oven onto a quench car. You

typically have a movable hood that captures most of the

25

emissions, but when you -- and then that goes to a 1 baghouse, but oftentimes when you undercoke the coal, 2 3 you don't get a good capture. You get a lot of 4 volatile organic compounds of particulate matter that escape the hood contributing to the volumetric flow 5 6 which adds to the buoyancy. So, it's critical that we 7 account for this and it's not always a straightforward 8 calculation -- calculation. Like for the fugitive emission component, we often have to relate observed 9 10 opacities we use in relationships between opacity and PM concentration and then when you calcu -- when -- if 11 12 you have an emission factor to estimate the PM emission rate, you can back-calculate what the volumetric flow 13 is. So, it's a -- it's not a simple, straightforward 14 15 process.

16 Now, our proposed procedure is to apply 17 -- it's a two-step process and then, as I said, this 18 has been -- this two-step modeling scheme has been used 19 for a good number of years, but now that we have 20 AERMOD, we need to take advantage of the advanced 21 science that AERMOD offers as opposed to ISC. So, what we've proposed is to use BLP to estimate the hourly 22 line source final plume rise based on line source 23 24 buoyancy parameters, physical dimensions and source 25 orientation similar to what I -- to what I just

1	
1	described, and then take advantage of the volume source
2	option in AERMOD where you can, on an hour-by-hour
З	basis, use height adjustment factors where you're going
4	to be changing your volume source release height on a
5	hour-by-hour basis based on the predicted plume rise
6	estimates from BLP. And we're currently in the process
7	of testing this procedure and plan to apply it for the
8	1-hour SO2 modeling that's going to be done and we've
9	also had discussions with EPA regarding its possible
10	use in the upcoming risk and technology reviews for the
11	sub-part C, five C residual risk modeling next year.
12	Just to note, so in summary, until EPA
13	develops a buoyant line source algorithm, we've
14	proposed this two-step modeling scheme. It can treat
15	enhanced plume rise from multiple buoyant line sources.
16	It's it is more time than resource intensive because
17	BLP requires the use of the Ramet meteorological
18	processor and, of course, AERMIC is used for AERMOD.
19	It's more cumbersome and time-intensive but until a new
20	algorithm is incorporated into AERMOD, this is probably
21	what we'll be using. Okay. Thank you.
22	MR. GEORGE BRIDGERS: Thank you. And
23	we'll just keep following right along. We have a
24	presentation from Trinity.
25	MR. QIGUO JING: I am Qiguo Jing from

Γ

1	Breeze Trinity Consultants. I did this work with my
2	advisor,Akula Venkatram, Marko Princevac, and David
3	Pankratz. n order to understand the disposition of
4	buoyancy mission from open source, we need to know the
5	emissions for sure and some source parameters. You
6	need geometry and urban meteorology. So, the first
7	question is what is the significance of urban boundary
8	layer. This picture shows the difference between rural
9	boundary layer and urban boundary layer. As we can see
10	here, because of the presence of buildings, the wind
11	speed is decreased and the turbulence is increased.
12	And because of the presence of buildings, there's an
13	extra layer, an oven canopy layer. The dysfunction
14	within oven canopy layer is an unsolved issue. It's
15	quite difficult. To be straightforward, if we put
16	stack height stack here, and put the same stack
17	here, we will expect different disposition, be heavy.
18	So, tracer study has been done in Palm
19	Springs in California in 2008. This is a stack, let's
20	see, the source parameters and look and see, it's low
21	level and buoyant. Forty-eight assemblers were
22	arranged in-house at a distance from sixty meters to
23	two kilometers, and we did three daytime and four
24	nighttime releases. Meteorology's was collected from
25	this tower. The wind speed indicates that promised

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 104
1	wind studies a low wind case. The wind speed is below
2	two meters per second during most of the day, and the
3	same spot indicates the daytime is pretty corrupted.
4	The nighttime is stable.
5	Despite the low wind speed, the
6	turbulent level is pretty high and because the wind
7	speed is low, turbulent level is high, the meandering
8	is important. And this is proved by the spacial
9	variation of observed concentration. Here at this
10	negative means upwind. Five means downwind. We can
11	see the concentration is really all over the place,
12	especially during the nighttime.
13	This is another plot of spacial
14	variation of the low concentration. We can see the
15	daytime concentration falls rapidly more rapidly
16	with radio distance being nighttime, and the nighttime
17	concentration adds to one kilometer is significant.
18	Next, we are using AERMOD to model the disposition of
19	one-day emission. This is unique from horizontal
20	diffusion in AERMOD accounts for the meandering and
21	accounting processes are plume rise, building effects
22	and turbulent disposition.
23	These are model performance results.
24	First, we look at the daytime. AERMOD performs really
25	well during the daytime, and it does predict the upwind

1	concentration, which indicates including meandering,
2	the AERMOD model is very important. However, at night,
3	AERMOD tends to only submit to the concentration. The
4	possible reason could be high plume rise, high mixing
5	height of high vertical spray. So, we did some
6	sensitivity studies on nighttime predictions. First,
7	we switched the building downwash off and on, but we
8	didn't see too much difference here because the average
9	plume height is thirty-five meters above the ground.
10	The building is only seven meters, so probably the
11	plume rise way over the building downwash regime. We
12	also used NWS data from airport adding impulse to
13	AERMET. The high wind speed at airport not improve the
14	model wind loss.
15	Next is the sensitivity study on mixing
16	height. We used, as we can see here, use fixed mixing
17	height does not improve the performance. So then we
18	thought about the vertical spray. Probably the
19	vertical spray is too high and this could be true
20	because low winds may be trapped in the shallow stable
21	bungalow layer during the night. So we modified the
22	AERMOD according to wind catch and the past 1985 paper.
23	In their paper, they describe the plume by two parts,
24	the updraft and downdraft. And they say some
25	limitation to these two parts. And we had some

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 106
1	limitation to the overall vertical spray. After that
2	the, you know, the (Inaudible) is reduced dramatically,
3	and the model performance is improved.
4	This is my conclusion. AERMOD provides
5	an inadequate description of concentrations associated
6	with the point of release from the level of source
7	during the daytime convective condition. AERMOD's own
8	estimates concentrating during the night when
9	conditions generated by wind shear and a simple
10	modification can can improve this performance, and
11	check out our Breeze you know, website. If you are
12	interested, we are release parallel version of our
13	newest EPA model in couple of weeks. If you are
14	interested, you can, you know, contact us, and I leave
15	a stack of my salesperson's business card here. Thank
16	you.
17	MR. GEORGE BRIDGERS: Oh, everybody's
18	not crazy if they're looking at the agenda. There are
19	two five-minute talks back-to-back but Bob's going to
20	do them combined.
21	MR. BOB PAINE: I have an alternative
22	way to do the buoyant line of source modeling in
23	AERMOD. I'm also going to talk about a little bit
24	about downwash and low winds, which was brought up
25	earlier today. As we've already heard from Allen, we

Г

1	need a buoyant line of source approach in AERMOD. I'm
2	going to talk about one way to do this, and an actual -
3	- a limited evaluation of that approach, and then a
4	mention of downwash concentrations of low and stable
5	conditions, how these may be affecting routine
6	assessments for 1-hour SO2 NAAQS compliance.
7	The only prudent approach for buoyant
8	line of sources is BLP, although that that module is
9	in CALPUFF, and I I think I saw a bullet wish list
10	that Roger may have mentioned that EPA intends to
11	augment AERMOD to add this feature, although it would
12	be nice to have a working solution now, and I don't
13	know when the EPA will actually be able to implement
14	this feature. BLP has some limitations besides that it
15	only models 180 receptors and 10 sources, which can be
16	easily fixed, but it has some constraints. The
17	buildings have to be equally long, equally separated
18	and have identical buoyancies. Often at aluminum
19	production facilities, you have the most of the SO2
20	releases are actually not on these buildings, but
21	they're in these clusters of little stacks that are
22	don't don't match the geometry of the long
23	buildings. So, it's it's not a good fit. Also, BLP
24	uses a different dispersion procedure, a different -
25	and so it's not a good match to to AERMOD. So, the

alternative would be, that Allen Dittenhoefer 1 mentioned, was well use BLP to predict the hourly plume 2 3 height and use -- use AERMOD's hourly volume-source approach, which was a very good feature to put into 4 AERMOD, Roger, for setting the hourly release heights. 5 6 Now this will work with BLP if the buildings and 7 rooftop dimensions are fairly ideal. They are all 8 equally long, equally separated. They have identical buoyancies. What about point sources interspersed 9 10 within these rooftop vents? The buoyancy isn't really well-represented. So, I'm going to describe a non-BLP 11 12 approach that doesn't have this limitation. Use as 13 recommendations communicated by John Irwin some -eight plus years ago to an application in Region Five 14 15 of -- for a, I think a slag pit and other iron steel 16 types of applications. There was - it was used in a Lake County, Indiana SIP. We've identified this as a 17 18 potential approach for a limited production facility and what it does is it uses plume rises as recommended 19 20 by John Irwin for buoyant fire plumes. You can do the 21 -- you can group your emissions into various individual volume sources that are applicable or consistent, have 22 23 consistent characteristics and emission constant, you 24 know, concentration of sources. And then the details

are, I'm going to submit it to EPA, but basically, you

25
would use volume source initial signal y's and signal 1 2 z's similar to what you'd use for AERMOD and ISC. But 3 the way we do the plume rise is we extract the debugging output from AERMOD for the -- the wind shear, 4 5 and we would use that to calculate the plume rise from 6 the Irwin-recommended procedure, get the plume height 7 for each hour from each of these volume sources and --8 and then use AERMOD's capability to do hourly varying volume-source heights to do the rest of the modeling. 9 10 So, we're using all the meteorology from AERMOD, not 11 from BLP, to do the plume rise and feeding it back into 12 AERMOD. We don't change AERMOD. We just extract the stuff from AERMOD, use an Excel spreadsheet to do all 13 the plume height calculations and put it back in the 14 15 AERMOD as individual volume sources each hour with 16 individual heights. 17 Now, again, the -- the distribution of 18 buoyancy in many of these cases is not uniform. The 19 emissions are not uniform. The whole area acts as an 20 integrated large heat island and so in one case, we 21 divided an area into four parts to define different 22 emission clusters. Due to the evaluation on a monitor 23 for over two years that was within a kilometer of the

plant to indicate whether this approach worked, and the 25 last two years had these observe design concentrations

1 well below the NAAQS of one ninety six, AERMOD
2 predictions without enhanced plume buoyancy rise was a
3 little bit high, I would say. But with this proposed
4 approach of almost shocking good agreement on this year
5 and then again, equal to or over-predicting the
6 monitor. So, we propose this approach for EPA's
7 consideration.

8 The other thing I want to discuss here is, oh, okay, so this is the conclusion that we need an 9 10 This is -- this is a non-BLP approach approach. 11 because we tried to get away from the -- the source 12 limitations that are built into BLP. We avoid these 13 limitations and use the actual AERMOD meteorological profiles to characterize in an Excel spreadsheet the 14 15 plume rise.

16 Okay, I'd like to also look at the fact 17 that we've been seeing in -- for buoyant stacks that 18 have heights close to the billing heights, not very high above the building heights, that we had large 19 20 predictions of downwash under almost stable conditions. 21 I mean, almost calm stable conditions. For example, a peak concentration with a wind speed of point three 22 23 meters per second is severe downwash, I'd have to say. 24 So, I was going to -- I looked back at the AERMOD 25 evaluations and found for AGA, the American Gas

1	Association, three stable experiments with a wind speed
2	of one point eight meters per second, and the observed
3	concentration is in this calm, and the AERMOD
4	concentration is this calm, so I would say in the words
5	of my former Governor, Mitt Romney, this model is
6	seriously conservative.
7	So, what can I I I think
8	there's no way there's no way to tell AERMOD
9	well, there is a way to tell AERMOD you can have a wind
10	speed dependent source that turns on and off with wind
11	speed but it's an issue I think that deserves seriously
12	serious serious consideration for a seriously
13	conservative issue.
14	So, one type of study that may have had
15	this both of these issues affected, has been
16	submitted or mentioned by the American Iron and Steel
17	Institute in meeting last summer, where several sources
18	in northwestern Indiana were modeled and there were two
19	monitors and using just out of the box AERMOD, we found
20	several times higher predictions and observations of
21	two area monitors. These may have been affected by
22	both the the downwash under very light winds and the
23	lack of a buoyant volume source capability. So, I
24	think both of these issues are important to consider in
25	refinements to AERMOD. That's it.

1	MR. GEORGE BRIDGERS: Thank you, Bob,
2	once again. The next fellow, George.
3	MR. GEORGE SCHEWE: Good morning. When
4	I started with the agency back in 1975, we were using
5	1964 meteorological data, and we continued to use that
6	for a number of years, gradually moving into the
7	seventies and the eighties and the nineties, and my
8	concern, I guess, from the transitions from the
9	eighties to the nineties metdata, was we all complained
10	that we had too many calms, and so over the last
11	several years, now we're using AERMINUTE and now we
12	don't have any calms. But we have a lot of light wind
13	speeds.
14	So, my interest in taking a look at the
15	difference between the AERMET and AERMINUTE AERMET,
16	I'll call it, comparisons was to figure out what
17	happened to the wind speeds. Are they lower? Are they
18	higher? Are there a lot more of them or fewer? Oh,
19	and I'd also like to thank my co-author, Dr. Abhishek
20	Bhat.
21	So, I used the AERMINUTE 1159 version,
22	and, oh, I'm sorry 11325 along with AERMET's 11059, and
23	when I refer to AERMET datasets, this is what I'm
24	referring to, datasets generated using straight NWS
25	ISHD, 144, 3280, whatever those regular hourly regular

-	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 113
1	data sets with the upper air soundings from that NOAA
2	website. The AERMINUTE then supplemented that by
3	including the one minute running, two minute averages
4	that are also available from NOAA.
5	The datasets I looked at were for
6	Harrisburg and Dulles, Cape Girardeau, Fargo, North
7	Dakota, Orangeburg and Gainsville. I'd like to thank
8	some of my co-Trinity modelers, Angie in Minneapolis.
9	Aubrey in Florida and Ashley in Kansas City for
10	assisting in putting together some of these datasets.
11	Of course, they didn't have them run in both modes, so
12	I got what they had and then I ran it in the other mode
13	so that I could use those for my comparisons. Just as
14	one example of what we found, this was just comparing,
15	and I know you can't read the numbers on here, the
16	percentages are set up the same. You have to be
17	careful when you generate your wind roses sometimes.
18	So, the first extent there is ten percent but even the
19	wind directions were affected in terms of what we saw
20	with the AERMINUTE-generated data.
21	This is for Cape Girardeau, and you can
22	see that the number of events in some of the wind
23	directions, for example, to the southwest and southeast
24	increased as you included the AERMINUTE data and some
25	of the calms went away. So, just as a comparison and I

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 114
1	tried to blow this up as big as I could last night, so
2	I think you can see this, with straight AERMET, of
3	course, you had values in the twenty to twenty five
4	percent range of calms which, of course, takes away a
5	lot of the hours that you want to model.
6	Fargo was not as big of a deal because
7	Fargo has a lot higher wind speeds there and you can
8	see from the average wind speeds across each of those
9	locations, the wind speeds other than Fargo were about
10	a meter per second less, and then when you run the
11	AERMINUTE data, which is all we hoped would happen when
12	we ran the AERMINUTE data, the number of calms went
13	away or went down significantly, I should say, by a
14	factor of two and a factor of more than that for Cape
15	Girardeau. It went down to two percent.
16	Oddly enough, the average wind speeds
17	actually increased across the whole set of model
18	averaged wind speeds, so the average wind speed across
19	the whole time period actually increased even though
20	the number of low wind speeds increased significantly,
21	so it's kind of an interesting phenomenon.
22	So, the question was, my question was,
23	how does this affect the modeling? And I've been asked
24	this question quite often amongst my fellow modelers.
25	Well, how's this going to affect our modeling? So, I

1	took the standard set of all source dot INP sources
2	that were part of the AERMOD test cases from the AERMOD
3	website listed above there. I added a few more. There
4	were no short stacks, no twenty meter, ten meter,
5	anything in the shorter range. So, I added a few
6	shorter stacks with some comparable type temperatures
7	and velocities and the emission rates that would be
8	comparable to sources that I'm looking at in the state
9	of Ohio right now, where we're looking at small sources
10	with large twenty-four hour and hourly emission rates
11	and trying to compare what those results are compared
12	to perhaps a power plant. So, we're looking at all of
13	it. So, this was the range of sources I looked at.
14	I did leave out the area of polisource.
15	You'll see in that dataset from EPA, there's an area of
16	polisource, too, but it's it's kind of an odd one
17	and didn't fit nicely within my receptor grid. My
18	receptor fence line was set at about a hundred and
19	seventy five meters from each of these sources. So,
20	they all sit right on top of each other basically, but
21	they're all modeled independently of each other.
22	Just some examples then of what I saw
23	and you'll see these as the top button Okay, this
24	is for the sixty-five meter stack, and unfortunately,
25	we did all of our ratios upside down. I should have

Г

1	put the AERMINUTE numbers on top expecting higher
2	numbers and the AERMET numbers on the bottom but I've
3	got the AERMINUTE in the denominator, so a value less
4	than one means that the AERMINUTE values are higher,
5	okay? So, just just for your knowledge, so then you
6	can see for by averaging period across here, that
7	typically we're seeing higher concentrations until you
8	get out to the longer averaging periods, and that's
9	pretty consistent on the two higher stacks that were
10	within EPA's test cases. For the two test cases that
11	they did not have in there, though, for the shorter
12	stack, you can see there's quite a bit of spread first
13	of all between the five different meteorological
14	stations, but you can still see that there's generally
15	at the lower averaging times you still had higher
16	concentrations. This becomes more pronounced for area
17	sources. If you look at my range here, I don't have
18	anything even close to one. All of the area sources
19	were showing concentrations that are much higher with
20	AERMINUTE, which is probably no surprise. Oddly
21	enough, the area circled did better than the square
22	area that was in EPA's dataset, so that was kind of
23	interesting phenomena there. I actually had some that
24	were, and this just disappeared, George. Okay, I think
25	that holds even better. So, here you can see that the

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 117
1	factor of one, the model actually did a little better,
2	at least I think most of the time, thought where it was
3	doing better was in Fargo, North Dakota again, where
4	the low wind speeds are not quite as much of an issue.
5	So, that was basically all I wanted to
6	put together. Just a demonstration showing what kinds
7	of concentrations you get. Four different kinds of
8	source categories at different averaging times. The
9	full paper on this will be, as Bob was mentioning, also
10	presented at the Air and Waste Management Association
11	and it's under review right now. Thank you.
12	MR. GEORGE BRIDGERS: Thanks, George.
13	And we have one more talk before our lunch break, which
14	looks like we're right on schedule. So, Sergio.
15	MR. SERGIO GUERRA: Yeah, my name is
16	Sergio Guerra with Wenck Associates from the
17	Minneapolis, St. Paul area, and I think it was last
18	November, that I took a class with George Schewe and it
19	was one of these things that I was asking a lot of
20	was one of chose chings chat i was asking a lot of
	questions about metdata processing, and I was asking,
21	questions about metdata processing, and I was asking, well, what's the affect of surface roughness and how
21 22	was one of those things that I was asking a lot of questions about metdata processing, and I was asking, well, what's the affect of surface roughness and how would we account for this and that, and I remember,
21 22 23	was one of those things that I was asking a lot of questions about metdata processing, and I was asking, well, what's the affect of surface roughness and how would we account for this and that, and I remember, maybe George remembers, he said, well, there'll be a
21 22 23 24	was one of those things that I was asking a lot of questions about metdata processing, and I was asking, well, what's the affect of surface roughness and how would we account for this and that, and I remember, maybe George remembers, he said, well, there'll be a paper, you know, so over these few months, like I kind

_	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 118
1	to identify what parameters on the metdata will affect
2	the AERMOD concentrations. So, as we talked in the
3	last couple of days, the metdata is very, very
4	essential into like what type of concentrations we find
5	and to what kind of affects we see on on on the
6	predicted concentrations in any kind of model, Russian
7	model, Eularian model, Lagrangian model.
8	So, I divided my talk on three parts,
9	the first part, this is going to be specifically one
10	slice of what I've kind of looked at. The full
11	presentation will be presented at the Air and Waste
12	Management Association on San Antonio this June, but I
13	want to focus also, like George did, on AERMINUTE and
14	kind of what, what we found. So, the first part is
15	going to be kind of a review of what we've already seen
16	on some of the webinars of the SO2, what we talked
17	about on Tuesday, on what is the purpose of AERMINUTE.
18	Then the second part is going to be, what are the
19	unintended consequences of AERMINUTE. I would say like
20	low speed winds have really affected what we expected
21	to to see, and its it was all done in good faith
22	in the part of EPA's kind of data that was out there
23	and that is used to complement some of the other
24	affects that that were done because of the change in

25 the -- in the way that the calm winds were identified.

And then the third part will be just kind of like a
 recommendation.

3 So, I did the presentation before I 4 heard what happened the last couple of days, so I'm 5 going to jump through some of the slides and I'll come 6 back and forth. So, again, like this will be presented 7 at the Air and Waste Management Association on June, 8 but AERMINUTE. Okay, so basically what happened, I think it was in '96, the meter started to classify 9 10 winds in a different way. So, there used to be it took a non-threshold for winds and all of a sudden, they 11 12 decided, well, we don't really care for low winds below three knots, so then they said okay, now anything below 13 three knots is going to be labeled as calm, and as a 14 15 result, when we take that data and put it into AERMET, 16 that data is basically lost. So, now, so we have a gap 17 between like three knots and two knots.

18 So, then what happened. So, I think 19 Roger or someone mentioned that they stumbled upon 20 these one minute data. That is actually pretty good 21 dataset. Well, I guess James mentioned that it had a kind of some issues that had to be resolved because of 22 23 the way it's kind of a archived and everything, but I 24 think the AERMINUTE was a very genuine effort into kind 25 of getting back that, that chunk of data that was lost.

1 But, so AERMINUTE was -- it's a pre-2 processor of this one minute ASOS data that can 3 complement the wind data that we have. It's non-4 regulatory AERMOD, so it's actually not required, and 5 as we know like light wind conditions may be a 6 controlling factor and this case we're adding the 7 number of calm winds, and concentrations are not 8 calculated for hours of calm or missing meteorological data, and the last bullet, I think, is kind of 9 important to realize, you know, like EPA from -- I 10 11 mean, on that piece -- quotation from some other 12 presentations from EPA, well, if there was not their 13 intent to add a level of conservatism because it basically was a -- an intent to kind of reclaim some of 14 15 the data that was lost because of these meteorological 16 kind of shift in the way they classified winds. 17 So, so, what happened? Well, so we did that and now we have this sonic anemometer on the left 18 19 and basically, there are no moving parts. They're just 20 pulses of sound and based on the difference of 21 reception, you can calculate the wind direction, wind 22 speed. But there's basically, it can identify very, 23 very low winds. So, basically the first one is zero, 24 and on the right we have a (inaudible) anemometer, you

know, the ones that have moving parts, and of course,

1	there's they're not as as accurate. So, anyway,
2	so this is something that I want to focus on because
3	basically, if your station is part of the one of the
4	ice-free wind stations, it would not have any
5	threshold. So, you, even the lowest wind that is
6	recorded would be processed into AERMET, so this is
7	kind of one of things that we talked about, and of
8	course, we learned on Tuesday that there's a memo that
9	will address this issue and will set a threshold. But
10	then the threshold's going to be set at one knot, so
11	again we went from three knots every like there was
12	a gap from three to two. Well, now we're going down to
13	one knot.
14	So, let me switch here. Like what I did
15	in that paper that I'll be presenting this summer is
16	like I processed metdata in different ways to identify
17	which are the driving parameters that are driving the
18	concentrations. So, the first situation is kind of
19	like the control one where actually we kind of
20	contacted the fuel staff of the National Weather
21	Service and said, okay, where is your met station, you
22	know, because I think Roger mentioned, somebody can
23	look at the aerial imagery and you can think that you
24	know where it is and then you find out that it was
25	another building that was not the right one. So, we

Г

1	went to that process but anyway, what I want to focus
2	on is on the iteration six where we ran AERMET without
З	AERMINUTE and at iteration nine, which is the last one
4	where we ran AERMINUTE but we ran it without the ice-
5	free wind group. Now, by doing that, though, what
6	we're effectively doing is setting a threshold of two
7	knots. So, any winds below two knots are basically
8	ignored. They're not entering to AERMET to be
9	processed into the the model. So, I mean, this is
10	the location. It was in Manhattan, Kansas. It could
11	have been anywhere, really, like for the purposes of
12	AERMINUTE.
13	Let me go back through. So, I just want
14	to show here and this has kind of been shown before, I
15	think George had very good slides, but AERMET does
16	pretty good. I mean, if you don't have AERMINUTE,
17	which is iterations fixed in the middle, you have a
18	twenty six percent of calm wind data. So, that's about
19	one fourth of your data that is basically ignored. But
20	when you use AERMINUTE like in the first road. You see
21	that you go down to only like eighty hours of missing
22	data which is about point nine percent of of calm
23	wind and point five of missing winds. So, but then
24	what happens if you actually set a threshold at two
25	knots, which is kind of like what you do by not

specifying that your station is part of the ice-free 1 wind group. So, if you do that, you have -- you do 2 3 gain some, you do gain but you lost by the meter cannot reclassification of calm winds, and then you end up 4 with fifteen percent calm winds. So, it's kind of an 5 6 improvement, and I ran this with -- from different 7 stack scenarios. One was like a short stack 8 representative of like avarice engine, in just shut boiler and the third one was like a tall stack which 9 would be indicative of like maybe a powerpoint, 10 11 something like that. 12 So, this is what we got for the tall 13 stack, which was the one that was most sensitive

according to this one case study, and on the left you 14 15 see what I called the marigold. So, that's with 16 AERMINUTE and you, I mean, it kind of looks pretty but 17 the bright it is, the higher the concentration. So, we see that it's almost like looking inside the stack, you 18 19 know, you kind of vary like dense concentrations, not 20 much dispersion going on. And the one on the right has 21 no AERMINUTE, you know, so there we kind of see what we've been used to, you know, kind of like a nice 22 pattern of kind of flowing dispersion going around. 23 24 When we used the -- again on the left, we have 25 AERMINUTE data and on the right we have the tall stack

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16/66-3 124
1	scenario run with the no-ice free wind group as a
2	scenario, you know, where you don't specified, you have
З	effectively a two knot threshold for the winds that
4	you're processing.
5	So, in that case, we we still see a
6	little bit of dispersion. It's not as nicely as the
7	one without AERMINUTE but this is kind of like a
8	virtual interpretation of what's going on. Now, here's
9	really where we can kind of the rubber meets the
10	road kind of deal and we talked, I mean, today and
11	yesterday, like to various people like in the API and
12	also the Forest Association of Paper or whatever it
13	was. We talked about how sometimes you can affect,
14	they can have the best type of controls and you have
15	very difficult timing meeting these standards. So, in
16	this case, it's a good interpretation where we identify
17	that the method of processing is actually driving the -
18	- the concentrations, that no matter how tall your
19	stack is, no matter what controls you put, if your
20	method is not processed properly, if you include those
21	very low winds, you will have no no way to pass.
22	So, let me see if I can So, anyway,
23	in this case, I can I just used one grant per second
24	for the emission rate. I mean, this was just kind of
25	like trying to identify the met parameters that were

Г

1	driving the concentration. So, if you use AERMINUTE to
2	get thirteen point one on this scenario. If you don't
3	use AERMINUTE, you get two point one and if you have a
4	threshold of two knots, you get five point four. So,
5	you basically on the 1-hour scenario, you have a fifty
6	eight percent difference between using AERMINUTE and
7	not using AERMINUTE. So, again, if you were to kind of
8	put this into like real emissions and kind of run like
9	even around if you're doing a tour or even the one
10	hours or two, really, what's going to drive your
11	results is while you process your data with AERMINUTE,
12	is your station part of the ice-free wind group or not.
13	So, that's kind of what I just wanted to
14	share today. This is kind of like nothing new. I
15	mean, EPA really already knows about it, and that's why
16	it's been addressed in this upcoming memo. And, well,
17	it is a problem. We've seen it in Minnesota with a lot
18	of facilities. We've had a lot of trouble in helping
19	getting compliance. I think Tyler mentioned yesterday,
20	well, there's been like, what was it, twenty-seven
21	projects that have met compliance. I think that was
22	with the with the NO2 standard. But what we don't
23	care about is like all the others that are still kind
24	of tied up in this process trying to figure out how to
25	make their emissions be controlled, how to kind of

1	bring about a run that will actually be a passing run.
2	So, that's kind of one of the things that that we
3	cannot don't have much data about but, I mean, they
4	might be some pretty excited that maybe didn't happen
5	because of this. So, it's obviously something that we
6	have to address, so how can be address it? Well, I
7	think that what like we've talked about for the last
8	couple of days. If we had a first one two knots and we
9	were comfortable with that and I think that it should
10	be kept at two knots, and then once the adjustments on
11	AERMOD are made like we talked about I think Bob
12	Paine mentioned about the use star and also the lateral
13	and the horizontal dispersion. Once those effects have
14	been properly validated and and and incorporated
15	into AERMOD, then it would make more sense to kind of
16	go down and and and take advantage of these
17	entities out there. But I think that we need to kind
18	of rethink our our threshold of one knot and keep it
19	at two knots, and again it does kind of still give you
20	like a more conservative answer but it gives us a
21	little bit of time to figure out what's going on and
22	and we can try to kind of fix those issues that we're
23	seeing on the over-prediction of AERMOD with low winds.
24	So, that's my talk. Thank you.
25	MR. GEORGE BRIDGERS: Well, outstanding.

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 127 We have the morning in the books now. We will take our 1 lunch break from noon until one. 2 3 (WHEREAS, the conference concluded for 4 lunch). 5 MR. BRIDGERS: Okay. I think we've 6 reached the one 7 o'clock hour, so - oh and I've got to get my tie back 8 out. We've reached the Ides of our public session on the Ides of March so we're going to start the afternoon 9 session with Dana Wood and on behalf of BP. Okay. 10 11 MS. WOOD: Thank you for this time to 12 comment. I'm 13 Dana Wood with BP and I'd like to start out with thanking Doug Blewitt with AQRM for all of his 14 15 assistance and help with this presentation. 16 Today I'm going to be asking the question: Are EPA 17 regulatory models capable of providing accurate estimates of future air-quality emissions, and I'm not 18 19 going to answer this question, but I want each of you 20 to draw your own conclusions. 21 Essentially, with a background of 30 parts per billion, you're left with 70 parts per billion for 22 23 all new and existing sources. You know, if the west 24 and if the model accuracy is about plus or minus a 25 factor of two, compliance with the standard can range

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 128
1	from 35 to 140 parts per billion, meaning that several
2	well-controlled sources could pass while very
3	uncontrolled sources I mean could fail, while very
4	poorly controlled sources could pass.
5	AERMOD is very much skewed to over-
6	prediction. You know this analysis kind of ignores the
7	form of the standard, but when it's considered I don't
8	think there's going to be any difference anyway.
9	One thing I do want to note is that NO2
10	background is not really a measure of NO2 but NOY,
11	because the measurements pick up ammonia as NO2 and
12	even with this inflation of the NO2 numbers, we're not
13	really seeing violations of the NO2 standard anywhere
14	in the country right now. I think this further shows
15	the exaggeration or over-prediction of these models.
16	I'd like EPA to kind of look at model
17	evaluation with the American Gas Association database
18	for natural gas fired engines. This is the source
19	that's of biggest concern to us because you've got
20	short stack heights and you're right next to a fence
21	line or, quote, fence line. We don't really have
22	fences. And you know so you're - it's very difficult
23	to meet the standard and these are where we're having
24	more - a lot of the problems. Of course EPA doesn't
25	see this because most of our sources are minor sources

and going - you know dealing with the states directly
 on this problem.

3 This database has used experiments using Sf6 4 tracer gas to help to determine what the emission rates are, so it helps make the emission rates more known as 5 6 opposed to say Empire ALBO or the Apollo Hawaii 7 databases that have no real emissions data. It also 8 had multiple downwind sampling points as opposed to one or two monitors like what was used in Empire and 9 10 This is a pretty high-quality database for Apollo. 11 evaluation of total NAAQS and if we do any other future 12 field studies you know, I would recommend that it be 13 something similar to this method that was used.

14 This is just a Q-Q plot of a linear Q-Q plot 15 of all the data in the AGA database parsed by stability 16 classes, observed as on the X-axis, YY is the AERMOD and if you notice there is a bunch of stars that are 17 black on the Y-axis. These are the stability Class F 18 19 and it shows the AERMOD predicted 225 micrograms per 20 cubic meter while there were absolutely no observed NO2 measured. You know there's a multitude of reasons that 21 this could be showing this, but I think the model is 22 23 showing downwash, but, where there is none. 24 The red squares that you see are for 25 stability Class C and you can see AERMODs primarily

1 under-predicting these sources.

This is a graph of the stability classes that are broken out by over-prediction and under-prediction by AERMOD with over-prediction greater than 2: overprediction less than 2 and then under-prediction less than and more than a factor of 2.

7 So what are the implications of looking at 8 the AGA database for model evaluation? Well, first it shows 60-percent of the time the model over-predicts by 9 more than a factor of 2 and 35-percent of the time the 10 11 model under-predicts by more than a factor of 2. With 12 this kind of uncertainty, are the models accurate 13 The likelihood of getting anywhere close to enough? right is very minimal and well-controlled sources will 14 15 probably fail under this scenario.

16 The other issue is with - the wind speeds 17 tested were 1.3 meters per second and EPA is now claiming that the accuracy of the model is valid up to 18 19 2 meters per second with you know, no backup data to 20 support this. Industry provided model improvements 21 three years ago for light wind speeds. It's been talked about repeatedly here and still this has not 22 23 been incorporated into the model.

Also, AERMOD is a study state model that assumes a plume goes to infinity instantly. These A-

1	physical results should be allowed to be excluded in
2	your analysis. These A-physical results can easily be
3	removed if it exceeds the meteorological persistence or
4	actual trajectory of the plume not to arrive at a
5	receptor. You know you could always use CALPUFF as an
6	alternative for this to address these A-physical
7	results.
8	Now, I'll switch kind of over to AQRV
9	analysis. CALPUFF and industry has spent a
10	considerable amount of money over the past several
11	years to comment and provide a new chemistry mechanism
12	and as of yet, EPA hasn't incorporated this.
13	It can be very difficult from our perspective
14	to use best science or better science in a regulatory
15	setting. We've spent a year and a half waiting to
16	complete an EIS while Wyoming DEQ, BLM and EPA debated
17	whether we could use CALPUFF or CAMx for doing our AQRB
18	analysis. Meanwhile, you know - meanwhile, we can't
19	develop. Even with CAMx there is considerable over-
20	prediction and the models really need to be used in a
21	relative mode.
22	So, in conclusion, I think everyone in this
23	room feels that models must continue to be improved to
24	better reflect reality. This is going to require peer
25	review of EPAs work and better collaboration between

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16/66-3 132
1	the whole modeling community and EPA. It would be
2	great if from this conference, EPA would publish a work
3	plan for public comment and input so that we can all
4	you know just look at how to address these problems.
5	Thank you for your time.
6	MR. BRIDGERS: Thank you, Dana. And we
7	can get rid
8	of that one. The next presentation is not by Doug, it
9	is by Nicole.
10	MS. DOWNEY: Hello, my name is Nicole
11	Downey. I'll
12	be presenting on behalf of Doug who is sorry he can't
13	be here: he got the flu. And, I'll be talking about
14	issues associated with NO2 model evaluations,
15	specifically the Empire ALBO dataset.
16	As a little background to this, Doug was
17	involved in the original data collection as were
18	several other people who have been in this conference.
19	We're working from a conceptual NO2 plume model where
20	you have this core of NO. This is basically like the
21	PVMRM or the ozone limiting method where you have an No
22	core and the ozone is mixed in on the sides and then
23	you react to NO2, but the complete version to NO2
24	obviously takes some time and that's going to depend on
25	the meteorological variability, the rate of reaction

1 and your ozone concentration.

With AERMOD, the NO2 is calculated, its parameter based on the NAAQS concentration and you have both the issue of dispersion as well as the conversion between NO2 or NO to NO2 that you have to keep in mind when you're making this conversion to No2. So there are a couple of processes going on.

8 And, in this last point, the NO2 model performance, it can be better but it probably shouldn't 9 10 be if you think about how it's actually a 11 parameterization of NAAQS, and so I'll show you an 12 example of how this parameterization can lead to 13 perhaps overestimates in the conversion rate between No and No2 because you're under-predicting NAAQS and then 14 15 you end up over-predicting NO2.

16 So, first I'll give you know, we saw from Roger's 17 presentation that they - you know the empire ALBO data that was used to evaluate AERMOD, it's been one of the 18 19 primary datasets used along with the whole Hawaii 20 dataset and it was an Amoco gas plant data that was 21 collected and I have these dates wrong: it was 1992 and 1993, over two years, and it was designed to develop a 22 23 database for performing OLM calculations to demonstrate 24 compliance.

There was an ozone monitor upwind of the

	~ · · · · · · · · · · · · · · · · · · ·
1	plume and there was an ozone monitor downwind of the
2	plume and then there were two NAAQS boxes there as well
3	and then there are also - it's not an isolated source -
4	there are more regional impacts and I think it's
5	important to realize this study was not designed with
6	this in mind, because there's no actual emissions data.
7	No one ever measured the emissions coming out of the
8	plant during this time. This was an exercise to get a
9	permit. This was not actual emissions data used and as
10	we all know, you don't permit with actual emissions,
11	you permit with maximum emissions.
12	So there are at least three different
13	emission inventories for this plant. There's the 2600
14	tons per year based on historical plant operating
15	capacity, a compliance inventory of 1800 tons per year
16	and then in 1995, inventory based on a compliance
17	strategy of about 1500 tons per year. And so there's
18	quite a bit of variability in what could be used in an
19	evaluation and it's not clear what was used and I think
20	some of this gets at the fact that all of these
21	analysis should be publicly available and the data use
22	should be accurately described so that you can recreate
23	what's done.
24	And, basically the idea from this slide to

25 take away is although we have these emissions

1	inventories that doesn't mean that over this time
2	period that the emissions were close to this. There
З	are a lot of things that can happen operationally that
4	make you drift from your permitted levels.
5	And, then, there are a couple of other NO2 databases:
6	we've heard about the Palaau, Hawaii: it's an oil fired
7	turbine. There's not a lot known. We heard that the
8	instrument was very close to the source. The
9	Wainwright, Alaska has also the oil fired electric
10	generators and here you're almost in a different ozone
11	regime. You're up in Alaska. You've got nothing going
12	on, right? I mean is it reasonable to use something
13	that's not even close to a normal chemical regime that
14	you would see in the United States?
15	And as we've all talked about, we need to get
16	out there and collect some data and there needs to be
17	some real data where you measure real emissions and you
18	measure No and NO2 and that's the way to solve this
19	problem.
20	Doug, here, is making the argument that if
21	you do the typical Q-Q plots unpaired in time, unpaired
22	in space, you can mask some compensating errors because
23	it looks like you're making good predictions but in the
24	end, actually, you may be not, and so he suggests that
25	you use you know, the NAAQS NAAQS- the typical Q-Q plot

to evaluate total dispersion. The NO2 model 1 predictions compared to the observations where you've 2 3 kept the right NAAQS pairing so you're - you're 4 evaluating the total dispersion and you're matching the 5 chemistry at the same time. And then, you're No2 6 models compared to NAAQS observations unpaired in time 7 is you know sort of three ways to look at this problem. 8 And, so, I'll show you sort of what the effects of these can be. So the first plot is just the 9 NAAQS, NAAQS plot and this is using the 1995 emissions 10 11 inventory for Empire ALBO and also other regional 12 sources and you can see that at the high end of the 13 spectrum, AERMOD is under-predicting the concentration of NAAQS relative to the monitor. Okay. 14

Then in the next slide we show NO2 monitored and No2 modeled where these are still paired with the NAAQS measurements, so this isn't just a flat out Q-Q plot. We're actually keeping some of the temporal characteristics here. And you can see that in many cases there's more than a factor of 2 over-prediction in the No2 that's modeled.

Now, if you remember that initially you have an under-prediction in NAAQS and now you'll have an over-prediction in NO2, this is an issue because the conversion rate that you calculate from a typical Q-Q

1	plot will lead to more No2 production from NAAQS - from
2	No.
З	And so here's the typical - this is just NO2
4	versus No2 unpaired and it falls within 2 - the factor
5	of 2 bios line, but again this is just a flat out Q-Q
6	plot and we're not taking into account any of these
7	other errors and I think this is a good example of how
8	you need to be very careful in how you look at the data
9	to be sure that you're not masking any compensating
LO	errors.
L1	So in spite of the uncertainties in the
L2	emission data, the NAAQS model performance is under-
L3	estimated by almost a factor of 2 and if you keep the
L4	NAAQS pairing and evaluate NO2 that way, the No2 model
L5	performance is overstated by more than a factor of 2.
L6	And that implies that matching No2 conversion with
L7	NAAQS dispersion can overstate the No2 formation, so
L 8	basically, we just have the reactions going a little
L9	too fast.
20	If it's compared to the monitoring data
21	independent of time, you basically get this over-
22	prediction of a factor of 2 at the high end and I think
23	I would like to stress on behalf of Doug that it would
24	be really nice if all of this were publicly available

25 and laid out so that everyone could evaluate the

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 database and see what's going on. 1 And why is this important? I think this is something 2 3 that we've seen before: This is a plot of the observed 4 versus AERMOD from the AGA database and there are 5 different stability classes plotted here so for 6 instance the "F" stability class where you have various 7 stable conditions, you're getting something like oh I 8 don't know, an infinite amount higher. I mean it's very high compared to the observations. It's hard to -9 200 divided by one, I guess it's not that high, but -10 11 so you know, it's important to identify these things 12 because you can mask a lot in a Q-Q plot and it's 13 important to look at this stuff critically and to be sure you're doing the right thing and you are actually 14 15 - when you're parameterizing these things, a lot of 16 stuff - slough can be taken up by a parameterization, 17 so you need to be sure that you minimize that slough before you make the parameterization. 18 19 So some conclusions and recommendations that the code 20 review of PVMRM has some formulation problems I guess

21 from the Steve Hanna presentation. I think the 22 conversion of No to NO2 overstates the No2 conversion 23 in this analysis. I think one other thing that I 24 forgot to mention is that there were these two ozone 25 monitors: one upwind and one downwind, and I think

Г

1	Roger showed he tested both of those and it did make a
2	difference depending on which one you use, because the
З	downwind monitor was there to observe scavenging and if
4	you use that, then you'll get again, a different answer
5	because you have lower ozone in order to mix into your
6	plume and so it's very important that you understand
7	you know what the data - how they were originally
8	collected and to keep the people - I think this
9	community seems lucky in the fact that a lot of the
10	people that collected all the data are still in the
11	community and you can ask them. That you know this is
12	important you know, you need to be sure that the study
13	is well laid out and well described and you're using
14	the most appropriate data.
15	I think everyone agrees there's an urgent
16	need to move forward on this NO2 issue and until
17	refined techniques occur, we should find some way to
18	get our arm into the guidance.
19	I think that's it.
20	MR. BRIDGERS: Thank you, Nicole. And we
21	wish Doug all the best in recovering from the flu.
22	Okay. Well, the next presentation -
23	we're actually - I'm going to just - I'm going to put a
24	backdrop up for you, Cindy. There you go. We have a
25	presentation by UARG I'll just let you introduce

1 yourself. 2 MS. LANGWORTHY: I am Cindy Langworthy 3 and I'm speaking on behalf of UARG, which is the 4 Utility Air Regulatory Group and I'm going to be talking more policy so no slides. 5 Results from EPA's suite of models and 6 7 related guidance play a key role in how UARG members 8 operate their existing sources and numerous plans to build new sources. The more EPA tightens its air-9 quality standards, the greater is the need for 10 accurate, unbiased EPA preferred models and reasonable 11 12 modeling approaches. 13 When models are called upon to play such an important role in clean air act implementation, that 14 15 puts a premium on their producing accurate predictions. Forcing regulators and regulated 16 17 entities to use models that over-predict source impacts by potentially significant amounts create serious 18 19 problems for and imposes unnecessary costs on 20 industrial sources, the states in which the sources operate and the individuals who are their customers. 21 22 Today, I'm going to summarize a few of 23 UARG's concerns on modeling related issues and UARG 24 will provide additional information on these issues and 25 others in written comments.

Г

1	First, it is clear that EPA states and industries must
2	rely on models for implementing some provisions of the
3	Clean Air Act. For that reason, it is important that
4	the underlying regulatory models and related modeling
5	tools and any changes to these regulatory models and
6	modeling tools be fully tested and evaluated before EPA
7	accepts their use for regulatory purpose. Not only
8	must such evaluation be done, but it must also be done
9	consistently with how the model is used. For example:
10	if a model's performance is evaluated with actual
11	emissions, then for regulatory purposes, the model
12	should run with actual emissions rather than with
13	combinations of inputs that have not actually occurred
14	and are unlikely to occur in the real world.
15	Similarly, if background concentrations will be
16	accounted for when a model is used in a regulatory
17	context, then background concentrations should also be
18	taken into account when the model is evaluated and
19	monitored air-quality values should be the benchmark
20	against which models are evaluated. Concentrations
21	measured by an EPA-approved monitor at an EPA-approved
22	site should be relied upon and preference to
23	concentrations predicted by a model, even one that had
24	been appropriately evaluated and designated for
25	regulatory room - regulatory use.

-	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 142
1	Next, we want to touch on the process that
2	EPA follows before making changes to the models, that
3	the agency has approved regulatory use. To be clear,
4	UARG members want to see improvements made
5	expeditiously to EPA's guideline models, but such
6	improvements should be carried out under the framework
7	provided by the Clean Air Act.
8	Recall that EPA's modeling guideline is a
9	regulation, therefore, EPA does not have authority to
10	make significant changes to the guideline and the
11	models it references without first giving the public a
12	meaningful opportunity to comment. What this means is
13	that the finalization of modifications to EPA's models
14	must be preceded by the agency first proving the public
15	with documentation on how well the modified models will
16	perform and also giving the public a meaningful
17	opportunity to comment on the proposed changes and
18	related documentation.
19	There have been several recent instances in which such
20	procedures have not been followed, for example: EPA
21	added AERMET to AERMOD through a modeled change
22	bulletin. EPA provided no opportunity for public
23	comment before adapting the - adopting the change. EPA
24	did not provide any information on the model's

performance when AERMET is used. And AERMET,

apparently, as we've seen, exacerbates an overprediction problem at low wind speeds. EPA also did
not provide notice and a chance for public input before
it modified how the GEP stack height limits are to be
modeled within AERMOD.

6 Comments over the past couple of days suggest 7 that EPA intends to continue making modifications 8 without following the procedures, which the Clean Air Act requires to be followed. In particular, EPA has 9 suggested that it distinguishes between changes to the 10 codes of the preferred models, apparently, and changes 11 12 to tools used in conjunction with those models to 13 characterize source emissions through meteorology. EPA apparently plans to allow prior public comment on the 14 15 former, consistent with the Clean Air Act but not the 16 latter.

UARG strongly disagrees with the distinction 17 EPA appears to be making. First, it is unclear where 18 19 EPA is going to draw the line between which changes 20 will trigger the need for public notice and comment and 21 which will not. Changes to modeling tools can affect the modeling results as much as - or in some cases more 22 23 than - changes to the model code itself. Any change that alters the modeling results should be made only 24 25 after the agency has applied evidence concerning model

1 performance in light of the plan changes and has 2 provided the public with a meaningful opportunity to 3 comment.

And let me say that we're hearing you know three to five years to do rule making. EPA has demonstrated in other instances the capability of moving much more quickly than that, particularly when it's supplied information to go through proposal and to a final rule.

10 So UARG also requests that EPA simplify, expedite and 11 make more transparent the procedures followed when 12 those outside EPA suggest changes they believe should 13 be made to EPA developed models. For example: the 14 tendency in AERMOD to over-predict concentrations in 15 low wind speed conditions - we've heard a lot about it 16 - it's well-recognized.

17 Although stakeholders have suggested 18 improvements to AERMOD to address this problem, EPA has 19 delayed consideration of - or some would say ignored -20 those suggestions, thereby inhibiting substantial 21 progress toward addressing this issue with AERMOD. 22 And then we know about the AECOM solution 23 that's been proposed, but EPA has taken no action on 24 the suggested fix. EPA needs to take action now on 25 this issue and it needs to put in place a better
program for considering on a timely basis any
 additional outside suggestions for improving AERMOD and
 EPA developed models.

4 Over the past couple of days, it has been 5 heartening to hear that EPA wants to work more closely 6 with a broader modeling community, including industry, 7 to address these kinds of modeling issues. It has been 8 far less heartening though to hear EPA's list of obstacles that are in the path of greater cooperation. 9 One such obstacle - about which we have heard a lot -10 11 is the lack of sufficient agency resources, which EPA says means that the agency will address only those 12 13 modeling issues of higher priority. If EPA is truly interested in working with industry, we urge the agency 14 15 to take industry's concerns into account when 16 determining what issues are of high priority. If a 17 modeling issue is of high priority for industry and if 18 EPA is willing to work with industry on it, then 19 industry will devote resources to addressing that 20 issue. This has been the case with the industry 21 support for development of a fix to improve AERMOD's performance during low wind speeds. 22 23 If EPA is unwilling to take time to review 24 and consider such work on issues of importance to

industry though, then industry may be less interested

25

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 146
1	in using its resources toward working cooperatively
2	with EPA on this type of issue in the future.
3	AERMOD of course was developed with EPA's
4	support. EPA seems even more reluctant to consider
5	implement changes to models that have not been
6	developed by the agency.
7	CALPUFF, for example, is a preferred
8	guideline model that was not developed by EPA. There
9	is general agreement on inadequacies in how CALPUFF
10	treats the formation of nitrate and sulfate. This
11	leads to inaccurate assessments of the contribution of
12	sources of So2 and NAAQS to visibility impairment.
13	For industry, this CALPUFF inadequacy was a
14	high enough priority issue that West Associates and
15	EPRI have helped fund efforts to develop and evaluate
16	improvements to CALPUFFS industry modules.
17	When information on these improvements was
18	shared with EPA, however, EPA indicated that it would
19	be several years before the improvements could be
20	considered for conclusion in the regulatory version of
21	the model.
22	It is neither reasonable nor appropriate for
23	EPA to allow such lengthy delays to occur before it
24	considers where appropriate implements improvements to
25	models used in regulatory decision-making.

1	Finally, because of the importance of the issues raised
2	at this and other modeling conferences and the speed at
3	which technology is advancing, UARG urges that such
4	conferences be held more often and UARG urges that
5	other EPA sponsored events on modeling issues: for
6	example, the yearly meeting with modelers with state
7	and local agencies, be expanded to allow consistent
8	meaningful participation by all stakeholders. And I
9	know that you've said not this year and maybe in the
10	future. We urge you to do it.
11	In addition: In order to assure the public will have
12	real opportunities for input on modeling issues at such
13	conferences and meetings, EPA should make sure that key
14	document on modeling policy are released well ahead of
15	time. For example: We wish that EPA had been able to
16	make the PM 2.5 modeling guidance available prior to
17	this conference.

In closing, UARG urges EPA to become more 18 agile and open in its approaches for improving models 19 and modeling tools. Industry and those who work with 20 21 it possess demonstrated expertise on air quality 22 modeling issues and are eager to work with EPA and 23 other stakeholders to ensure the best modeling tools 24 and procedures are used in all regulatory proceedings. 25 EPA will benefit from such a partnership by taking

_	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 148
1	advantage of the resources that industry is willing to
2	put forward to address key issues. The agency can both
3	gain cutting-edge models and simultaneously gain the
4	practical insights of stakeholders.
5	UARG appreciates the opportunity to speak to
6	you today.
7	Thank you.
8	MR. BRIDGERS: Thank you, Cindy, for
9	those comments.
10	All right. Let me make sure we have the right one: we
11	good? Okay. So up next is Mark and I'll let you
12	introduce yourself.
13	MR. BENNETT: Thanks, George. Yes, I'm -
13 14	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but
13 14 15	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto.
13 14 15 16	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation -
13 14 15 16 17	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but
13 14 15 16 17 18	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but not that early, I got my final presentation into George
13 14 15 16 17 18 19	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but not that early, I got my final presentation into George and so I had whatever; two, three minutes to reflect on
13 14 15 16 17 18 19 20	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but not that early, I got my final presentation into George and so I had whatever; two, three minutes to reflect on what's happened over the last couple of days, so I
13 14 15 16 17 18 19 20 21	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but not that early, I got my final presentation into George and so I had whatever; two, three minutes to reflect on what's happened over the last couple of days, so I wanted to get wind of those thoughts on the record to
13 14 15 16 17 18 19 20 21 22	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but not that early, I got my final presentation into George and so I had whatever; two, three minutes to reflect on what's happened over the last couple of days, so I wanted to get wind of those thoughts on the record to all of you and I was pleased to see that the three
13 14 15 16 17 18 19 20 21 22 23	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but not that early, I got my final presentation into George and so I had whatever; two, three minutes to reflect on what's happened over the last couple of days, so I wanted to get wind of those thoughts on the record to all of you and I was pleased to see that the three previous speakers I think are on exactly the same page:
13 14 15 16 17 18 19 20 21 22 23 24	MR. BENNETT: Thanks, George. Yes, I'm - for the record, I'm Mark Bennett with CH2M Hill, but I'm giving this presentation on behalf of Rio Tinto. And before I proceed with my very short presentation - it's only seven slides - much earlier this morning, but not that early, I got my final presentation into George and so I had whatever; two, three minutes to reflect on what's happened over the last couple of days, so I wanted to get wind of those thoughts on the record to all of you and I was pleased to see that the three previous speakers I think are on exactly the same page:

1	oriented and we've heard again and again in the last
2	two days that we have to get the details right and
3	believe me, as somebody with a PhD, I understand that.
4	With that said, I'm hoping that we don't lose sight of
5	the forest for the trees, that we keep the big picture
6	in mind and, frankly, I believe that we're all on the
7	same page here - that we all have a common goal of
8	making sure that the regulated community can do their
9	jobs in a manner that's protective of public health.
10	Now, you know, in the past it may have
11	appeared that those two groups were in somewhat of an
12	adversarial relationship, but even with our spirited
13	discussions today, I certainly believe that we are all
14	on the same page so we all want the same thing here and
15	you know, I have many different clients in my role as a
16	consultant, whether it's the mining industry, steel,
17	auto manufacturing or even some of my clients are with
18	the Department of Defense and their job is being
19	prepared to defend our country. They all want to do
20	their job, they all want to do it well and they all
21	want to be protective of the public health.
22	So, that, I think is our common goal
23	here and so with that, I think that we need to - it's
24	always been true, but certainly never more true given
25	the current economic situation, that we need to look

1	for practical and pragmatic solutions and again, I'm
2	somebody who took seven years to finish my PhD looking
З	for all the right details, all the perfect solutions -
4	we can't wait that long I don't think. I think we need
5	to find practical and pragmatic solutions maybe step-
6	wise solutions to come up with as the previous speaker
7	said much more eloquently than I, you know, three years
8	has severe severely negative economic impacts to our
9	clients that are in the manufacturing industry here in
10	the country.
11	So with that, let me go ahead, get off my soapbox and
12	talk for Rio Tinto. Again, as we've all said, that the
13	drivers now - it's really causing all of us here in the
14	regulated community to be of concern are the new
15	standards. This certainly requires the performance of
16	AERMOD to be refinements to be expedited and address
17	known deficiencies. The specific issues that are of
18	particular concern to Rio Tinto are of no surprise: the
19	low wind speed that we've heard again and again about:
20	the air minute and how that exacerbates that, the
21	buoyant line sources, pit retention is one in
22	particular we haven't heard about, but is of particular
23	concern to Rio Tinto and then I'm not going to have
24	another slide on it, but again the impacts of frequent
25	updates to AERMOD, delaying projects which again has

real world impacts and certainly I nor anybody else is 1 advocating, not fixing, any knows deficiencies, but I 2 3 think if we work in a collaborative spirit maybe those 4 fixes can come in bigger blocks with longer time periods between the fixes. 5 6 Okay. So low wind speed: we've heard about 7 it again and again, so I'm not going to belabor all the 8 points. The main one being though for the mining

industry that for mining operation emissions from the 9 haul roads, which are near ground level sources, are 10 frequently the highest model impact sources and can be 11 12 the primary driver for approval for a site. And we're 13 referring again back to Bob Paine's proposed fix, from Maybe that's not the perfect fix - it doesn't 14 AECOM. 15 fix everything, but it certainly seems like a practical step-wide improvement that could be implemented fairly 16 17 quickly. And again, we've heard a lot about the ASOS and AERMINUTE, that this is just exacerbating the over-18 19 prediction of those types of sources, so again, I 20 really think - and again I was heartened to hear again 21 and again from industries, so I'm hoping that industry's voice is being heard loud and clear by EPA: 22 That this needs to be fixed and maybe you know "fixed" 23 24 is the wrong word. I would say needs to be refined so 25 that answers are better - still productive of public

health but not over-predicting and not having negative
 economic impacts.

3 We've heard about AERLINE coming along and 4 this is one way I wanted to mention again you've heard 5 several times about buoyant line sources, so again, 6 haul roads - right now the trucks - the emissions from 7 the trucks, in addition to the fugitive mission from 8 the dust that they're kicking up, we have the NAAQS in 9 particular with the new standard - is going to be difficult to address and if we don't have a buoyant 10 11 line source approach - and we've heard some over the 12 past few days - some possible approaches; that's going to again exacerbate the problem that we have a 13 neutrally buoyant line source near the ground, low wind 14 15 speed conditions, the new standard, all the things 16 we're hearing again and again and again. So there are 17 other models out there that can deal with buoyant line sources. We need to have a practical solution to this, 18 19 again, maybe a step-wide approach expeditiously. 20 So I'll spend - I'm ahead of time so I'll spend a 21 little more time on this one since we haven't heard about this before and I'm not going to raise a huge 22 23 issue about it, but I just want to make sure that EPA 24 is aware of this. Now, this is the pit retention 25 algorithms, which were added into EPA's ISC model back

1	in 1995. It has to do with estimating impacts for
2	particular emissions originating below grade for open
3	pits. Now, of course, I may have missed it, but I
4	didn't see anything in the AERMOD model about it and
5	the ISC Users Manuel, I mean the Manual - it he ISC
6	Users Manual it says - and hopefully I've quoted this
7	correctly: "Pit retention and wet deposition algorithms
8	have not undergone extensive evaluation at this time
9	and their use is optional." These - if you look back
10	to where this came from, the open pit algorithms are
11	derived from a limited set of wind tunnel studies.
12	They came up with some proportionality constants, which
13	again may not be applicable in all cases as is - and
14	I'm going back to the details I suppose in this case -
15	it's being characterized by a rectangular shape with an
16	aspect ratio of 10-to-1.
17	Now, when you scale up from the wind tunnel
18	studies to the actual pits or the theoretical pits that
19	are being representative, they have a disorder of size
20	of you know, 200-some meters by 400-some meters by
21	about 45 meters deep.
22	The challenge that we have at Rio Tinto at
23	their Bingham Canyon Mine in Utah is that it's several
24	you know - they keep digging so it keeps getting
25	bigger, but it was about two and a half miles wide by

1 two and a half miles wide by more than a half a mile 2 deep and we felt that the use of this algorithm was 3 inappropriate and since there was no guidance at all in 4 the document, we had possibly some disagreements over 5 that issue - let's just put it that way.

6 Now, something very interesting and we can 7 certainly provide it to you is that all the pits in the 8 wind tunnel studies were symmetric in shape and this led to there being large recirculation in those pits 9 10 and the algorithms that were implemented into ISC uses 11 reduced pit area and have the emissions coming out of 12 the upwind side of the pit as you would imagine from 13 large recirculation.

14 At the University of Utah, several years ago 15 - and we've done some more recent studies too - they 16 did some computational fluid dynamic studies with a 17 discretization of a real pit, they didn't see any of this large recirculation at all and they were like, 18 "Hmm, I wonder why that was?" Well, then they went and 19 20 made it into a regularly shaped pit, one was trapezoid 21 and one was rectangular of the same - roughly the same size and dimensions and depth, and they saw these large 22 23 re-circulations and this is one of those moments where 24 those of us who spent too many years getting out PhD 25 goes, "Oh my goodness, here's something that's actual

application of what I learned back then which I studied 1 2 bio-variation analysis." And I won't bore you with all 3 the details, but basically, as you break symmetries, various periodic behaviors go away, so this was no 4 5 surprise to me, but I think that it calls into question 6 these algorithms, because unless you have a real world 7 pit that's very symmetric, it's not going to see these 8 large re-circulations.

And I guess my time is up. This is just a 9 figure from that study to show you the size of the pit. 10 11 And then in conclusion, I was just going to 12 say again, as EPA prepares the new NAAQS, I hope we have continued coordination. Rio Tinto was very happy 13 that - we've heard over the past few days and over the 14 15 past years, we've heard about increased collaboration between EPA and the regulative community. We believe, 16 17 as several speakers have said, that EPA has a 18 responsibility to provide tools that accurately 19 evaluate the impacts in order to avoid unnecessary 20 barriers to beneficial economic growth. Rio Tinto has discussed these concerns with their fellow National 21 Mining Associations member companies, which may or may 22 23 not be providing their own written comments during the 24 public comment period, but Rio Tinto definitely will. 25 So, thank you very much.

1	MR. BRIDGERS: Thank you, Mark, for the
2	comments and for the presentation. All right. We'll
3	shift gears here to a TVA talk by Stephen Mueller.
4	MR. MUELLER: I'm Steve Mueller and I
5	work with the Tennessee Valley Authority and my
6	presentation today - my comments are regarding modeling
7	for the one-hour So2 standard and the question that I
8	wanted to address initially was whether the tempo
9	resolution of the meteorological information that goes
10	into modeling, such as AERMOD, using AERMOD, affects
11	the outcomes for one-hour So2 levels that are
12	simulated.
13	The objective of what I did was to
14	compare the performance of AERMOD running both and
15	using a standard hourly modeling approach as well as
16	sub-hourly versions based on the work that Bob Paine
17	described earlier today with the air minute plus and
18	the sharp software. I've compared those results
19	against some hourly observations that were available
20	around a point source.
21	This summarizes the modeling. I won't go into the
22	details but again, as I said, we used the AECOM sub-
23	hourly data processing software and essentially modeled
24	the meteorology using 10-minute time steps so six 10-
25	minute periods per hour. We modeled the 800 megawatt

1	coal fired power station and used actual emissions.
2	The modeling was performed for a period of four years.
3	I had to drop a year because there were no ground
4	observations to compare the results with. We used
5	standard National Weather service: a 1-minute surface
6	data and didn't have to do any downwash calculations
7	because it was an uncontrolled source that was modeled.
8	The - this plot here shows the location of the model
9	source, which is the green circle located toward the
10	upper center of the plot. Near the number one: the
11	one, two, three and four represent the So2 monitors:
12	they were located within 50 kilometers of the source.
13	There was another monitor that was located toward the
14	southwest: that was on Mountaintop. We used the data
15	from that site to represent background conditions.
16	There was also winds measure on the summit of the
17	mountain or above the summit of the mountain I used to
18	help me decide when these ground level SO2 monitors
19	were essentially downwind or with a plus or minus 30
20	degrees of a projected plume from the source - the
21	model source.
22	There's another source in this plot, which is
23	a purple source up near three and four and that source
24	was not models and that did affect some of the
25	comparisons with observations, which I'll show you here

1	in a minute.
2	The concentrations that were compared with my
3	results were background corrected.
4	Okay. These plots - the spatial plot shows the
5	distribution of the concentrations that were averaged
6	over the four years that we simulated. It's a 99-
7	percent total daily maximum of one-hour So2 values, and
8	you can see that the left plot represents the standard
9	hourly meteorology in AERMOD. The right plot
10	represents the sub-hourly meteorology and there's very
11	little difference and in this particular case it's very
12	hard to point out or to see where the differences are.
13	There are a number of ridges that run roughly west,
14	southwest through northeast and throughout this model
15	domain. The highest concentrations tend to occur -
16	that is the oranges, the reds and the magenta colors:
17	tend to occur on the tops of those elevated topography.
18	Okay. In this plot, the left plot - the left
19	graph shows a comparison between the annual 99-
20	percentile value or average value at the monitoring
21	sites versus the observed 99-percentile values for all
22	four monitors.
23	Now, site four, which is the purple and it's
24	the point -represented by the points that are farthest
25	below the line, that site is essentially often downwind

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 159
1	of the non-model source. And I believe the
2	disagreement here that has affected the models
3	significantly underestimated those concentrations due
4	to the fact that that source was not modeled.
5	So we compare the model results with sites one, two and
6	three: we see that there's generally - the results are
7	either on the line or substantially above the line, in
8	essence representing an average overestimate of about
9	80-percent of the 99-percentile - the annual 99-
10	percentile values in this - for this particular source.
11	The highest point was almost affect free
12	over-predicted by the model.
13	On the right, I compared the modeling by
14	using the sub-hourly meteorology and AERMOD versus the
15	hourly and as you can see, there's not much difference.
16	So although there was some indication before
17	we did this work that the sub-hourly modeling could
18	provide us some benefits for some of these situations,
19	in this particular source or this original source and
20	this particular set of meteorology, that was not the
21	case. Clearly, the sub-hourly modeling, although it
22	may be beneficial in some cases, is not a panacea.
23	This next plot compares the hourly 99-
24	percentile concentrations simulated for all the
25	different receptors in the modeling of the bank, as a

1 function of downwind distance.

2 And the left plot is the one-hour modeling 3 approach and you can see that the concentrations tend 4 to be clustered together and toward the bottom of the plot they tend to peak about two or three kilometers 5 6 downwind and it gradually tail off, but there's a large 7 number of high concentrations that are scattered well 8 above that cluster in the lower part of the graph that tend to also tail off with downwind distance. 9

10 If you look at the right plot, the sub-hourly 11 modeling, you see that we - the sub-hourly modeling 12 tends to get rid of some of the highest concentrations, 13 but it also tends to increase the highest 14 concentrations for receptors, particularly those beyond 15 about 10 kilometers.

16 So, clearly, there's a shift here and where 17 the highest concentrations are occurring, but it has not totally reduced that large number of values that 18 19 are in this case well above 500 parts per billion. 20 The yellow squares in the plots are for 21 comparison purposes. Those are the observations for 22 doing the 4-year period of modeling. As you see at two 23 kilometers, the left plot - the observations are 24 actually below all the model values that were simulated 25 for the entire 4-year period for all the receptors at

1 two kilometers.

2 So, clearly, the model was overestimating 3 concentrations that distance for all receptors 4 regardless of the elevation receptors.

5 Most receptors are also - at 17 kilometers -6 are also overestimated compared to observations.

7 In the right plot, we see that the 2-8 kilometer results are actually more centered on the observation, so there's some that are below and some 9 that are above 2 kilometers - the observed 2-kilometer 10 values, but still, at 17 kilometers, most the results 11 12 are still simulated to be well above the value that was 13 observed with that one receptor or one monitor point. In conclusion, I wanted to say that it's clear that the 14 15 time scale processing of meteorology is not a panacea, 16 it does not always reduce the simulated concentrations 17 by the model. The tendency in this particular case was for the model to overestimate. For those receptors 18 19 that are clearly, directly, primarily impacted by the 20 source that I modeled, the overestimates average about 21 80-percent but in some cases were as high as almost a 22 factor of three. And it causes me to ask the question: 23 Is it time for a different modeling paradigm. As we 24 switched from hourly to sub-hourly, we got rid of some 25 of the - we increased meander in the wind field, but we

,	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 162
1	also introduced a lot of ours where the wind is very
2	light, so we're actually swapping one problem for
3	another and we actually have more hours under the sub-
4	hourly processing when the steady state model
5	assumption is less valid.
6	So, I encourage EPA to consider offering
7	alternatives to a steady state modeling approach for
8	near field plume impact evaluations.
9	MR. BRIDGERS: Thank you, Steve. We go
10	from one Steve to another Steve. It's all yours.
11	MR. GOSSETT: All right. Yes, my name is
12	Steve Gossett. I'm from Tennessee, but I'm originally
13	from North Carolina. I'm glad to be back home. I'm an
14	alumni of the most prestigious school in the Triad. I
15	will not give their name but they do not wear blue,
16	either shade of blue, and they will be playing a first
17	round NCAA tournament game tomorrow at 12:40. I hadn't
18	been there for a while, so looking forward to that
19	tomorrow afternoon. I also want to say that I believe
20	99-percent of you do not know me because I do not know
21	99-percent of you. The reason for that is, I am not a
22	modeler, so everybody keep that in mind as we talk - I
23	am not a modeler, but I do work for Eastman and before
24	I get off that, I want to say that I am a modeling
25	skeptic, and I have been most impressed with this

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 163
1	group: some very intelligent people, some smart folks
2	and I'm going to go home still a modeling skeptic.
3	Okay. All right.
4	So Eastman Chemical Company: just a word about Eastman.
5	We were a part of Eastman Kodak from 1920 to 1994 and
6	now spun off - we're a totally separate company. We
7	have two major manufacturing locations in the United
8	States: Longview, Texas and in Kingsport, Tennessee,
9	which is where I work. And I'm going to tell you today
10	about - let me back up here - we have a little problem
11	with the So2 NAAQS, but we're going to solve the
12	problem. I'm going to tell you about that problem and
13	our proposed approach and you'll note, I have a co-
14	presenter, Bob Paine, but he's already talked seven
15	times so unless George yields me about three or four
16	minutes, he won't get to talk. Okay. But you really
17	want to hear what he has to say if we can give him
18	time. All right.
19	We have a monitor in Sullivan County - been
20	operating for 40 years. Guess who runs the monitor -
21	Eastman. We have to by regulation, but we are altered
22	by the state I guarantee you every quarter. We wish
23	that monitor's data was wrong but it's not, it's right,

and we have a design value of 196 - the standard is 75. 24

25 We've had no problem with the So2 standard up until

1 now.

2 Many of you do not have the luxury of a 3 monitor and a lot of you are going to find problems when you start running these models that I'm highly 4 skeptical of, especially when you use this airport data 5 6 and I don't see how any of you are going to get 7 anything done by 2013 and get it submitted to the EPA, 8 but we have a little more time because we have a monitor. We have to submit a plan by I believe it's 9 February 2014. And so we have this monitor. We were 10 11 recommended for non-attainment last June and we do have 12 the design value of 196 for the last three years. 13 Now, the little plant there in Kingsport, Tennessee - been there since 1920 - we employ about 14 7,000 Eastman employees. It's the headquarters, the 15 corporate headquarters at Eastman. There are about, 16 17 oh, probably 2500 contractors that work there. There's probably 5 or 6,000 Eastman retirees in the area. 18 19 Needless to say, this is a very important facility -20 very important to the economy, very important to that neck-of-the-woods, and also we are in Kingsport, 21 Tennessee, not Kingston or Kingsport upper northeast 22 tip, and Tennessee does not stop in Knoxville. There's 23 a nice part of Tennessee that goes right on up. 24 It's 25 the most beautiful part of Tennessee. In fact, the

1 last presentation was from east Tennessee because I 2 recognize those lakes because I've fished on all of 3 them.

4 All right. This is the plant. We have three 5 - where is the pointer? There it is. We have three -6 is there a better one? All right. We have the 7 powerhouse here. This is - this one's a new one, relatively new, nicely scrubbed. Here's the middle-8 aged one, here's the older one. It's a system of 14 9 coal fired boilers. We're there because there's a lot 10 of coal in southwest Virginia and eastern Kentucky. 11 12 That coal's been there a long time and we been there a long time, but this plant runs on coal. Okay. 13 So there's - you know where the So2 is emitted from at 14 15 that plant? From those three powerhouses.

16 All right. So here's a bigger view of this 17 part of Tennessee. It is in the Tennessee Valley of Ridge and Valley Province I guess is what you'd call 18 it. You all call it complex - I call it hilly. This 19 20 is the plant - Kingsport, Tennessee. The plant is 21 bigger than the city, almost. We have a nice feature here called Bays Mountain, a thousand foot high. 22 23 There's a river that cuts across, the south fork of the 24 Holston. Here's the airport. It's a very nice airport 25 for our size of a town - the tri-cities airport. It's

1	seven or eight miles away. There's a lot of hills
2	between that airport and our plant and you know, I'm
3	learning about modeling and I'm learning about surface
4	roughness and even I know that within on kilometer of
5	any MET tower at any airport, the surface is not very
6	rough. I could tell you that around our plant it's
7	rough. We have 10-story buildings. We have mountains
8	and hills. I mean it's - it's rough. All right.
9	Our plan is an elevation of about 1210.
10	Here's the airport up about 1500, so that's the setting
11	and you'll all agree, it's hilly. This is the windrose
12	and the predominant prevailing wind is from the
13	southwest to the northeast. Here's zooming in a little
14	better and you can see the plant here. We have the
15	monitor - the bad monitor right there. We had an
16	upwind monitor called Meadow View there that was - that
17	ran for many years. We had another monitor right there
18	called Skyland Drive. You see these are hills at 1700
19	- this is 500 feet above the valley floor - placed
20	there in the early 80s because they had some smart
21	modelers back then too and the modeling showed that
22	would be an impact area, so they placed a monitor
23	there. Didn't run it very long because it didn't show
24	that it would be any worse than down in the valley so
25	they shut it off. There's a quick plot. We went back

Г

1	and retrieved the data from the state. It ran for a
2	couple of years. There's the annual averages. This is
3	the monitor that is downwind from us. This is the
4	monitor that ran upwind for a long time and you can see
5	that monitor didn't read any higher. Here are the
6	fourth highs for the year for when we had complete data
7	- you can see there for those two years a complete
8	data. No worse than the valley. That's not what the
9	model shows. We ran the AERMOD, we ran out sales.
10	Then we had a real modeler, Bob Paine. He got the same
11	answer we got using the airport data. Remember, the
12	monitor data was just about the same for the data that
13	we have. There the modeled number actually was pretty
14	good, but not in a complex terrain - it was about six
15	times higher.
16	Now, we are going to have to do something
17	about that monitor that's exceeding the standard. We
18	have a project and what we do is going to cost
19	somewhere between \$100-million and \$300-million. We
20	have two basic options and that's going to put So2
21	controls or convert to gas for that biggest powerhouse
22	that runs half the plant.
23	Now, I told y'all I'm not a modeler but I
24	came up with a model. We're going - this is going to
25	reduce our emissions by 65-percent, overall emissions.

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 168
1	Here's my model. There's the design value. Reduce it
2	65-percent, there's a nice linear model and it's just
3	about as good as yawl's I guarantee you. It shows
4	we're going - we have a shot to obtain with that
5	project.
6	Now, I do not want to go to the Eastman
7	executive team and Board of Directors and tell them:
8	"There's this mathematical model out there and it says
9	if we're not going to make it, y'all are going to have
10	to spend twice as much because this model shows some
11	high, high concentrations up on these hilltops and
12	there's downwashes on it also it predicts.
13	Now, so the question is - and I'm probably
14	going to run over here for y'all: Will these plane
15	controls be enough? Common sense and the available
16	monitoring data says yes. AERMOD using the airport
17	data says no.
18	Now, our plan - we've had some advice from
19	Bob Paine and his colleagues and we're going to follow
20	it. That is, we're going to - we're not going to use
21	the airport data. We're going to use on-site data.
22	Now, do y'all know what it takes to get one
23	year of on-site data? Has anybody gone out and gotten
24	one year of on-site MET data? How much did it cost?

MALE: Half-a-million.

1	MR. GOSSETT: We're going to put in what
2	I call an MD - an MDMT: Million Dollar MET Tower.
3	We're going to put - I've got some photographs of it
4	that went out last week. One hundred meter tall, co-
5	located sonar and we're going to get one year on-site
6	MET data. In parallel, we're going to continue running
7	that monitor. The upwind monitor: we're going to
8	reactivate that one that we ran for a couple of years
9	and we're going to locate a fourth monitor in what we
10	think is a downwash settlement. We're going to try the
11	hourly So2 emissions, we're going to evaluate the
12	performance of AERMOD and this other model - I think
13	Bob wrote it and we're going to propose a modeling
14	approach using this evaluation, this guidance.
15	So, now, everybody can't afford a one-
16	million dollar MET tower, but you can see the
17	importance to a facility like this that it's worth it
18	to us to do and luckily, we have the time to do it.
19	Now, here's a close-up of the plant.
20	There's one powerhouse - and by the way that's a wide
21	building. Somebody said something about it's real long
22	and we have another Palace here. You gonna yank me?
23	Okay.
24	All right. When the wind blows for
25	however many hours in here it blows right across these

1	two stacks, those - it shows a downwash area right over
2	here.
3	Now, Bob saw that and said, "I'm not
4	sure I believe that." So we're going to put a monitor
5	right there because I really don't believe y'all got a
6	mathematical algorithm that really knows how wind blows
7	and makes an eddy over a building. I just - I'm just
8	not - I just don't believe it.
9	Here it shows an overall picture, again,
10	the plant. The MET tower, we have a perfect location
11	for it. It's right here in the valley. We own the
12	property. By the way, we used to own a mountain and we
13	gave it to the city and they made a park up there, so
14	we own - we own this property, it's in a perfect
15	location, it's just a stone throw you know from the
16	plant. We are spending quite a bit of money on this
17	thing. I joke a little bit but by the time we finish
18	paying Bob to do all this modeling and everything, it's
19	going to probably get up close to a million by the time
20	we're done. We probably already - I mean the tower
21	itself was \$100,000, just for the tower. That doesn't
22	include anything else. There's the monitor - that's a
23	compliance monitor. Here's the upwind monitor. Here's
24	this other monitor on the - on the ridge and here's
25	that downwash and we're going to - we're going to do

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 171
all this concurrently for a year. Here's the - here's
the tower. The installed it last week. If you've
never seen one of these things, go up. It's pretty
cool. Here's a picture of it still going up, there's a
picture of it all the way up, there's eight guide
wires. On March the 9th, I climbed to the top with my
camera. I shot back toward the plant - here's the
plant. Here's looking Northeast, you can see some
hills. There's that big hill. By the way, the model
shows this to be all along the flank of this mountain.
I like that - the light - the lighthouse beam, boom, it
hits right there. There's nobody living on the side of
that mountain. You could not stand on the side of that
mountain. There's another shot looking to the south.
There's the golf course right beside us. More hills.
There's a new product center going in right there.
Meadow View Conference Center is right there - more
hills. There's my legs. There I am looking down on my
partner. There's the light on the top of the tower.
And I've already told you what the plan is and I'm way
over.
MR. BRIDGERS: Would you want to move on
to save some comments?
MR. GOSSETT: I would.
MR. BRIDGERS: If everybody would use the

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 schedule, I think we're all right. It's a great 1 2 presentation. 3 MR. GOSSETT: Thank you. I just wanted 4 to change pace for y'all a little bit. It's fun to drive for a little while. 5 6 MR. PAINE: This is Bob Paine with AECOM.

7 As you can imagine, it's very interesting working with 8 Steve as a skeptic. The four monitors actually will be very valuable since they're going to collect hourly 9 emissions data to evaluate the models under various 10 11 things and also for concurrent regional background, 12 they have to do a modeling study and some of those hills may be actually amendable towards CTDMPLUS being 13 a discreet entity, so we're going to keep that option 14 15 I think the value - and it gets to Steve alive. 16 Mueller's issue too, and by the way Steve, this is the 17 other facility that you didn't model. We ought to get 18 together.

19 The vertical temperature difference from 20 this tower is going to be much more accurate than what 21 you would get from AERMODS parameterization without 22 that information. Also the direct turbulence 23 measurements from the tower to the sonar I think will 24 make AERMODS predictions much more accurate, so I - I 25 think this will be optimal data for AERMOD and I'm

1 hopeful that EPA will consider that any facility that 2 wants to do this prior to rushing to judgment on 3 modeling, with whatever data you can throw to AERMOD 4 would be allowed to do this type of program. As 5 expensive as it is, it's much less expensive than the 6 consequences of not having this.

7 So let's see - so we're going to 8 obviously obtain wind measurements up to at least 200 meters with a sonar, get the temperature difference, 9 have the tower measurements heights and have continuous 10 Q&A with the Sonar because overlapping 50 and 100-meter 11 12 concurrent measurements. And we're filing all the 13 regulatory guidance and so we're going to put all this into AERMOD's vertical profiling input, so I'm going to 14 15 go through this pretty fast.

16 And of course, we're going to have a 17 limited evaluation just to see - and you know, maybe we can even use some of ours, you know, we have - we have 18 a variety of options here, because when we click to see 19 20 - because we're going to save data every second in case we need to actually figure out how to average the calms 21 during an hour, so we want to have flexibility in doing 22 23 the averaging of the on-site MET data.

We also would like to offer, with 25 Steve's concurrence, this database for comparison to -

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 174
1	to MMIF - the MMIF profiles. This would be an
2	excellent comparison type of site to see can you really
3	trust the MIFF profiles for input to AEMOD.
4	And I think - I think that's it, so that
5	was pretty fast.
6	MR. BRIDGERS: Thank you, Steve and Bob
7	and just so that everybody understand is that Appendix
8	W would say that we give preference to one year of on-
9	site data over that from the airport. And Steve, if
10	you ever need anybody to change a light bulb, call me,
11	I'd love to come, then I play the golf right down the -
12	down the.
13	MR. BRODE: I want to know did Bob ever
13 14	MR. BRODE: I want to know did Bob ever climb the tower.
13 14 15	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the</pre>
13 14 15 16	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower?</pre>
13 14 15 16 17	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor.</pre>
13 14 15 16 17 18	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor. MR. BRIDGERS: So what we'll do - and I</pre>
13 14 15 16 17 18 19	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor. MR. BRIDGERS: So what we'll do - and I know that we ran over, but I thought that that was</pre>
13 14 15 16 17 18 19 20	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor. MR. BRIDGERS: So what we'll do - and I know that we ran over, but I thought that that was worth the extra 10 minutes. We'll go ahead and have</pre>
13 14 15 16 17 18 19 20 21	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor. MR. BRIDGERS: So what we'll do - and I know that we ran over, but I thought that that was worth the extra 10 minutes. We'll go ahead and have Ashley talk now and then we'll take our break and then</pre>
13 14 15 16 17 18 19 20 21 22	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor. MR. BRIDGERS: So what we'll do - and I know that we ran over, but I thought that that was worth the extra 10 minutes. We'll go ahead and have Ashley talk now and then we'll take our break and then we'll get back on schedule. So -</pre>
13 14 15 16 17 18 19 20 21 22 23	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor. MR. BRIDGERS: So what we'll do - and I know that we ran over, but I thought that that was worth the extra 10 minutes. We'll go ahead and have Ashley talk now and then we'll take our break and then we'll get back on schedule. So - MS. JONES: Well, good afternoon. My</pre>
 13 14 15 16 17 18 19 20 21 22 23 24 	<pre>MR. BRODE: I want to know did Bob ever climb the tower. MR. BRIDGERS: Oh, yeah. Has the contractor ever climbed the tower? BOB: I'm not the measurement contractor. MR. BRIDGERS: So what we'll do - and I know that we ran over, but I thought that that was worth the extra 10 minutes. We'll go ahead and have Ashley talk now and then we'll take our break and then we'll get back on schedule. So - MS. JONES: Well, good afternoon. My name is Ashley Jones. I'm with Trinity Consultants and</pre>

1 giving a short case study for an aluminum plant with 2 our challenges with the one-hour So2 NAAQS and a lot of 3 these topics have been discussed throughout the last 4 couple of days.

5 I am going to give a brief history on 6 the facility. I think the timeline really shows where 7 the plant has been with the modeling and some of the 8 regulatory actions that we've gone through. The most noteworthy or the initial one is in August 2010: the 9 facility received their PSD permit for a plant 10 11 expansion. It was under a short timeline and a lot of 12 capital expenditures were going to have to be done to 13 comply with the model. Our challenge of the time was 14 pm10.

15 So we had a couple of stacks - the 16 pipeline stacks that had to be raised to GEP in order 17 to pass initially. Shortly thereafter was the effective date of the one-hour So2 NAAOS and then a 18 19 couple months later, the client decided to submit an 20 amendment to the PSD permit to optimize these stack 21 changes. Our request was to reduce the stack - the pipeline stacks from 65 meters down to 42 meters. 22 That 23 42 meters is just above the formula height and of the 24 time with version 09292, this was a working solution 25 We did address the one-hour So2 NAAQS for us.

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 176
1	obviously because it was after the effective date.
2	However, our amendment request was not reviewed and
З	right away, due to you know resource constraints and
4	workload at the facility, or at the agency.
5	So the release of 11059 and 11103 came
6	and then the agency got to review our amendment request
7	in August of 2011 and when they did their modeling
8	confirmation found we no longer had a passing solution.
9	Not only do we not have a passing solution at the 42
10	meters, we didn't have a passing solution at the 65
11	meters.
12	The plant had to weight the option:
13	"Well, we do have a permit to move forward with our
14	expansion at the 65 meters," but we know these So2 one-
15	hour SIP requirements are right around the corner and
16	65 meters no longer was going to be enough as things
17	stood?
18	So our challenges we originally thought,
19	the reason the stack would be a solution, no longer was
20	likely. We evaluated an So2 emission rate reduction,
21	however, that was very cost prohibitive. Not very
22	common for this industry to have wet scrubbers and
23	would be very expensive. An additional challenge that
24	you've heard talked about was the buoyant line plume
25	source model and we were instructed that we had to use

1	this model and we had to use AERMOD And combine those
2	impacts.
3	As Bob mentioned earlier, there is a
4	receptor limitation around 100 receptors and that did
5	not obviously allow for our full AERMOD receptor grid
6	to be incorporated, so we - our solution was to go
7	ahead and recompile that code to allow for the full
8	receptor grid that we had in AERMOD and then to be able
9	to combine those impacts spatially and contemporarily,
10	we also had to recompile the BOP post-program to output
11	a binary post file so that we could take the binary
12	post file from BLP and one from AERMOD and combine
13	those together.
14	This is just a screen shot of - I'll
15	breeze through the analyst software that allowed us to
16	take those two binary post files and merge them
17	together and then extract out the concentration that we
18	needed for comparison to the NAAQS. This help
19	efficiency greatly and then helped reduce some of the
20	conservatism from initially having just to look at both
21	of the outcomes from each model separately.
22	Once we were able to combine those BLP
23	and AERMOD impacts, you can see here this first row is
24	our original So2 one-hour modeling analysis with
25	version 09292, where we reduced the stack height down

1	to the 42 meters. We were passing the model - you can
2	see the AERMOD concentration of 144 and then combined
З	with BLP and our background, we were below the NAAQS
4	standard. When we had to update the version change to
5	11103 at the 42 meters, we had a significant increase.
6	We were then also instructed that well,
7	we might as well go ahead and update the MET data
8	because that was going to be part of the So2 SIP
9	requirement, so we updated the MET data not only for
10	AERMINUTE, but also for the actual years that were
11	being used because this project has spanned quite a
12	timeframe. That did add an additional 40 micrograms to
13	our impacts as well.
14	And then we have the case where we reran
15	back at the 65 meter height and you can see that we're
16	still well - well over the standard.
17	This is an image of our facility layout.
18	You can see here, this is our - this blue building is
19	the - the influencing building for our GEP height and
20	the lighter outline is our projected length area. I'd
21	say this fits some of the scenarios that we've talked
22	about earlier this morning and likely where our issue
23	is stemming from, however, without any additional
24	guidance or clarification, the facility really felt
25	like we were stuck. We had - we couldn't really do

1 much on the stack height, we couldn't go any further 2 than 65 meters. We didn't have any guidance on being 3 able to take credit for stacks taller than GEP and 4 there were other recent clarification memos that came 5 out, it was kind of discouraging to really pursue and 6 for the client to spend money on evaluating these 7 equivalent building dimensions.

So in summary, this is still an ongoing 8 process for this facility. If we are - as things stand 9 10 and we aren't able to do anything with the stack 11 heights, taken the emission reductions necessary would 12 be pretty detrimental cost to us - to them and our 13 question and comment really is: Is any relief going to come from this pending downwash guidance? Is there 14 15 going to be grandfathering clauses that would really 16 help or is the So2 one-hour SIP just going to push 17 everybody you know, is that really going to help or not? Will there be credit for taking - be able to take 18 19 credit for the stacks above BLP height and are there going to be any streamline approaches for equivalent 20 building dimensions? 21 22 In addition to waiting for this guidance 23 that is very much needed and eagerly awaited for, the

24 facility plans to initiate a field study to better

25 understand their plant's monitored impacts and model

-	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 180
1	impacts. We're not quite as far along as Steve there,
2	but they - something that their next steps are to look
3	into.
4	Obviously, we don't have time for
5	question, but - thank you.
6	MR. BRIDGERS: Thank you, Ashley. As I
7	said, let's go ahead and take our break. If we could
8	try to be back right at the 30 mark, that's a good
9	round number for us to get back started. Thank you.
10	[BREAK]
11	MR. BRIDGERS: Okay. We have a couple of
12	talks this afternoon on behalf of ERM, so as we take
13	our seats, I'm going to turn the podium over.
14	MR. YEGNAN: Thank you, George. Good
15	afternoon, everyone. Glad to see everyone hanging in
16	there on the final day - the afternoon of the final
17	day. My name is Anand Yegnan and I'm at the ERM. Mark
18	Garrison could not be here due to some personal
19	reasons, so I'm going to be doing the talk in his
20	behalf. What I'm going to be trying and do in the next
20 21	behalf. What I'm going to be trying and do in the next 10 minutes or so is talk about some of the experiences
20 21 22	behalf. What I'm going to be trying and do in the next 10 minutes or so is talk about some of the experiences that we have had with assisting clients in the
20 21 22 23	behalf. What I'm going to be trying and do in the next 10 minutes or so is talk about some of the experiences that we have had with assisting clients in the electrical ability. Some in the industrial sector, but
20 21 22 23 24	behalf. What I'm going to be trying and do in the next 10 minutes or so is talk about some of the experiences that we have had with assisting clients in the electrical ability. Some in the industrial sector, but modeling, preparing for So2 designation and also for
	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 181
----	--
1	with the one-hour NAAQS. I'm going to try and cover -
2	we already talked extensively about the challenges with
3	the one-hour NAAQS so I won't delve much into that.
4	What has changed, what has remained the same, briefly
5	touch on that more as a recap from the last two days.
6	Talk about the specific antidotes relating to -
7	relating to the challenges with the using model and
8	more particularly for So2 modeling and finally, some
9	recommendations.
10	Here's a map that shows So2 actual
11	emissions greater than 110 per year, based on the last
12	year sub-guidance - draft guidance. And source greater
13	than 110 per year was recommended to be used for
14	designation. As you can see it has a whole number of
15	sources and once you start modeling these sources every
16	day, it ends up being that way. It's not going to be a
17	pretty picture, so it's something to think about.
18	A quick sensitivity analysis. Here it's
19	an auxiliary boiler/process heater, small to medium
20	size boiler. With no background, again, I will not
21	delve too much into the numbers. The color codes are
22	intended to show what the results are. The red is in
23	exceedance of the NAAQS; yellow is more than 50-percent
24	of the NAAQS; green is in compliance with the NAAQS.

25 Along the row you see the - along the road it's

1	emission rates, stack heights. Along the columns, with
2	our background it's already a challenge. When you add
3	50-percent of the background - 50-percent of the NAAQS
4	with the background, it makes it all the more
5	challenging. So that is something to think about as -
6	especially for industrial boilers/process heaters,
7	which might be that - which might have a challenge with
8	this.
9	Just a daily - maximum daily average
10	trend of measured - monitoring and measured data for
11	So2. The fourth highest is showing that and also the
12	daily maximum. As you can see, with the - I have no
13	data about 100 micrograms, we're already consuming 50-
14	percent of the NAAQS so you're not left with much room
15	for showing for compliance for sources, so that would
16	play an important role.
17	In terms of using potential experimental
18	PTE's, as you can see this is from a medium size coal
19	fired boiler showing the daily trends of measure - of
20	SIMS measured So2 data. There's quite a bit of
21	variability and even if you have 1000 receptors at
22	which you predict the impacts, it still does not
23	capture the impact if you use actual emissions, but if
24	you have potential emissions, it's going to be over the
25	impacts, so use of potential might be a different

1 answer.

2 So what is the likely outcome that we 3 can see? Again, I'd offer it as new, considering what 4 we have heard in the last two days and many of us who have been working on this for the last two years. 5 6 Significant non-attainment areas are 7 likely to be seen due to the conservative nature of the 8 standard, conservative approach, which is the use of the monitor and conservative background. All three 9 10 together make it extremely challenging. One-hour NAAQS 11 results could identify individual sources, unlike 12 regional impacts, which we have seen for ozone and 13 pm2.5. Many hot spots are likely to be shown as non-14 attainment areas with the model we use model for 15 designation and potentially we might see many pseudo-16 non-attainment areas based on modeling which might not 17 show up if you just use the monitoring data. So what's remained the same with what we 18 have done in the past and what we are doing right now? 19 At the end of the day, AERMOD is still just a model and 20 21 extraordinarily complex meteorological process we are 22 trying to simulate using a steady-state model. It's 23 almost like Lagrangian process being trapped in a semi-24 state model, which is something to consider. The 25 presentation of MET data - that has always been a

1 difficult issue even before the one-hour NAAQS and it 2 continues to be an issue and will potentially in the 3 near future.

4 Modern sensitivities. Many times it 5 might predict things which are not physically real and 6 that is - that I'll touch on briefly. So that is 7 something which has been the case but the use of model, 8 to potentially to remain an issue even in the future. Just to go a little bit further, just the use of model 9 10 - I show it here - what we are showing is that you have 11 a profile measurement in the top half of the picture 12 and MMD, which is Model Meteorological Data: in the bottom half, although the prints are similar, you can 13 see broader patterns of similar, but if you look at 14 15 specific days, specific hours, it might not be similar 16 and they are quite different actually and that's where 17 the concern is. Overall trends might show comparable results, but with the nature of the standard that we're 18 19 looking at, even isolated individual events could point 20 to an exceedance and a non-obtainment.

So what's different? The stringency of the standard, I think we are beginning to get how stringent the new NAAQS standards are - with the use of the new - with the use of models for the designation, that is something which is new and probably had not

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 185
1	been applied on a nationwide scale, but for designation
2	purposes, complex - treatment of complex, of transport
3	and exposure in boundary layer, point to more instances
4	of unusual behavior. That is something which will be,
5	which is a new phenomenon.
6	And one thing which I think Roger talked
7	about on the first day: The models have been used and
8	with the stringency of the standard, things which have
9	worked in the past, pressing the EASY button so to
10	speak, that might not work in the future and that might
11	need to be brought under consideration of how we apply
12	these models and also careful concentrations of
13	sensitivity of input parameters. Which parameters is
14	impact model for instance, that will need to be looked
15	at very closely as we look into the future.
16	I'm going to briefly talk about two
17	examples. The Logan's Peak looks like the favorite
18	topic for this conference, but that's again, quite a
19	bit.
20	Again, to illustrate even further, here
21	is a very simple example. It shows three cases. The
22	first one, A, it shows using AERMINUTE data, as you can
23	see, the vent speed is in the range of .39 meters per
24	second and the character impacts, it's a narrow plume,
25	a concentrated plume. If you limit the wind speed to 1

1	meters per second in this case, the impact size varies
2	quite a bit. And if you take it - that's in Example B.
3	In Example 3, which I think Bob Paine talked about this
4	morning: in terms of using the sub-hourly
5	meteorological parameters, in this case we have used
6	that similar data and use of that reduces impact quite
7	a bit too.
8	So something to think about is how can
9	AERMINUTE, which has been used to process a minute at
10	ridges, how can that be used to better represent the
11	variations within the given mark and how can that go
12	into the model. That might be something in which
13	alleviate some of the problems with the low wind speeds
14	which we are seeing, with the use of AERMINUTE and
15	might predict results, which are more - for lack of
16	better word, realistic.
17	Again, same thing tabulated. As you can
18	see, when we heard about it this morning, again, about
19	it, that in some cases with these low wind speeds you
20	see mechanical mixing heights, which are really
21	unrealistic in many cases. They're like five meters
22	and that's really low and that - that point to two
23	things. First is we need to find a way to plead these
24	low wind speed events and find a way to - find a fix
25	for that or refine it as we heard before. And

secondly, we can just use the model that needs to be 1 some kind of an effort to understand the meteorological 2 3 parameters, which are behind these results and help us 4 understand why we're seeing these high impacts and which would help to find a solution to them in the near 5 6 future. 7 So summary of the writing of the output 8 from AERMOD, especially for events when we have exceedances or very high values that would be good to 9 10 have. 11 Again, one more anecdote of value. We 12 are seeing that with the taller stack, the impacts are higher than with the shorter stack and this is an 13 elevated area. What we have done in here is that we 14 15 have - we have an enhances version of AERMOD with the 16 latest version. We have made some modifications to 17 write out the meteorological parameters, which are 18 associated with these high predicted events. 19 And it provides a better understanding 20 and as you look at it, you can see that the buoyancy 21 with the taller stack was much lower, almost 22 nonexistent. And because of the ambient temperature 23 which the AERMOD ended up using in there for that 24 particular case. And that - that goes back again, 25 point which I made earlier, to a better understanding

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 188
1	of the meteorological parameters which make up the
2	model prediction which would be useful and if AERMOD
3	can write those things out, it would provide for a
4	better understanding of the results.
5	So finally, trying to wrap it up, so
6	what - what is going to be done? Low wind speeds, some
7	- we are treating that by either limiting the wind
8	speed to one meters per second, which probably might be
9	a more realistic representation for a steady state
10	model or find a way to use the sub-hourly values to
11	provide for the variations within the air.
12	And secondly: the treatment of
13	background data. There is some flexibility provided
14	with the guidance from last year with the use of
15	season-by-season by our approach. Once of the things
16	which Appendix W talks about is the use of an average
17	background data and especially if you have identified
18	the meteorological conditions which make up the model
19	predictions and trying to better treat what is in there
20	and identify those specific background values and
21	exclude the ones which the sources contributing to
22	that. Then an average of those values could
23	potentially be used as a background value and that
24	might reduce some conservatism in the background value
25	quite a bit.

Γ

1	Specifically relating to one-hour So2
2	modeling: Sensitivity analysis is an important piece.
З	It should be an important piece of every analysis that
4	ends up going into the model. And you have to pay very
5	close attention to the meteorological conditions
6	because of - because of issues of low wind speed and
7	other similar parameters which might potentially
8	contribute to the high impacts.
9	Finally, one thing to remember here is
10	as we go through the designation and the implementation
11	process, before we designate areas as nonattainment or
12	come to any conclusions, better understanding or better
13	data of the meteorological parameters of the background
14	values which make up for that designation is an
15	important recommendation that we would make before -
16	because of ramifications of designating area as
17	nonattainment could have - could be big, especially if
18	- for future growth of industry or for even continued
19	operation of the industry and that is something to
20	consider. Use of actual emissions: some we are
21	characterizing, capturing the variability in the actual
22	emissions and instead of using the potential, that
23	might be something to consider very seriously. Use of
24	multicolor simulation or the impact as we told the
25	board before, that might be an option.

1	
1	And finally, sensitivities of fill-in
2	parameters, that needs to be an actual value and
3	documented and some fixes to identify unusual events
4	could help towards a broader implementation of the use
5	of these models for designation and implementation
6	purposes.
7	So, that's what I have.
8	MR. BRIDGES: All right, second part.
9	MR. YEGNAN: All right. Round two. What
10	I'm going to try and do: this is some work that we have
11	done for the state of Maryland Department of Research
12	program. It's a part of the Department of Natural
13	Resources. We have spent quite some time looking at a
14	broad range of issues as it related to models,
15	including CALPUFF and AERMOD and also the use of
16	prognostic MET data. Even before the MMIF too was
17	available, and I used it in un-regulatory applications
18	so I want to share some of the insights from what we
19	have - experiences that we have learned from that and
20	see if some of those could be used for the future.
21	I'm broadly going to touch on three topics. First is
22	evaluation of CALPUFF 6.4, that is something which we
23	have been using in the more recent years, more recently
24	for some applications. Use of - discuss some trends
25	relating to the - relating to the measure data and also

1 to some modern predictions using previous models and 2 OLM. And how did they combat with the measure data for 3 NO2 and NAAQS ratios in Baltimore, Maryland and finally 4 wrap it up with some experiences with the use of MM5 5 extraction and MM5 profiles and use for a local scale 6 modeling.

7 Starting off with CALPUFF 6.4, the 8 Maryland Department of Natural Resources, Wildlife 9 Research Program, a client that we work with, has been 10 using CALPUFF for regional scale analysis, especially 11 due to value impacts on Chesapeake Bay and in terms of 12 impacts on the nutrient load of the bay. CALPUFF has 13 been used as the modeling tool for these applications and many of these results of these analysis help the 14 15 Chesapeake Bay Commission and other stakeholders 16 understand the contribution of different sources and 17 the impact of mitigation measures - part of the impact 18 in terms of reducing the nutrient load of the bay. 19 That has been - and we have done some comparisons with 20 the results and the results from SEAMAC in terms of the 21 nutrient loads and in so many cases. The new chemistry with the version 6.4 - based on some preliminary 22 23 analysis, we find that it - it seems to improve the 24 predictions of the nitrogen load quite a bit and the 25 earlier indications is that it is very promising

1	change. It's a work in progress and evaluations - we
2	have converted to aerosol and gas concentrations - wet
3	deposition estimates from NADP and other sites, we have
4	looked at model evaluations by comparing it to CASNET
5	and NADP monitored, measured data. So earlier
6	indications show that 6.4 is a step in the right
7	direction and it seems to improve model predictions
8	quite a bit.
9	Just to show the modeling domain, as you
10	can see, that's the - that's the extent of the
11	evaluation domain and the modeling domain spans much
12	bigger. It pretty much covers a good portion for the
13	east of Midwest actually and this is the bay and -
14	which is a primary focus area for us as a part of these
15	analysis.
16	Just to give an idea about what we are
17	looking at in terms of emissions, NAAQS emissions range
18	close to seven - I believe it's seven million times and
19	starts in the range of 8.8. We have developed some
20	tools to capture this emissions from these regional
21	scale sources and a model with CALPUFF and that is
22	something which we can - we haven't discussed here but
23	we'll be happy to share those.
24	Earlier, a I mentioned or indicated,
25	preliminary results indicate significant improvements

1 in prediction of nitric acid concentration, 2 particularly nitrate and a event deposition of 3 nitrates, so it's definitely promising to see the 4 change.

5 Now, I'm going to switch gears a bit and 6 talk about some of the measured data in NAAQS monitors, 7 ambient monitors, more in the context of AERMOD. We 8 have two monitors near Baltimore -- one at Old Town, 9 the other one at Essex -- which have recorded date for 10 nearly 20 years now. What we did in this case is modeled the actual emissions from 2009 with AERMOD, the 11 12 focus being on stationary sources and nearly 438,000 pounds per day of NAAQS was modeled in these cases and 13 did some comparisons with how did the modern 14 15 predictions compare with the measured data at these two 16 monitors. And this shows the - this slide shows the 17 location of the Old Town and Essex. Old Town is right the urban area and Essex is outside of that. 18 19 Broader trends: this is a mightier trend ranging from 20 '93 to 2009. What we see in here, the different lines in here have different NAAQS concentrations and we are 21 showing ratios of NAAQS to NO2 and I think these trends 22 23 are similar to what we heard before in the last couple 24 of days where with the higher concentration the ratios

That is NAAQS to - No2 to NAAQS, which kind

25

are lower.

1	
1	of makes sense that with the lower concentration that
2	is more ozone available, which converts NAAQS to enter
3	with much greater than the higher concentrations.
4	Looking at meteorological data for this analysis. We
5	looked at Baltimore, BWI and I pulled up data from
6	Sterling, Virginia. Use of AERMINUTE was made so there
7	is a number of missing as it is a number of hours. One
8	thing which we also found as a part of this a
9	significant number of hours where you have really low
10	wind speeds. AERMOD was used even more in this case.
11	The next three slides essentially show trends in the
12	windrose. The first one: this one that we see is the
13	'91 to '95. The next one is with the BWI without
14	collection for AERMINUTE 2005 to 2009 and the trends
15	are much different and the average percentage of
16	missing values and calms is significantly higher as you
17	can see in here, as compared to what we saw in the
18	previous data, so if you use AERMINUTE the trends are
19	much broader trends and fairly comparable to what we
20	saw before with the '91 to '95 data. However, you do
21	see a significant increase in the percentage of the
22	frequency of low wind speeds, which we know is an
23	artifact of using AERMINUTE. So we might need
24	something to do in terms to refine these AERMINUTE
25	results.

1 The next three or four slides, we have - I'm 2 going to show some comparisons between measured and 3 prediction - measured data and between predictions for 4 - in order to do NAAQS. In this case we have used a 5 ratio of .1 and the first one which we see with oil and 6 group as the option. Along the rows we see the hour of 7 the day, along the column different concentration 8 ranges and within each of those blocks we see months in the year, so we have the monthly trend along with the 9 daily - the monthly and the daily trends and the ratios 10 11 for different NAAQS concentrations.

12 The color-coding is intended to indicate -13 the red color is - the hard colors are more of higher concentrations, the cooler colors are lower ratios. 14 15 Let me count that. With PVMRM, it's much different 16 than what we see for OLM group, which again, based on 17 what we heard in the last two days, it's no surprise. The ratios are much lower than that for OLM group and 18 19 here if you - those are the predicted values. Now, if 20 you compare it with the measured value, these trend 21 seem to indicate that the trends are much closer within 22 measured and predicted values if you use OLM group, 23 enter a in-stack ratio of .1. 24 So that might be something to consider in

terms of future quidance of - if - and this might be

25

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 196
1	more case-specific- it might be applicable for
2	Baltimore. It might be different for different areas,
З	but OLM group seems to be a good fit in this case with
4	an in-stack ratio of .1.
5	Similarly, if you use an in-stack ratio of
6	.5, the results are over-predicted - they're much
7	higher in terms of the ratios.
8	And we also looked at comparison between Old
9	Town and Essex. For Essex, the impacts were under-
10	predicted and one of the reasons why we think is
11	because Essex do it - what you see in here are these
12	are - we call it pollution roses, essentially, that is
13	the measured value of- a type of thing prepared using
14	measured value and based on the prediction of the wind.
15	It still shows that the contribution comes pretty much
16	from the Baltimore area, which might be - if we - we
17	haven't accounted for mobile sources in here - that
18	might change the impacts if we account for that.
19	So broadly speaking, one of the observations,
20	OLM group appears to predict better than PVM (ed.
21	PVMRM) model for Baltimore with an in-stack ratio .1.
22	We have seen some problems with AERMET
23	processing, especially with low wind speed and DNR is
24	currently recommending the use of pre-ASOS, but we
25	don't have chemistry being used in AERMOD and with

1	chemistry based on guidance from Region 3, we have - we
2	have been using concurrent ozone and MET data for more
3	recent years. Baltimore analysis points to one of the
4	critical limitations of AERMOD in terms of issues
5	relating to the transport time and - and just the
6	simulating study of a Langrangian process with a study
7	state model and it might be something to consider for
8	future application - would be use of a Langrangian
9	model like CALPUFF, even for new scale applications.
10	And finally, validating improvements and
11	treating urban coal. That might be - that's an
12	important issue.
13	Finally, to just wrap it up, as I
14	mentioned, we have been looking at use of prognostic
15	MET data as input to AERMOD similar to what the MMIF
16	would do for quite some time now and many of these have
17	been and do compare the regulatory option in AERMOD
18	using National Weather Service data and we have done
19	some comparisons with the tower data, with the - from
20	nuclear stations and the earlier indications - the
21	results have been fairly encouraging. We have - we are
22	pretty encouraged to see the MMIF too now and hope to
23	evaluate that and provide input and any kind of
24	feedback we might have with the EPA in terms of what we
25	see in comparison to the tools that we have available.

1	And we think finally that use of MM5 and
2	(inaudible) potentially, holds a lot of promise and in
З	particular for cases where the airport is at a far away
4	location in complex situation, but it's - it could
5	potentially be a good surrogate or an alternative to
6	installing a MET tower or- we had to wait for a year.
7	This might provide some good addition insights to - for
8	use in a local scale model.
9	With that I will wrap it up.
10	MR. BRIDGERS: Thank you. Okay. For the
11	next step we have Eladio.
12	MR. KNIPPING: This should go fast.
13	Hello. I'm going to give an update on the development
14	of the SCICHEM model. If there are a lot of pauses
15	it's because I had throat surgery a few weeks ago, so
16	just bear with me. I am Eladio Knipping. I'm a senior
17	technical manager of the environment sector at the
18	Electric Power Research Institute and we have been
19	sponsoring the development of SCICHEM now for about 14
20	years. Some introductory notes: A new SCICHEM version
21	is forthcoming in a few months. A prior version of
22	SCICHEM has been described in previous presentations at
23	this conference. This version has some but not all of
24	the enhancements of the future version. As such, it
25	has seen limited distribution for example to EPA for

1 testing as a prerelease version.

2 This presentation will provide an update 3 on the status of SCICHEM development overall. First, 4 let me describe a little bit of the origin of SCICHEM. A general overview of the SCICHEM system has been 5 6 provided earlier in this conference and detailed 7 presentations on SCICHEM have been given at past EPA 8 modeling conferences and at past CMAS conferences as well as other venues. The development of SCICHEM 9 10 itself started in the late 1990s and all existing 11 versions of SCICHEM at this moment are based on a 1998 12 version of the SCIPUFF model. As you recall from 13 yesterday's presentation, SCICHEM is SCIPUFF with chemistry. 14

15 Testing and evaluation of past SCICHEM 16 versions has been documented in EPRI reports. These 17 EPRI reports are publicly and freely available at 18 EPRI.com. If you should want to download these 19 reports, you can contact an EPRI customer assistance 20 center through our website for information on how to 21 download them and also to obtain a legacy version, which is even older than the version described 22 23 yesterday version of SCICHEM. 24 Now, SCICHEM has branched into two 25 models. First of all the stand-alone air dispersion

1	
1	model SCICHEM - SCIPUFF with chemistry but also the APT
2	branch. In the 2000s, EPRI invented the SCICHEM model
3	into the EPA CMAQ model as a proved grid module for
4	sub-group treatment of industrial plumes. This big
5	version of SCICHEM is known by the name Advanced Plume
6	Treatment, APT, which leads to the acronym CMAQ APT. A
7	version of CMAQ APT was publicly released via the CMAQ
8	center and it was based on version 4.6 of the CMAQ
9	model. This version was based also on the sectional
10	MADRID aerosol treatment for the treatment of
11	particulate matter and as mentioned yesterday, it used
12	carbon for the gas based chemistry.
13	Further development of APT continued
14	using the CMAQ 4.7.X branch of the host model. This
15	added the option of model aerosol treatment consistent
16	with EPAs CMAQs AERMOD modules, which are the aerosol
17	modules within the CMAQ model. It added the ability to
18	run in parallel processors and the University of North
19	Carolina tested this version and provided useful
20	feedback to help refine the model development. CMAQ
21	APT based on CMAQ 4.7.1 was not released to the public
22	as development efforts focused on releasing an APT
23	version with - that is compatible with CMAQ 5.0 as the
24	host model and this is what was referred to in
25	yesterday's presentation as the upcoming release of

10TH	CONFERENCE	OF	AIR	QUALITY	MODELS	03/15/2012	CCR#16766-3
------	------------	----	-----	---------	--------	------------	-------------

1	CMAQ APT. If you should want a CMAQ 4.7.1 version of
2	APT, we could make that available to you, but we would
3	encourage to just wait until the CMAQ 5.0 APT version
4	is available, which will become the most current
5	version of the model and it will be released in an
6	interim release of 5.8 in upcoming months, which will
7	also make available other modules contributed to the
8	community to the CMAQ system.
9	So what we've had is SCICHEM has
10	developed in over the 2000s by focusing efforts on
11	SCIPUFF on transporting the dispersion modules of
12	SCICHEM and APT by focusing on the chemistry
13	treatments.
14	So the chemistry elements of SCICHEM
15	underwent refinement through continued development of
16	APT. Similarly, the transporting of dispersion
17	elements of SCICHEM underwent refinement through
18	continued development of SCIPUFF in the 2000s. The
19	evaluation of APT and SCIPUFF during this period has
20	been documented in the period review of scientific
21	literature. However, this branching of the code has
22	led to an effort to reconcile the two codes into one
23	uniform code for the stand-alone dispersion model,
24	because now there's confusion as to who has the right
25	chemistry and who has the right transport and "What

1	
1	version am I working with," has led to a little bit of
2	confusion. We want to avoid that confusion.
3	At the end of this reconciliation there will be only
4	one stand-alone model, however, the two units will
5	remain in order to emphasize whether the chemistry is
6	on or off, so the SCIPUFF SCICHEM equivalency may be
7	thought of as: SCIPUFF is SCICHEM with chemistry off or
8	SCICHEM is SCIPUFF with chemistry on. The pre-released
9	version of SCICHEM which was provide to EPA and others
10	for pre-released testing does not have a graphic user
11	interface. This is one of the - one of the important
12	user considerations that we have also taken into
13	account with the release of the next version, which
14	will include a basic graphics user interface. It won't
15	have you know a very fancy graphics user interface, but
16	it will have the basic graphics user interface. This
17	release version will be available in Windows and Unix
18	Linux versions. The Unix Linux versions can also be
19	run from a command line interface. The release version
20	will be able to take advantage of multiple cores on a
21	single machine, so if you have a dual processor, four-
22	core on each processor, it can run it on all eight
23	cores and it will include user manuals and
24	documentation on evaluation and testing as well as a
25	test case for users to run. The new release of SCICHEM

will become available to the community in upcoming
 months. We are working hard to get this out as soon as
 possible. The model will be free, open source and
 public domain.

5 So as some of you that are familiar with 6 SCIPUFF may know, it did have some development that was 7 based on Department of Defense funding, but the model 8 has been approved for release as a free open source public domain model and this includes all of the 9 10 development of model that has been sponsored by a variety of different agencies include DOD and EPRI. 11 12 As derivative products of SCICHEM may be developed since it will be available to the whole 13 14 entire community, we can - what we want to clarify is 15 that EPRI will remain the custodian of the core SCICHEM 16 model and I would like to acknowledge Sage Management 17 and Environ as the current model developers. We have 18 Biswanath Chowdhury and Ralph Morris here of Environ. 19 Just being from Sage if you both will stand up it would 20 be nice. I guess Ralph already left, Biswantath. All 21 the hard technical transporting disbursement questions; please send them over to him. Distribution of the core 22 23 SCICHEM model will be through EPRI.com and through 24 other linked portals. We haven't discussed this, but 25 we are considering linking it through the websites of

1 the model developers: the CMAS Center and as
2 appropriate through the EPA model clearing house. We
3 encourage the community to test, evaluate and apply the
4 model as appropriate and to provide feedback that will
5 allow for future refinements so that you know as with
6 all the models, we are continuously looking to refine
7 our ability to simulate the atmosphere.

And as an appendix, I'm not going to go over 8 this right now because I am about at the limit of what 9 I can handle. I have included some selected 10 11 enhancements to SCICHEM that are related to the 12 transport and dispersion and again you can contact me or Biswanath and we'll be happy to go over these 13 enhancements that are not in the current pre-released 14 15 version that was provided to EPA, but that will be 16 taken into account in the final - in the - in the final 17 release that will be available in - in the upcoming months. And all that is just shown in order for you to 18 19 know that it's there for you to view at your leisure. 20 Any questions? Fantastic. 21 MR. BRIDGERS: Thank you, Eladio and best wishes as you continue to recover from your surgery. 22 23 Just for everyone's reference - I know he had a handful 24 of slides there that he had to step through - probably

25 by five o'clock this afternoon, depending on how the

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 205
1	open mic session goes, all these presentations will be
2	posted on the SCRAM website, so you can look at them at
3	your leisure.
4	So now, we're going to have a couple
5	talks by Steve Hanna. Let me make sure I got the right
6	one there. The floor is yours.
7	MR. HANNA: Thank you. Before I get
8	started on this one, I was just thinking over the break
9	about a possible solution to this downwash low wind
10	problem and it occurred to me basic science principals
11	of you're going to have the recirculation form only if
12	the wind speed is larger than the turbulence speed and
13	since - even AERMOD has a minimum turbulence speed of
14	about you know whatever it is, half a meter per second.
15	That means you can set a criteria when the wind drops
16	below a half a meter per second, then downwash turns
17	off and then you can have - use their usual
18	extrapolation thing and assume you have full downwash
19	at say two meters per second and then do a
20	interpolation between two solutions between half and
21	two, so I'll leave that solution with you.
22	But this particular talk, I thought I'd
23	- since there's a lot of discussion of evaluations and
24	PUFF models, I thought I'd give this example of a
25	CALPUFF and SCIPUFF comparison that was done by myself

1	
1	and Joe Chang. This was a few years ago, but the - I'm
2	going to emphasize the statistical evaluation and
3	methods and sort of the approach to this. And this
4	work was sponsored by the Defense Reduction Agency,
5	who's been sponsoring most of the SCIPUFF development
6	in the past 10 years or so.
7	So now, instead of looking at these huge long-range
8	transport ETEX 1000 kilometer, we drop back to two
9	mesoscale field experiments involving trace of releases
10	sponsored by Department of Defense - they're called
11	DIPOLE PRIDE 26 - they have these cute names that they
12	dream up for all experiments and at Nevada test site in
13	OLAD and these DIPOLE PRIDE was an instantaneous PUFF
14	release, only 14 trials and OLAD was a line source with
15	11 trials. Because the military is more interested in
16	dosage for health effects of chemical agents or
17	something, then we're not looking at concentrations
18	over 10 seconds - it's the total dosage over the period
19	and the ARC MACS for each trial: we have the Boot
20	software that we've been developing over the years in
21	sort of the standard performance measures, but the key
22	thing here I wanted to emphasize was the significance
23	test that we use and also mention that because the
24	military forces you to have model acceptance criteria,
25	we came up with some - even though we didn't feel like

1 it was appropriate to assign specific things - so we 2 came up with acceptance criteria and they apply the 3 same validation standards to dispersion models as they 4 do to tanks or combat boots, so what are the acceptance 5 criteria? Check it out that yes, it does or doesn't 6 pass the acceptance criteria.

7 So here's the two sites. The first one, a 8 Nevada test site, it's a 30 kilometer domain and 9 there's mountains to the west. It's a big, flat valley as there is out there and these were releases of either 10 from the north end or the south end of the domain of 11 12 FS6 PUFFS and then there were three sampling lines and those are shown by the three lines with 30 samplers on 13 each line and there were right meteorological surface 14 15 sites on an upper air site and the Doug Way was the 16 OLAD and those were instantaneous line sources also on - in a flat valley but with some pretty big mountains 17 10 kilometers away. 18

This shows you the observed winds and whenever you measure observed winds on a mesoscale network, you discover that they're all in disagreement with each other. This just happens every place, but this shows a typical variability of one to two meter per second and wind direction variability of about 60 degrees. We applied a CALMET - and these are the

ſ

1	interpreted wind fills. SCIPUFF has its own diagnostic
2	wind model and we ran that for input to SCIPUFF, then
З	we ran both models with the CALMET inputs and just to
4	show you what we got, these are scatter plots which you
5	can just barely see, but up in the top right CALPUFF is
6	on the top and SCIPUFF is in the middle and a Navy
7	model is on the bottom, but they're sort of similar
8	scatter with the CALPUFF And SCIPUFF - the line of best
9	agreement goes through approximately the middle and
10	they have about the same amount of scatter and with the
11	DOUGWAY, the OLAD test models all seemed to under-
12	predict the higher values, but there's still similar
13	agreement among the models and this tabulates some of
14	the performance measures and if you look down at the
15	bottom at the high, the observed - the DIPOLE PRIDE was
16	modeled fairly well by each model and at OLAD was
17	under-predicted by a factor of two and the geometric
18	means and factor of two and so on are there.
19	So what we found is that there was good
20	performance at the DIPOLE PRIDE 26. At OLAD we're not
21	sure why there's the under-predictions - that might
22	have had something to do with some elevated sources
23	with unstable conditions, but the key thing that we
24	always emphasize in these evaluations is when you go
25	from sight to sight you notice difference in

performance. So it might be 30-percent over at one 1 site, 50-percent under at another site and then the 2 3 important thing is to look at the total group of sites. 4 My two models' performance was about the same and the middle bullet is the important thing that we applied 5 6 the Boot model evaluation a significant difference 7 criteria and there's no significant difference between 8 the performance measures for CALPUFF and SCIPUFF. Now, part of this is due to the fact that we're only 14 9 trials and 3 arcs, so there aren't a whole lot of data. 10 11 And the references couple - the paper where this is described and then some recent papers on the model 12 13 acceptance criteria so I guess now I need to go to the 14 other one.

15 Thank you and George is getting pretty fast 16 up here as the meeting goes -

17 This - continuing on, we switch over also now talking 18 about evaluations of prognostic meteorological models 19 of field observations and this is some studies that 20 also were funded by the Defense Threat Reduction Agency 21 over about the past 10 years and it's focusing on the boundary layer of variables because usually the 22 23 meteorological values are evaluated of more things of 24 interest to forecasters like rainfall and whether the 25 front goes through on time, things like that, so the -

Г

1	there was a seminal paper - a review paper by Nelson
2	Seaman in 2000, at atmospheric environment in which he
3	reviewed all the methods and recommended approaches for
4	evaluating the forecast models for boundary layer
5	inputs that go into the dispersion model. For example,
6	the SCIPUFF model wants surface fluxes, PBL height. It
7	likes TKE turbulence to be fed directly into it. So do
8	the MET model outputs agree well with each other with
9	the field data and so on, and I'm going to summarize
10	just briefly two studies. One in which we compared MM5
11	and RAMS from the SARMAP domain, OTAG domain and ASOS
12	domain and all these data we got from Tom Tesche and
13	Dennis McNally and the SIRAN evaluations and other one
14	was the OMEGA COAMPS and MM5 models for the Iraq 1991
15	scenario where they were - the army was blowing up
16	munitions dumps and there was some chemical agents and
17	the second study is using the IHOP data: That's not the
18	pancake house. There was a big study and Department of
19	Energy and so on of boundary layers and the HO stands
20	for H2O, it's the international H2O project where they
21	measured a lot of different body layer parameters in
22	Kansas and Oklahoma on a large domain.
23	So looking at just a summary of the first
24	study, for those four models and four domains, roughly
25	what we can see is the - for the mean wind speed and

1	the boundary layer with the winds - mean winds about 3
2	meters per second, the mean bias is only a meter per
З	second and 10-degrees, but the RMS, the Root Mean
4	Square error is typically 2 meters per second and 60-
5	degrees for wind directions and we seem to find this
6	everyplace, whether you go to urban areas over the
7	ocean - there's similar amounts and this is sort of a
8	fundamental uncertainty in the atmosphere that the
9	models can't beat. The vertical temperature gradients
10	are underestimated and these are 10-year old models,
11	primarily because of poor vertical resolution and
12	they've improved since then.
13	Now, to get to the IHOP study, it took place
14	over a couple months in 2002 and we picked three test
15	days. This is a picture of the domain. Some of these
16	sites are the DOE's routine sites and others are the
17	Oklahoma Mezzo Network and others were set out
18	specifically and they measured surface fluxes and did a
19	lot of slow rise radio signs and so on. And the
20	meteorological models that were run - MM5 Penn State,
21	Dave Stauffer was leading this aspect of it and ran $MM5$
22	with agnostic grid down to 4 kilometers and ANSEP, Jeff
23	McQueen and his group ran WRF NMN for the scenarios.
24	So here's the MM5 modeling domain with the 4 kilometer
25	nest over Oklahoma and Kansas and the WRF NMN, which

Г

1	doesn't really show too much, but this is the figure
2	they gave me.
3	First of all the vertical profile
4	comparisons: There were slow rise radius signs. Every
5	three hours five different sites and this is an example
6	of the type of thing we got. This is one vertical
7	profile and you often found here that WRF was 30-
8	percent too high: In fact, that was a consistent thing
9	and led the NCEP to go back in and change their PBL
10	approximation method, which was based on a level that
11	the TKE dropped a certain fraction of what it was at
12	the surface. At night, you're in serious trouble with
13	all these models because you have a really - often a
14	really strong surface and version and one of the models
15	got it that the others - the other didn't.
16	In this case WRF has - our MM5 is an elevated
17	version WRF doesn't, so there is a lot of uncertainty
18	in the mixing depths: As just a typical example of the
19	wind speed over a day at one of the sites. This is as
20	height of 60 meters and the RMSC typically was found to
21	be about 2 meters per second here for both MM5 and WRF.
22	The TKE, which was of great interest to SCIPUFF because
23	it can accept TKE as a - which is a turbulent like
24	SIGMA U-square plus SIGMA V-square plus SIGMA W-square
25	and that was not too bad during the day. At night,

1	again, there were big problems with using the MET model
2	output at TKE. So as I said, the minimum or inherent
3	uncertainty is about 1 meter per second. The largest
4	bias is at night. Wind direction is proportional of
5	one divided by the wind speed - the wind direction
6	error. The mixing depth 20-percent error during the
7	day plus or minus 100-percent at night and TKE has some
8	problems. And these are incidentally in general
9	agreement with the Seaman 2000 review paper and these -
10	at the end here I put the references as well as the
11	reference for the Seaman paper, so you know this is
12	sort of a template possibly for doing Mezzo scale
13	comparisons.
13 14	Comparisons. Thank you.
13 14 15	comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few
13 14 15 16	comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's
13 14 15 16 17	comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special
13 14 15 16 17 18	Comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special thank you for David making it. I know there was some
13 14 15 16 17 18 19	comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special thank you for David making it. I know there was some challenges getting here, but, welcome.
13 14 15 16 17 18 19 20	Comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special thank you for David making it. I know there was some challenges getting here, but, welcome. MR. LONG: Good afternoon. I'm David
13 14 15 16 17 18 19 20 21	comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special thank you for David making it. I know there was some challenges getting here, but, welcome. MR. LONG: Good afternoon. I'm David Long. I'm a senior engineer in the Air Quality
13 14 15 16 17 18 19 20 21 22	Comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special thank you for David making it. I know there was some challenges getting here, but, welcome. MR. LONG: Good afternoon. I'm David Long. I'm a senior engineer in the Air Quality Services section of the Environmental Services with the
13 14 15 16 17 18 19 20 21 22 23	Comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special thank you for David making it. I know there was some challenges getting here, but, welcome. MR. LONG: Good afternoon. I'm David Long. I'm a senior engineer in the Air Quality Services section of the Environmental Services with the American Electric Power Service Corporation. I'd also
 13 14 15 16 17 18 19 20 21 22 23 24 	Comparisons. Thank you. MR. BRIDGERS: Thanks, Steve. Just a few more talks and then we'll have another break. Let's see if it will work. Okay. David. And a special thank you for David making it. I know there was some challenges getting here, but, welcome. MR. LONG: Good afternoon. I'm David Long. I'm a senior engineer in the Air Quality Services section of the Environmental Services with the American Electric Power Service Corporation. I'd also like to acknowledge my co-authors on this work: Pete

1	from TRC who have done an excellent job of taking this
2	from a proof of concept position into something that is
3	- we're getting real close to being ready for primetime
4	with it. The background of this work came about as a
5	result of some questions from our engineering people
6	about one of our plants in Texas and wanting to know
7	what kind of an SO2 limit they'd have to meet for the
8	one-hour standard and looking at the area, it was sort
9	of, "Well, there's a lot of stuff down in that region
10	and we better figure out what background is and when we
11	went looking just sort of at the rough cut number for
12	what's the closest monitor, there's one monitor in that
13	region at Longview Airport and it's design value for
14	2008 to 2010 was 66 parts per billion. Not really
15	something that's going to make a good background number
16	in a fairly heavily industrialized area.
17	Well, we went and went ahead and Texas
18	was very good about supplying us with the hourly data
19	from that monitor and when we started looking at the
20	hourly data, there were just hour after hour of very
21	low values followed by a handful of hours with very
22	high values, then went back to very low values again
23	and sort of - something's hitting that monitor was sort
24	of the conclusion you drew from it and it made it real
25	clear to us that sort of the initial proxy is suggested

1 in the guidance that EPA proposed last year - used the 2 design value for a nearby monitor just really wasn't 3 appropriate in this case.

4 Now, the area that we're looking at - as I 5 mentioned we do - there's a number of industrial 6 sources and these are just the power plants in the 7 region that we actually used in our work and this was 8 mentioned by one of our speakers a little bit earlier, there is a chemical plant in this area too. He's 9 going, "Yeah." And really we didn't find a whole lot 10 11 other than what we can attribute to the utility sources 12 and as you'll note I've got two different colors up here: The black sources are coal fired plants and the 13 orange sources are gas and oil fired facilities. 14 Now, 15 I will not the gas and oil facilities don't use that 16 much oil. In fact, we own all three - all three of the 17 gas oil facilities shown on here and in looking through the operating records of those facilities, only one 18 19 unit at the Lieberman plant burned any oil in the 20 three-year period that we're looking at here and it 21 just burned oil for a short period of time in 2010. You know, I mentioned about the spikiness of the hourly 22 When I was doing the proof of concept work, this 23 data. 24 was a plot that I made and as you can see, we go along 25 less than 10 most of the time and all of a sudden

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16/66-3 216
1	here's a 95, here's a 78, you know, very spikey in its
2	performance, which does indicate very much things
3	hitting that monitor from a source, so it was - let's
4	see if we can try and figure out what sources are -
5	what sources might be doing this.
6	The initial method was to use a two-hour
7	average: the hour of the high value plus the hour
8	before and we've selected a 10 part per billion
9	threshold just to try and make it easier to work with
10	the data rather than trying to look at all 8760 hours
11	in the year. The initial cut would be if the wind
12	direction was within a 15-degree either side of the
13	direction from the monitor to the source, we'd
14	attribute it. And the wind direction was determined
15	based on the one-minute data set average over the hour.
16	If the - if we didn't meet the first condition, then we
17	looked at the maximum and minimum one-minute wind
18	directions for the two-hour period and if those fell
19	within 30 degrees of either side of the - the direction
20	of the source from the monitor, we would attribute it.
21	Now, obviously, you know, this is - we're
22	trying to get just a rough cut, so we had a third
23	criteria. If the first two conditions don't work, look
24	at the one-minute data itself for both hours and see
25	how many of the values that's within the plus or 15 -
4 having an impact on that value."

5 And then our final cut was if none of that 6 worked, professional judgment or some additional 7 analysis, which I will show you one value that was 8 extremely high that we couldn't get rid of that went 9 through - we took through this process and it really 10 demonstrates just what this one-minute data can really 11 do in examining this.

12 Our initial results when I was doing proof of 13 concept, I was working with one month of data and you could do it in an excel spreadsheet. When we started 14 15 looking at three years of data, that really wasn't 16 going to work and the folks at TRC have developed some 17 computer programs that we're still refining to do the 18 analysis of all the data. However, we went in through 19 this initial process, we did find some shortcomings and 20 we've made changes and as I mentioned, one value from 21 2009 was taken to its ultimate conclusion since steps one through three didn't tell us anything about this 22 23 value and it was up - I believe it was like a 79 value. 24 It was right up around the standard. And when we did 25 this, it showed the shortcoming of using everything

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 218
1	based on just block hour values, but it also shows the
2	capability of using the one-minute data and some of the
З	things that you're capable of doing.
4	Our initial results on the one-minute - on
5	the steps one through three came out with when we
6	looked at - if - if there - if we screened out all the
7	upwind sources, the three-year 99-percentile went from
8	66 to 14, so it really, really helped.
9	Then if we look at this high - the high value
10	that we couldn't get rid of, here's that 75 I've
11	mentioned, and it was - it definitely raised some
12	curiosity - what was going on that that 75 was still
13	hanging around after we put it through all this. Well,
14	one of the fellas - and I'm not sure which one it was,
15	but from up at - yeah - went through it and start - did
16	the initial hour block looking at Martin Lake, which
17	seemed to be one of our favorite sources to pick up at
18	that monitor, came out and just went a few kilometers
19	around the monitor, which started raising some
20	questions and they started putting in an offset,
21	working down into that first hour and when they put a
22	20-minute offset in, it just about ended up with a
23	direct hit on the monitor.
24	So it really does go to show that when you
25	can refine and have a higher resolution of the MET

1 data, you can see things that just hourly MET data 2 really doesn't show and it's not that there's anything 3 wrong with the hourly MET data, it's just the 4 resolution isn't fine enough.

5 After we went through this first round, we 6 started looking at okay what works and what doesn't 7 work? One of the things that we started to look at 8 very early on was we're only using two hours and the wind speeds may not be all that high, so should we look 9 at more hours and we - when we started doing that, we 10 11 started to find transport distance and the travel time 12 are very important to being able to identify what 13 sources are impacting a monitor to given time. And we also have taken the method to consider a percentile of 14 15 hours in the source bin as well as simply the 16 percentile of just filtered daily high values for 17 determining candidate background values.

Now, here, this is looking at a travel time 18 19 instead of just a two-hour block, up to 12 hours and 20 when we take a look at all valid concentrations, we 21 find that the three-year average is 85 with upwind 22 sources. When we're looking at the maximum with no upwind sources, that 85 becomes 25 and that's at the 23 24 100th percentile. When we look at the form of the 25 standard - the 99th percentile of daily maximum and

1 here's our 66 design value - when we - with the 2 filtering, it drops to 11.

3 And we were talking a little bit earlier today at lunch about that 11 value and it was mentioned 4 that there - if we wanted to start doing more of the 5 6 step 4 analysis, we could probably knock the 11 down by 7 a good bit. And we also look at it just from the 8 percentile of the valid hours in each case and when it's looking at all valid concentrations, the 99th 9 percentile value is 15. After we filter it, it drops 10 to 5. So there you know it is - we're just believing 11 12 this is a very good methodology for filtering the data. If you don't have multiple monitors in an area and have 13 one that really is sitting in a fairly clean spot. 14 15 And this is a table where we're looking at just who's 16 doing what at what time looking at all valid - just the 17 all valid hours characterization and this is year-byyear data and using the 15 degree sectors. We 18 ultimately concluded that really 30 degrees is probably 19 20 the better way to look at this. But when you see year-21 by-year - when we look at no upwind sources, what you end up seeing if you're looking at the 99th percentile 22 23 values, something akin to the form of the standard, you know you're seeing - here's roughly 6, 6 -- we look at 24 25 2010 - okay, it's up to 7. And when you look at the

three-year average of it, it's 6 parts per billion 1 2 looking at the 99th percentile of the valid hourly 3 values with no upwind sources. When you open it up to 30 degrees: that value drops to 4.6. 4 And the 100th 5 percentile value drops to 32.6 from 82.2, so you're 6 definitely screening more hours out and being able to 7 say, "Yes, there was a specific source that was in our 8 - under consideration that was impacting that hour."

9 What's our conclusions? Well, the use of and here I'm calling it the 65 data sets, which that's 10 the format - is very - is viable. It's - we believe 11 12 this is a viable technique that transit times up to 12 13 hours should be considered to maximize the capture of source impacts on one-hour monitored values. If you're 14 15 considering upwind sources with a long transport time, 16 the angle between the average wind direction and source 17 direction should be 30 degrees in order to allow for the plume meander that's going to occur. And the Step 18 19 4 analysis, it should be available in the methodology 20 because you may not be able to find every hour and have 21 it conform to the, you know, the block hour 22 requirements as we saw earlier. And consideration 23 should be given to grouping sources and this would - we 24 think that would be useful if you have a large number 25 of sources within a 10 or 15 maybe 20 degree sector

1	coming out - possibly grouping them rather than trying
2	to say well, it was this source here when 15 or 30
3	degree sectors we're using are overlapping so much
4	amongst the sources. And while we did this work for
5	one-hour SO2, we think it should be valid for any
6	pollutant with a one hour averaging time and quite
7	possibly for other short - fairly short averaging
8	times. You know, obviously, if we're looking at 12
9	hours, we're not really doing something with this
10	that's going to be real - probably real good for 24
11	hours, but that might be something to test at some
12	point in the future.
13	Thank you.
14	MR. BRIDGERS: All right. Do you want me
15	to turn the microphone on?
16	MR. COLOMBARI: Do you want me to use
17	that keyboard?
18	MR. BRIDGERS: Either the up or the down
19	microphone.
20	MR. COLOMBARI: Okay. Thanks. Hi, I'm
21	Toni Colombari with Trinity Consultants and I'm going
22	to be giving a presentation a little bit different than
23	others. Were' not going to look at a specific
24	situation but sort of a broad category of all the
25	different things you can look at to help you meet the

NAAQS and some of these that maybe we haven't looked at
 that much in the past.

3 So I'm just going to give a really brief 4 background and then I'll jump right in to the list. So this is sort of the three main categories of things 5 6 that we'll put into the model. We have all our source 7 parameters, which includes you know stack height, 8 emission rate, velocity, building height, building location and that brings in downwash and all those 9 Then we have our MET data and I'll have wind 10 things. 11 direction, wind speeds, low wind speeds, temperature 12 and then we have our receptors, ordinance on those, terrain data, elevation receptors and all those come 13 together and that's how we get our model concentration. 14 15 So we're going to sort of walk through a 16 list of how these five different things and really have 17 some sub-categories of what in those original blocks we 18 can change.

So the first one is to re-characterize ambient air as not being ambient air. Some of these seem pretty obvious, you know, put up "No Trespassing" signs. Put up a fence line so that you can count your property line as your fence line. I know there's been a little bit of discussion. I haven't seen this gone too far about what happens if your worse-case receptor

1 is over open water and then one of the more unique ones 2 would be to actually look into purchasing land where 3 your maximum model concentrations are showing up if 4 that's nearby and then you can just fence it off or 5 maybe purchase the sort of clean air mineral rights to 6 that land and then you could just exclude those 7 receptors from your analysis.

8 Number 4 is to re-evaluate your MET data or your monitoring data like we just saw if you just -9 10 you have all this background data but maybe your 11 sources that you're modeling is actually contributing 12 to that and sort of take a look and try to pull out the ones that are already being considered in your model. 13 We also looked at considering on-site 14 15 MET data, although that may cost you a million dollars. Look at whether - you know, don't always 16 17 look at the closest airport. Just because it's five or ten miles away doesn't mean it's the best MET data for 18 19 where your facility is. If you're in really complex 20 terrain and the airport is in a really flat area, then 21 that may not be very representative and sometimes you have to look a little bit further away. 22 23 And then the last one would be to look at pairing background concentrations and time, 24

25 especially for the 24-hour standard, but even with the

1 one-hour standards, your model concentration and your 2 monitoring concentrations are not always going to 3 overlap at the same time and you can really see huge 4 reductions in your you know modeled results.

5 Number three is to look at building 6 changes. For a green field facility, you can look at 7 rearranging the buildings before you actually build 8 them to see what is our downwash going to be and try to minimize that as much as possible. You could also look 9 at just knocking down some buildings. If you're getting 10 11 a lot of downwash and you don't really need those 12 buildings, just get rid of them. And then one of the more unique ones is actually look at increasing 13 building height because that will increase your 14 15 equation 1 GEP height and not necessarily adding a 16 whole story, but something like a parapet to the top of 17 your building could actually let you raise your stack a little bit higher. 18

You can look at pursuing alternative models or switches within the model. We heard a lot about using CALPUFF for complex winds and we know that justification for that is really difficult, but it's something you definitely could pursue. And then one that's not thought of a lot

25 is rethink rural versus urban coefficients. A lot of

Г

1	times a state agency will just block out areas and say,
2	"If you're here, you need to model urban coefficients
З	with "X" population, but if you have really tall stacks
4	and they're sort of releasing above or the plume rise
5	is going above the urban boundary layer, then you may
6	want to rethink whether the urban or the rural
7	coefficients are really appropriate and that can get
8	really complicated since that urban boundary layer is
9	going to be changing by hour, so that can get really
10	detailed analysis, but that's just one more thing that
11	can sort of come into play and could help facilities
12	sort of show lower modeled concentrations.
13	And then the number one is to actually
14	look at - and this may sound crazy - but lowering stack
15	height. If you have really tall stacks that aren't
16	having a lot of downwash, they're having impacts really
17	far away from the facility, they're all going to be
18	heading probably the same area, so you know, each one
19	of your stacks are probably having three times the
20	impact since they're all hitting the same area. You
21	lower one or two of those stacks, their individual
22	concentrations might go up, but the overall impact to
23	your facility could go down by you know a factor of a
24	third - half to two-thirds, maybe less, depending on
25	how many stacks you have. Or you know the alternative

Г

1	to just chopping off part of your stack, you could just
2	look at selectively adding control equipment to just a
3	few of the stacks or one of the stacks, such as like a
4	wet scrubber that's going to decrease the amount of
5	plume rise you get. That could have the same affect.
6	You'll have a lower emission rate, but you'll also have
7	lower flow rate, lower temperature, lower plume rise
8	and the plume should sort of separate and not really
9	hit that same area and that can sort of have the same
10	impact of really lowering your facilities total impact.
11	So just some conclusions: As we've seen, and
12	people have been saying time and time again, these new
13	standards are really tough. We'd love to see some
14	updates to Appendix W and some new models and some
15	changes to GEP equations in the model, but right now
16	this is what we have to work with and we need to also
17	look at just all these other inputs and see what else
18	can we change, what else can we sort of manipulate to
19	you know pass the model - to pass modeling, to pass
20	permit modeling with the models we currently have. A
21	lot of these alternatives aren't going to work, you
22	know, you can't always just increase your boundary.
23	Your property line - you can't always chop off a stack,
24	but some of these might and there's a lot more we
25	didn't include here. This was you know at first a list

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16/66-3 228
1	of ten but I had to chop it down. And then just make
2	sure you apply any and all reasonable means and maybe
3	some unreasonable ones - try to make them reasonable.
4	So just a few acknowledgments: just some other people
5	in Trinity that helped develop this list and many more
6	that we didn't include.
7	Made it quick for you.
8	MR. BRIDGERS: Okay. Up next we have
9	Justin. I hope you - do you have a power point - okay.
10	That was the one presentation I didn't have so let me
11	just put up a stoic slide. So up next we have Justin
12	Walters with Southern Company.
13	MR. WALTERS: All right. Good afternoon.
14	I have the - I think the distinction of being the last?
15	MR. BRIDGERS: The last requested.
16	MR. WALTERS: My name is Justin Walters
17	and I'm speaking today as a representative of Southern
18	Company, a leading energy supplier in the Southeastern
19	United States. As a company that generates
20	electricity, Southern facilities are frequently the
21	subject of air quality modeling for regulatory
22	purposes: From PSD permitting to state implementation
23	plans to federal regulatory programs.
24	Over the years, we have witnessed an
25	increasing reliance by EPA on models. Models have

historically been used in the PSD world in a 1 2 deterministic manner, but were primarily used to 3 address standards that were well above background and 4 with long averaging times. Now, with short-term standards that approach values that are closer to 5 6 background concentrations, the models require a level 7 of accuracy and precision beyond their current 8 capability. Surprisingly, models are increasingly being given greater deference than ambient 9 measurements. Continuing to apply modes with existing 10 but outdated guidance is inappropriate. As an example, 11 12 EPA's September 22nd, 2011 draft guidance for one-hour 13 SO2 NAAQS SIP submissions requires that all major So2 sources demonstrate through modeling that they are not 14 15 causing or contributing to violations of the one-hour 16 NAAQS regardless of the presence of monitoring data 17 that may show attainment. For sources that cause or contribute to model exceedances of the NAAQS, federally 18 19 enforceable emission limitations are required that when 20 modeled demonstrate attainment of the standard. Such a prescriptive requirement for such a stringent one-hour 21 22 standards necessitates, among other things, the use of 23 an unbiased model.

AERMOD has not been thoroughly evaluated 25 for performance in simulating the maximum daily one-

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 230
1	hour concentration at the 99th percentile, nor has it
2	been evaluated for the 99th percentile in the case of
3	NO2.
4	Prescribing emission limits for such a
5	stringent standard from the results of an unproven
6	model could result in significant and unnecessary cost
7	and burdens on Southern Company, the state's in which
8	we operate and our customers.
9	Should EPA finalize and or codify its
10	modeling requirements for SIPS and middles for the one-
11	hour SO2 NAAQS, EPA should give states discretion to
12	use modeling and analysis tools to help demonstrate
13	situations where sources have a low probability of
14	violating the standard.
15	EPA's draft guidance requires that
16	sources model at their highest potential to omit for
17	all hours of the year. The vast majority of sources do
18	not operate at full load 24 hours a day, 365 days a
19	year. States should therefore have a discretion to
20	allow sources to demonstrate perhaps through
21	application of the emissions variability processor or
22	MVEP that you heard about on Wednesday: The less
23	restrictive emission limits will still achieve the
24	NAAQS.
25	Okay. Switching topics: Modifications

1	to preferred models such as AERMOD that are bug fixes
2	are welcome and we applaud that effort, but
3	modifications that result in changes to model
4	concentrations must go through notice and comment rule
5	making before being implemented in preferred models.
6	Appendix W states that, and I quote: "A preferred model
7	should be operated with the options listed in Appendix
8	A as recommendations for regulatory use. If other
9	options are exercised, the model is no longer
10	preferred. Any other modification to preferred model
11	that would result in a change in the concentration
12	estimates, likewise, alters its status as a preferred
13	model."
14	The guideline also states that: "For the
15	preferred AERMOD model, building wake affects are
16	simulated for stacks less than good engineering
17	practice height using methods contained in the PRIME
18	downwash algorithms, therefore, the recent change in
19	AERMOD noted in model change bulletin number four that
20	alters the prime downwash algorithms to apply to stacks
21	that are greater than or equal to the GEP formula
22	height relegates the model to non-preferred status."
23	Because as we have seen earlier today, this change has
24	been shown to cause significant increase in modeled
25	concentrations, therefore, this is not simply a bug

Г

1	fix, but must be subject to notice and comment rule
2	making. Along that same line, EPA needs to evaluate
3	the performance of AERMOD with the AERMINUTE processor.
4	On Tuesday, during a presentation on the
5	CALPUFF model, Roger Brode made the argument that for
6	demonstrating the performance of CALPUFF for complex
7	winds, the CALMET processor is an integral part of the
8	CALPUFF modeling system, since that model is the source
9	of the complex wind fill input. Similarly then, for
10	evaluating the performance of AERMOD, EPA must consider
11	the entire AERMOD system, including AERMET, and since
12	EPA has now recommended its use, AERMINUTE. We have
13	seen evidence at this conference that AERMOD
14	significantly over-predicts at low wind speeds. The
15	use of AERMINUTE often leads to a significant increase
16	in the number of low wind speed hours modeled. EPA's
17	justification for implantation of AERMINUTE and AERMOD
18	is that it is more technically sound. However, the
19	scientifically or technically justified change to a
20	model component does not always lead to overall model
21	performance. EPA should avoid the appearance of a
22	double standard when it comes to model performance
23	evaluation.
24	If EPA considers that CALMET is an
25	integral part of CALPUFF and that the two must be

Г

1	evaluated together, then it stands to reason that prior
2	to EPA recommending its use, AERMINUTE should be
3	included in a performance evaluation of AERMOD,
4	demonstrating that its conclusion leads to improved
5	model performance in a wide range of meteorological
6	conditions, particularly, the low wind speed and stable
7	conditions that are most affected by the AERMINUTE
8	processor. Once its evaluation is complete, the model
9	changes should be submitted for public notice and
10	comment.
11	Finally, EPA should wholeheartedly
12	engage not only at the regional, state and local
13	agencies, but also the private sector including
14	consultants and industry to achieve goals in improving
15	the performance of both preferred and alternative
16	models. We have heard a number of times, including at
17	this meeting, that the air quality modeling group is
18	understaffed and underfunded. You have willing
19	partners in the modeling community. Please work with
20	the modeling community in implementing model
21	improvements and updates.
22	During this conference, we have heard
23	several presenters discuss their efforts in desired
24	improved guidance, models and modeling tools, many with
25	similar frustrations, that their effort is mired in the

model of clearinghouse process. EPA should engage and 1 provide a clear path forward for approving tools and 2 3 model improvements that come from the modeling 4 community such as the tools and model improvements we heard discussed during this conference. In fact, 5 6 evaluation of the performance of AERMOD in conjunction 7 with some of these tools could be incorporated into the 8 evaluation that EPA must conduct on the performance of AERMOD with AERMINUTE. 9

10 I appreciate that opportunity to speak today. Meetings of the modeling community and EPA such 11 12 as this one are increasingly important since there are 13 so many pending modeling and regulatory implementation issues to address. We encourage EPA to engage the 14 15 modeling community on a more frequent basis. 16 Unfortunately, the private sector has not been invited 17 to participate in this year's regional, state and local modelers workshop, however, we do look forward to being 18 19 included in such opportunities to engage EPA in the 20 future.

In conclusion, with standards becoming so stringent and with an increasing reliance on models in the regulatory process, we feel that it is imperative that EPA assure that the performance of its guideline models is unbiased and does not lead to gross

over-predictions that could force costly and 1 unnecessary actions to be taken. Second, if EPA 2 3 determines that modification to the model formulation 4 beyond bug fixes or modifications that cause changes in 5 model concentrations are warranted and necessary, EPA 6 must perform a model performance evaluation for those 7 modifications and submit it for public notice and 8 comment.

9 Finally, we encourage the air-quality 10 modeling group to be transparent and open and engage in 11 C-collaboration with the modeling community to leverage 12 resources and promote community model development.

13 Thank you.

14 MR. BRIDGERS: Well, thank you Justin for 15 your comments. I think that - do we want to take the 10-minute break or do we want to open it up? I mean 16 17 that's kind of up to us. If we want to take a 10minute break, just come back at 4:10 and we'll have 18 19 open mic for anybody else that wants to make public 20 comments and then we'll close the conference. So let's 21 take the break. 22 (WHEREUPON, a brief break was taken.)

23 MR. BRIDGERS: We've about finished our 24 break time. As everybody is taking their seat for this 25 last session, I'll offer as an opportunity for anyone

1	in the audience or others that have thoughts or
2	comments during the course of this conference to make
3	statements. Please understand that we do welcome all
4	comments to be submitted to the document, so you don't
5	have to speak today and I think Tyler had made the
6	comment earlier to someone that they're not officially
7	a part of the document until we submit - at least your
8	comments are not officially part of the document until
9	we submit the transcripts and probably what we'll do is
10	once we get the transcripts back from our contractor
11	here, as we review them and identify individuals that
12	spoke and gave comments or presented, we'll share those
13	with you so you can scan those too before we put them
14	in the docket. You know, you know what you said better
15	than we did. So at this time, the microphones are
16	open. Please identify yourself, whatever corporation
17	you're with and have at it.
18	MR. LEBEIS: Hi. I'm Mike Lebeis with DTE
19	Energy and actually I had a question earlier in the
20	conference related to intermittent sources and the
21	different categories of intermittent sources that you
22	know were suggested in the March 1st, 2011 memo. Well,
23	it turns out that one of our plants we had an issue
24	where the diesel generators got - like dragged along
25	with the one-hour NO2 standard came along and as an

Г

1	interim measure, we had to agree to extremely high
2	stack heights on some diesel generators that average
З	operating maybe like five hours a year, typically.
4	With the March 1st guidance, we were able to go back
5	in, remodel them at an annual average emission rate and
6	actually it turns out that I had to come down here for
7	the permit to get issued, so it's interesting how when
8	you finally leave town, that's when everything gets
9	finalized and so I actually got the good news on
10	Tuesday that the permit did get finalized after going
11	through a 30-day public comment period, also some
12	response to comments and things like that, but those
13	things were resolved and the permit was issued on
14	Tuesday. So there is hope for intermittent sources out
15	there.
16	MR. BRIDGERS: Thank you.
17	MR. SCHEWE: George Schewe, Trinity. How
18	long will the interim SO2 and NO2 seals be interim?
19	MR. FOX: This is Tyler Fox, OAQPS. I
20	just want to be clear, this isn't a question and answer
21	period. This is a public comment period, so you can
22	submit comments, but we're not answering questions.
23	MR. SCHEWE: Okay. We'll play Jeopardy.
24	We would like to comment that we're concerned about how
25	long the interim seals may be interim. Thank you.

1	MR. BRIDGERS: Thank you for the comment.
2	Going once, going twice. Do you want to just check one
3	more time?
4	MR. FOX: Yeah, I'll make one more
5	request that the microphone is open for anyone that
6	does want to make a comment to be submitted to the
7	docket when the transcripts are submitted. And if not,
8	like I said earlier, please feel free to make written
9	comments to the docket. Do you want to say anything in
10	closing?
11	MR. BRIDGERS: I just want to thank
12	everybody for their active participation and have safe
13	travels back to where you're going and we appreciate
14	everything and we'll be following up with, as George
15	said, any follow up on the transcript itself and expect
16	that you'll hear back from us in terms of any response
17	related to this conference and we appreciate all the
18	input and again, we'll be in contact soon.
19	And I officially close this public
20	hearing.
21	(WHEREUPON, the hearing was concluded.)
22	
23	
24	
25	

	10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 239
1	CAPTION
2	
3	The foregoing matter was taken on the date, and at the
4	time and place set out on the Title page hereof.
5	
6	It was requested that the matter be taken by the
7	reporter and that the same be reduced to typewritten
8	form.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 241

\$	10-percent 217:2	1700 166:18
\$100,000 170:21	10-story 166:7	180 107:15
\$100-million	10th 4:2 9:17	1800 134:15
167:19	11:5 11:11 12:2	1920 163:5 164:14
\$300-million	10-to-1 153:16	196 163:24 164:12
167:19	10-year 211:10	1964 112:5
0	11 206:15 220:2	1971 80:4
01 50:2 50:9	220:4 220:6	1975 112:4
09292 175:24	110 181:11 181:13	1976 20:17
	11059 15:21	1982 80:9
$\frac{1}{1 29.11 45.25}$	112:22 176:5	1985 20.14 105.22
97:24 185:25	11103 1/6:5 1/8:5	1986 85.18
195:5 195:23	11325 112:22	1989 22.8
196:4 196:21	1159 112:21	1990 199.10
1 3 130.17	118 73:3	1991 210.14
1 8 31.6	11th 6:8	1991 210.14 1992 133.21
10 107.15	12 219:19	1003 122.22
156:24 160:15	12.40 162.17	1993 163.5
174:20 180:21	1210 166.9	1994 105:5
206:6 206:18	1210 100.9	136:10 153:1
215:25 216:8	206:14 209:9	1998 199:11
221:25 235:17	218:8	1999 44:14
10:40 76:21	140 128:1	1-hour 23:24
100 60:1 72:22	144 112:25 178:2	25:13 74:5
73:2 73:2	15 4:3 44:22	75:4 81:1
182:13	216:25 217:1	102:8 107:6
1000 182:21 206:8	220:10 220:18	1-minute 157:5
100-meter 173:11	1500 134:17	1st 236:22 237:4
100-percent 213:7	166 : 10	
100th 219:24	15-degree 216:12	2
221:4	16 55:18	2 75:12 130:4
108 73:3	168 29:6	130:10 130:11
10-degrees 211:3	17 44:17 44:18	130:19 136:20
10-minute	44:18 161:5	137:4 137:5
156:24 235:16		137:22 161:7

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3

242

161:10 211:4	22 14:10	35-percent 130:10
212:21	220 18:16	36 30:1 32:23
2,000 29:9	225 129:19	365 230:18
2.1 31:16 43:23	22nd 229:12	372 71:23
4/:11 2 F 50,20,60,5	24 222:10 230:18	39 185:23
2.5 59:20 68:5 68:12 68:22	24-hour 224:25	
147:16	25 20:5 219:23	4
20 31:3 31:4	2500 164:17	54:11 211:22
64:13 193:10	26 206:11 208:20	211:24 220:6
221:25	2600 134:13	221:19 224:8
200 10:6 /1:8	280 72:23	4.4 17:12
2000 210:2 213:9	2-kilometer	4.6 200:8 221:4
2000s 200:2	161:10	4.7.1 200:21
201:10 201:18	2nd 94:10	
2002 211:14		4.7.X 200:14
2005 54:12	3 54:11 186:3	4:10 235:18
98:18 194:14	197:1 209:10	40 16:5 19:17 19:19 20:10
2007 85:17	211:1	21:23 26:18
2008 54:24 103:19	3,600 38:16	163:20 178:12
214:14	3.2 26:14	400-some 153:20
2009 193:11	3.4 48:25	42 175:22
217:21	3:45 52:10	175:23 176:9
200-some 153:20	30 127:21	438 000 193.12
2010 29:24 55:3	157:19 180:8	45 153·21
55:8 55:11 175:9	212:7 216:19	4-vear 160.22
214:14 215:21	220:19 221:4	160:25
220:2 5	221:17 222:2	
14:11 29:24	300 29:8 29:12	5
55:18 176:7	30-day 227.11	5 75:13 164:18 196:6 220:11
229:12 236:22	30-percent 200.1	5.0 44:16
2012 4:3	30+b 5.02 6.2	200:23 201:3
2013 164:7	30 CH 3:23 0:3	5.8 51:15 51:19
2014 6:10 164:10	32.0 221:3	54:9 54:13 55:13
20-minute 218:22	328U 112:25	55:23 201:6
20-percent 213:6	35 50:10 128:1	5.8's 55:2

L

10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 243

50 22:4 25:16	7,000 164:15	99-percentile
64:8 64:9	70 127:22	158:21 159:9
64:23 74:3	700 44:18	218:7
157:12 173:11	75 163•24	99th 219:25 220:9
500 100.10 100.10	218:10 218:12	220:22 221:2
500 160:19 166:19	76 <i>AA</i> •18	230:1 230:2
50-percent 181:23	777 71.00	9th 54:24 171:6
182:3 182:3	/// /1:22	
53 15.25	78 216:1	AA 8:20
55 45:25	79 217:23	NB-3 0.12 0.15
5th 15:1		9.17 9.22 9.13
6	8	10:4 10:14 10:25
6 43:21 220:24	0 21:24	11:1 11:13 13:15
220:24 221:1	8.8 192:19	13:20 14:17
6,000 164:18	800 156:25	14:25 28:16
6 1 12.13 13.21	80-percent	42:11 52:3
55.8 55.13 55.23	159:9 161:21	Abhishek 112:19
56:6 190:22	80s 166:20	ability 42:16
191:7 191:22	82.2 221:5	180:23 200:17
192:6	85 22:3 27:13	204:7
6.42 51:1	219:21 219:23	able 6:19 11:21
6.42b 43:12 43:20	8760 216:10	13:21 26:25 32:7
43:22 44:4 51:15		107.13 147.15
56:22 57:8	9	177:8 177:22
60 59:23 207:24	9:45 52:4	179:3 179:10
211:4 212:20	9:55 52:4	179:18 202:20
60-percent 130:9	900 71•7	219:12 221:6
63 50:7	90a 53.10	221:20 237:4
65 175:22	01 104.12 104.20	absolute 69:3
176:10 176:14	91 194:13 194:20	absolutely 129:20
176:16 178:15	93 193:20	absurd 38:1
179:2 221:10	95 194:13	accept 69:25
65-percent 167:25	194:20 216:1	212:23
168:2	96 119:9	acceptable 72:21
66 214:14 218:8	99 50:2 158:6	acceptance 67:2
220:1	158:19 159:9	206:24 207:2
	159:23	207:4 207:6
7 20.15 000 05	99-percent 162:20	209:13
/ 30:15 220:25	162:21	accepted 51:14

accepts 141:7	54:13	77:25 80:3 80:16
access 42:7 42:13	acknowledgments	83:18 91:7
accidental 29:1	228:4	92:5 92:5
accidents 29.3	acronym 77:12	92.24 93.7 98.22 107:13 107:20
	200:6	114:17 114:19
accommodate 15:/	across 19:18	116:23 117:1
accommodating	114:8 114:17	119:20 120:4
53:3	114:18 116:6	121:19 122:24
according	165:23 169:25	124:17 126:1
105:22 123:14	act 29:23 31:1	136.18 138.14
account 37:16	140:14 141:3	139:23 141:13
62:11 63:2 74:13	142:7 143:9	160:24 161:8
101:/ 11/:22	143:15	162:2 162:3
145.15 196.18	action 144:23	167:13 172:8
202:13 204:16	144:24	172:13 173:21
accounted 63.6	actions 175:8	184:16 192:13
141:16 196:17	235:2	213:7 224:2 224:11 225:7
75.9	active 10:6	225:13 225:17
104.21	238:12	226:13 236:19
	acts 109:19	237:6 237:9
104·20	actual 18:13	adapted 44:2
107.20		_
	23:11 45:20	adapting 142.23
accuracy 60:2	23:11 45:20 54:17 60:3 63:20	adapting 142:23
accuracy 60:2 127:24 130:18 229:7	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5	adapting 142:23 add 5:25 32:24
accuracy 60:2 127:24 130:18 229:7	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94.6 107.2	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13</pre>
accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2</pre>
accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5</pre>
accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25</pre>
accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17</pre>
accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 170:10 101:10	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24</pre>
accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6</pre>
accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17 230:23 233:14</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11 actually 4:25 9:9	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11 152:7 179:22</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17 230:23 233:14 acid 44:21 48:9</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11 actually 4:25 9:9 10:14 11:12	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11 152:7 179:22 198:7</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17 230:23 233:14 acid 44:21 48:9 193:1</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11 actually 4:25 9:9 10:14 11:12 11:21 12:10 15:2	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11 152:7 179:22 198:7 additional 8:8</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17 230:23 233:14 acid 44:21 48:9 193:1 acknowledge 15:18</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11 actually 4:25 9:9 10:14 11:12 11:21 12:10 15:2 28:23 28:24	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11 152:7 179:22 198:7 additional 8:8 51:16 56:5 69:17</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17 230:23 233:14 acid 44:21 48:9 193:1 acknowledge 15:18 70:11 97:4</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11 actually 4:25 9:9 10:14 11:12 11:21 12:10 15:2 28:23 28:24 35:22 38:7	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11 152:7 179:22 198:7 additional 8:8 51:16 56:5 69:17 70:17 140:24</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17 230:23 233:14 acid 44:21 48:9 193:1 acknowledge 15:18 70:11 97:4 203:16 213:24</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11 actually 4:25 9:9 10:14 11:12 11:21 12:10 15:2 28:23 28:24 35:22 38:7 38:9 39:3 42:9 43:12 40:2 50:02	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11 152:7 179:22 198:7 additional 8:8 51:16 56:5 69:17 70:17 140:24 145:2 176:23 178.12 178.22</pre>
<pre>accuracy 60:2 127:24 130:18 229:7 accurate 57:8 86:23 121:1 127:17 130:12 140:11 140:15 172:20 172:24 accurately 97:25 134:22 155:18 achieve 39:17 230:23 233:14 acid 44:21 48:9 193:1 acknowledge 15:18 70:11 97:4 203:16 213:24 acknowledged</pre>	23:11 45:20 54:17 60:3 63:20 64:20 67:12 93:5 93:9 93:17 93:23 94:6 107:2 110:13 131:4 134:6 134:9 134:10 141:10 141:12 153:18 154:25 157:1 178:10 181:10 182:23 189:20 189:21 190:2 193:11 actually 4:25 9:9 10:14 11:12 11:21 12:10 15:2 28:23 28:24 35:22 38:7 38:9 39:3 42:9 43:13 49:3 52:23 60:17 61:25	<pre>adapting 142:23 add 5:25 32:24 78:23 91:6 95:14 107:11 120:13 178:12 182:2 added 115:3 115:5 142:21 152:25 200:15 200:17 adding 73:7 82:24 105:12 120:6 225:15 227:2 addition 147:11 152:7 179:22 198:7 additional 8:8 51:16 56:5 69:17 70:17 140:24 145:2 176:23 178:12 178:23</pre>

address 7:3 13:13 advocating 151:2 232:12 232:15	
39:23 76:8 121:9 AECOM 76:25 232:17 233:2	
126:6 126:6 144:22 151:14 233:7 234:9	
131:6 132:4 156:22 172:6 AERMINUTE -	
144:18 145:7 generated 113	:20
145:12 148:2 AERMINUTEPLUS	
150:16 152:10 AER 43:14 44:2 77:5 77:7	
156:8 175:25 86:12 78:14 79:5	
aerial 121:23 AERMINUTES 77:	10
AERLINE 152:3 AERMOD 12:5 12	:16
addressing 9:1 AERMET 12:18 15:17 15:21 2	5:7
11:18 144:21 105:13 112:15 25:17 25:22	
145:19 112:15 112:23 26:18 26:24 2	7:4
adds 101:6 104:17 114:2 116:2 57:2 60:15 60	:16
adequate 41:24 119:15 121:6 62:7 65:3 70:	7
99:14 122:2 122:8 77:11 78:1	
adjustment 102:3	
142:25 142:25 /9:13 80:22	<u>о</u> г
adjustments 196:22 232:11 81:14 82:7 82	:25
AERMET'S 112:22 04:0 04:14 04	• 1 8
Administrator AERMIC 102:18 96:4 97:11 98	:10
AERMINUTE 12:18 98:20 101:20	
administrators 85:17 86:13 101:21 102:2	
77:4 112:11 112:15 102:18 102:20	
adopt 53:7 112:21 113:2 104:18 104:20	
adopted 51:19 113:24 114:11 104:24 105:2	
67:8 114:12 116:1 105:3 105:22	
adopting 142:23	
110-p-0-0 116:20 118:13 107:1 107:25 108:5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
advancing 147:3 122:4 122:12 109:12 109:13	
advantage 122:16 122:20 109:15 110:1	
101:20 102:1 123:16 123:21 110:13 110:24	
126:16 148:1 123:25 124:7 111:3 111:8	
202:20 125:1 125:3 111:9 111:19	
adversarial 125:6 125:7 111:25 115:2	
149:12 125:11 151:18 115:2 118:2	
advice 168:18	
advisor, Akula	
$\begin{array}{c} 194.0 \\ 194.18 \\ 194.23 \\ 120.3 \\ 129.10 \\ 129.19 \\ 130.4 \end{array}$	

130:24 133:2 133:18 136:13	118:1 124:13 143:21 157:24	agents 206:16 210:16
138:4 142:21	159:11 227:5	agile 147:19
143:5 144:14 144:18 144:21	affected 13:17	agnostic 211:22
145:2 146:3	13:21 14:9	ago 7:25 11:12
150:16 150:25	23:9 57:21	15:20 16:10
153:4 156:10	111.21 113.19	45:21 53:9 55:18
156:10 156:14	118.20 159.2	55:25 77:9
158:9 159:14	233:7	78:1 78:13 98:23
167:9 168:16	offecting 107.5	108:14 130:21
169:12 172:25	arrecting 107:5	154:14 198:15
173:3 177:1	affects 118:5	206:1
177:5 177:8	118:24 156:10	agreement 18:10
177:12 177:23	231:15	50:6 65:3
178:2 183:20	afford 169:15	110:4 146:9
18/:8 18/:15	afternoon 5.21	208:9 208:13
18/:23 188:2	6:15 8:11	213:9
190:15 193:7	66:12 127:9	ahead 7:24 9:11
196.25 197.4	162:19 174:23	76:20 147:14
197.15 197.17	180:12 180:15	150:11 152:20
200:16 205:13	180:16 204:25	174:20 177:7
229:24 231:1	213:20 228:13	178:7 180:7
231:15 231:19	afterwards 8:18	214:17
232:3 232:10	NCN (1.7 110.25	aid 5:3
232:11 232:13	AGA 61:7 110:23	 1. 2 0. 1 5 2 2 . 2
232:17 233:3	138.1	
234:6 234:9	130.4	44:20 44:23 57.22 55.7
AERMODs 129:25	against 28:10 141:20 156:19	59:8 85:21 85:24
AERMOD's 79:10	aged 165.9	86:9 87:7 99:2
84:18 106:7		100:10 113:1
108:3 109:8	agencies 62:10	117:10 118:11
145:21 173:14	147:7 203:11	119:7 140:4
AERMODS 172:21	233:13	140:9 140:14
172:24	agency 4:1	141:3 142:7
aerosol 43:23	112:4 142:3	143:0 143:13
44:10 45:6	142:14 143:25	156.17 188.11
45:7 192:2	145:11 145:12	199:25 207:15
200:10 200:15	145:14 146:6	213:21 223:20
200:16	140:2 1/6:4	223:20 224:5
AF&PA 67:19 68:3	209:20 226:1	228:21 233:17
affect 114:23	agenda 8:15	aircraft 48:2
114:25 117:21	9:21 12:2 106:18	airport 63:19

63:23 105:12	221:17 230:20	202:1 204:9
105:13 164:5	allowable 64:19	ambient 60:7 99:2
165:24 165:24	69:23 72:4	100:10 187:22
165:25 166:2	allowed 36:17	193:7 223:20
167.11 168.16	51:22 65:18	223:20 229:9
168:21 174:9	131:1 173:4	amendable 172:13
198:3 214:13	177:15	amendment
224:17 224:20	allowing 17:22	175:20 176:2
air-quality	allows 72:6	176:6
127:18 141:19	alluded 68:11	American 54:25
235:9		58:5 68:2 97:6
akin 220:23	ALM 46:10 46:15	110:25 111:16
Alan 20:14 22:7	47.22	128:17 213:23
Alaska 18.7 135.9	alone 46:23	ammonia 45:5 45:7
135·11	already 5:19 11:7	45:17 45:19 46:6
NIDO 100.0 100.15	12:3 15:6	46:7 46:19 46:21
ALBO 129:0 132:15	$1/:14 \ 60:5 \ 60:1/$	46:24 47:4 47:13
155.17 150.11	01:2 / 4:5 100:25 118.15 125.15	128.11
Alcoa 25:4	163:14 170:20	Nmara 122.00
algorithm 17:9	171:20 181:2	Amoco 133:20
98:13 98:16	182:2 182:13	among 208:13
99:17 99:17	203:20 224:13	229:22
102:13 102:20 154·2 170·6	altered 163:21	amongst 114:24
algorithms	alternative 26:13	222:4
26.11 51.11	106:21 108:1	amount 4:6 8:24
152:25 153:7	131:6 198:5	26:9 33:22
153:10 154:10	225:19 226:25	48:9 54:14 94:17
155:6 231:18	233:15	$208 \cdot 10$ $227 \cdot 4$
231:20	alternatives 51:8	
aligned 99:5	162:7 227:21	211.7
alive 172:15	alters 143:24	analweeg 16.22
Allen 97.2 97.3	231:12 231:20	26.6 46.5 71.16
106:25 108:1	aluminum 25:11	analucia 10.12
alleviate 186.13	97:16 98:23	Analysis 18:13
	107:18 175:1	128.6 131.2
allow 13:16 26:13	alumni 162:14	131:9 131:18
54:15 64:11 65.17 79.10	am 102:25 140:2	134:21 138:23
143:14 146.23	162:21 162:23	155:2 177:24
147:7 177:5	162:24 171:18	181:18 189:2
177:7 204:5	175:5 198:16	189:3 191:10
		191:14 191:23

192:15 194:4	antidotes 181:6	
197:3 217:7	Antonio 118:12	
221:19 224:7	anybody 151:1	ā
226:10 230:12	168:23 174:10	
analyst 177:15	235:19	e e e
analyze 43:3	anymore 73:18	
analyzed 29:22 34:10	anyone 235:25 238:5	
<pre>analyzing 33:7</pre>	anything 88:14	
Anand 180:17	119:13 153:4	ā
and/or 10:9	164:7 170:22	
Anderson 213:25	179:10 217:22	ā
Andy 52:9 52:15	219:2 230:9	
52:16	121:1 122:1	
anecdote 187:11	124:22 128:8	ā
anemometer	anywhere 122:11	
36:11 36:23	128:13 130:13	
120:18 120:24	AOA 91:6	
anomomotors 60.10		
anemomecers 80:19	A-physical	
Angie 113:8	A-physical 131:2 131:6	
Angie 113:8 angle 22:18 22:25	<pre>A-physical 131:2 131:6 API 43:14 55:1</pre>	a
Angie 113:8 angle 22:18 22:25 23:15 24:22	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 </pre>	đ
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5</pre>	đ
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19</pre>	ā
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11</pre>	ā
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6</pre>	ā
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10</pre>	đ
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently</pre>	đ
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 142 14</pre>	ē
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25 ANSEP 211:22	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 143:14</pre>	2 2 2 2
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25 ANSEP 211:22 answer 70:12	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 143:14 appearance 232:21</pre>	2 2 2 2
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25 ANSEP 211:22 answer 70:12 126:20 127:19	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 143:14 appearance 232:21 appeared 149:11</pre>	
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25 ANSEP 211:22 answer 70:12 126:20 127:19 139:4 167:11 192:1 227:00	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 143:14 appearance 232:21 appeared 149:11 appears 47:23</pre>	2 2 2 2 2 2
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25 ANSEP 211:22 answer 70:12 126:20 127:19 139:4 167:11 183:1 237:20	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 143:14 appearance 232:21 appeared 149:11 appears 47:23 61:13 65:10 66:1 143:18 196:20</pre>	
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25 ANSEP 211:22 answer 70:12 126:20 127:19 139:4 167:11 183:1 237:20 answering 237:22	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 143:14 appearance 232:21 appeared 149:11 appears 47:23 61:13 65:10 66:1 143:18 196:20</pre>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Angie 113:8 angle 22:18 22:25 23:15 24:22 221:16 announce 5:11 14:24 annual 10:19 25:21 25:23 158:19 159:9 167:2 237:5 anomalous 94:25 ANSEP 211:22 answer 70:12 126:20 127:19 139:4 167:11 183:1 237:20 answering 237:22 answers 4:16 39:12 151:25	<pre>A-physical 131:2 131:6 API 43:14 55:1 55:3 55:19 56:1 57:16 57:19 57:20 59:23 60:5 60:9 60:23 66:19 67:16 124:11 Apollo 129:6 129:10 apparently 143:1 143:11 143:14 appearance 232:21 appeared 149:11 appears 47:23 61:13 65:10 66:1 143:18 196:20 appendix 174:7 188:16 204:8</pre>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

227:14 231:6 231:7 **applaud** 65:11 231:2 applicability 85:9 90:12 applicable 68:20 83:12 84:5 108:22 153:13 196:1 applicants 13:17 13:20 application 29:15 32:17 53:10 108:14 155:1 197:8 230:21 applications 29:11 29:16 47:11 51:20 51:24 97:24 98:5 108:16 180:25 190:17 190:24 191:13 197:9 applied 74:25 143:25 185:1 207:25 209:5 **apply** 10:16 69:7 75:5 101:16 102:7 185:11 204:3 207:2 228:2 229:10 231:20 applying 17:13 appreciate 6:24 9:7 67:25 76:5 76:10 234:10

appreciates 148:5

238:13 238:17

approach 57:1
60:25 75:6 79:10
83:3 98:12 107:1
107:3 107:7

10TH	CONFERENCE	OF	AIR	QUALITY	MODELS	03/15/201	2 CCR#16766-3
------	------------	----	-----	---------	--------	-----------	---------------

108:4 108:12	201:2 201:3	226:15 227:21
108:18 109:24	201:12 201:16	argument 135:20
110:4 110:6	201:19	232:5
110:10 110:10	AQRB 131:17	=
152:11 152:19	AOPM 127.14	alm 139:10
156:15 160:3		ARM2 67:7
162:7 163:13	AQRV 131:8	army 210:15
169:14 183:8	arbitrary 64:10	arranged 31:14
229.5	64:12	103:22
approaches	arc 80:13 81:13	arrive 131:4
54:23 98:11	97:15 206:19	artifact 194.23
140:12 147:19	archived 119:23	
152:12 179:20	arcs 80:13 82:6	Ashley 113:9
210:3	209:10	1/4:21 1/4:24
appropriate 15:10	area 28.22	100:0
51:22 59:10	34:17 34:23	ASOS 120:2 151:17
90:12 139:14	44:20 45:1 45:20	210:11
146:22 146:24	48:8 63:24	aspect 153:16
204:2 204:4	64:2 66:21	211:21
207:1 215:3	109:19 109:21	assembled 10:24
226:7	111:21 115:14	53 : 20
appropriately	115:15 116:16	assemblers 103:21
141:24	116:18 116:21	assess 54:1
approval 13:19	154.11 164.18	
151:12	166.22 170.1	
approvals 75:23	178:20 187:14	
approve $47 \cdot 9$	189:16 192:14	assessments 4/:21
56:10	193:18 196:16	03:0 IU/:0 1/6·11
approved $1/2 \cdot 3$	214:8 214:16	
203:8	215:4 215:9	assign 207:1
approving $234 \cdot 2$	220:13 224:20	assigned 31:6
	220.10 220.20	assistance 127:15
approximately	22, 12, 22	199:19
11:10 208:9	32.6 36.5	Assistant 8:11
approximation	44:19 95:25	assisting
212:10	183:6 183:14	113:10 180:22
April 5:23 6:3	183:16 189:11	Associate 53:20
55:3	196:2 211:6	associated
APT 200:1 200:6	226:1	32.22 84.1
200:6 200:7	aren't 27:1 65:13	94:3 97:14 97:19
200:13 200:21	69:13 73:18	100:17 106:5
200:22 201:1	179:10 209:10	

132:14 187:18
Associates
43:17 52:23 53:6 53:7 53:14 53:17 55:20 56:1 56:13 117:16 146:14
<pre>association 52:18</pre>
53:15 56:9 68:2 111:1 117:10 118:12 119:7 124:12 128:17
Associations
155:22
assume 63:23 83:22 205:18
assumed 44:7 94:19
assumes 130:25
assuming 61:17 87:8 87:12
assumption 62:3 64:7 162:5
assumptions 75:5
assure 147:11 234:24
Atlanta 62:18
atmosphere 64:1 204:7 211:8
atmospheric 54:21 210:2
attainment 183:14 229:17 229:20
attempt 39:17
attend 5:17 10:8 52:20
attendance 9:7 55:14
Attendee 9:19

attention 70:8
75:19 76:12
189:5
attribute
215:11 216:14
216:20
Aubrey 113:9
audience 4:21
58:8 236:1
augment 107:11
augmented 77:9
August 11:15
12:21 29:24
175:9 176:7
auspice 28:16
authority 13:18
142:9 156:5
authority's 13:22
auto 149:17
<pre>auxiliary 181:19</pre>
availability 12:6
12:7
available 13:6
13:9 47:7 65:6
76:2 113:4
134:21 137:24
134:21 137:24 147:16 156:19 168:15 190:17
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1 203:13 204:17
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1 203:13 204:17 221:19
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1 203:13 204:17 221:19 avarice 123:8
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1 203:13 204:17 221:19 avarice 123:8 average 38:2 38:2
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1 203:13 204:17 221:19 avarice 123:8 average 38:2 38:2 61:25 81:1 81:20
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1 203:13 204:17 221:19 avarice 123:8 average 38:2 38:2 61:25 81:1 81:20 82:14 105:8
134:21 137:24 147:16 156:19 168:15 190:17 194:2 197:25 199:17 201:2 201:4 201:7 202:17 203:1 203:13 204:17 221:19 avarice 123:8 average 38:2 38:2 61:25 81:1 81:20 82:14 105:8 114:8 114:16

159:8 161:20

173:21 182:9 188:16 188:22 194:15 216:7 216:15 219:21 221:1 221:16 237:2 237:5 averaged 114:18 158:5 averages 78:15 78:15 78:16 79:8 80:23 81:16 113:3 167:2 averaging 38:1 116:6 116:8 116:15 117:8 173:23 222:6 222:7 229:4 **avoid** 16:8 21:16 63:22 79:19 96:22 110:12 155:19 202:2 232:21 **AW** 94:11 **awaited** 179:23 **aware** 8:21 17:15 152:24 **away** 23:21 24:18 29:10 71:24 94:16 94:24 95:18 110:11 113:25 114:4 114:13 134:25 155:4 166:1 176:3 198:3 207:18 224:18 224:22 226:17 **AWIG** 70:7 70:14 73:12 74:20 75:2 76:5 **AWMA** 9:12 10:5 10:10 45:21 52:3 10TH CONFERENCE OF AIR QUALITY MODELS 03/15/2012 CCR#16766-3 251

$2 \times 10, 12, 10, 15$	h_{2}	102.3 102.5
AAIS 19.12 19.13	Darery 200.5	$145 \cdot 1$ 234 $\cdot 15$
	barriers 155:20	
	BART 51:20	batter 98:7
back-abiy 51:15	53:11 54:12	batteries 97:20
back-calculate	56:23	100:3 100:7
101:13	bartering 52:8	100:15
backdrop 139:24	h_{220} 71.5 71.22	battery 98:7
backed 73:21	Dase /1.3 /1.23	100:19 100:21
hackground 15.7	92.12 92.17	100:22
66.18 73.1	based 10,12,20,15	bay 191:11 191:12
73.6 73.8 127.21	Dased 18:13 20:15	191:15 191:18
128.10 132.16	44:10 45:17	192:13
141.15 141.17	51:10 64:11	Bave 165.22
157:15 158:3	70:15 72:20	
172:11 178:3	102.5 120.20	beam 83:23
181:20 182:2	133.3 134.14	83:23 83:24
182:3 182:4	134.16 156.16	171:11
183:9 188:13	181.11 183.16	bear 198:16
188:17 188:20	191:22 195:16	beat 211:9
188:23 188:24	196:14 197:1	booutiful 164.05
189:13 214:4	199:11 200:8	Deauciiui 164:25
214:10 214:15	200:9 200:12	beautifully 6:9
219:17 223:4	200:21 203:7	become 76:1
224:10 224:24	212:10 216:15	76:3 147:18
229:3 229:6	218:1	201:4 203:1
back-to-back	bases 94:18	becomes 6:1 23:15
100 10		
106:19	basic 10.14 97.16	64:12 116:16
backup 130:19	basic 10:14 97:16	64:12 116:16 219:23
backup 130:19 backward 55:22	basic 10:14 97:16 167:20 202:14 202:16 205:10	64:12 116:16 219:23 becoming 234:21
backup 130:19 backward 55:22	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5
backup 130:19 backward 55:22 bad 30:11 30:14	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2 baghouses 97:18	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8 119:16 120:14</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2 97:5 127:10
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2 baghouses 97:18 Baltimore 191:3	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8 119:16 120:14 120:19 120:22</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2 97:5 127:10 132:12 137:23
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2 baghouses 97:18 Baltimore 191:3 193:8 194:5	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8 119:16 120:14 120:19 120:22 120:23 121:3</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2 97:5 127:10 132:12 137:23 140:3 148:15
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2 baghouses 97:18 Baltimore 191:3 193:8 194:5 196:2 196:16	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8 119:16 120:14 120:19 120:22 120:23 121:3 122:7 122:19 </pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2 97:5 127:10 132:12 137:23 140:3 148:15 180:12 180:20
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2 baghouses 97:18 Baltimore 191:3 193:8 194:5 196:2 196:16 196:21 197:3	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8 119:16 120:14 120:19 120:22 120:23 121:3 122:7 122:19 125:5 132:20 </pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2 97:5 127:10 132:12 137:23 140:3 148:15 180:12 180:20 behavior 25:22
backup 130:19 backurd 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2 baghouses 97:18 Baltimore 191:3 193:8 194:5 196:2 196:16 196:21 197:3 bank 159:25	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8 119:16 120:14 120:19 120:22 120:23 121:3 122:7 122:19 125:5 132:20 134:24 137:18 127:21 155:2</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2 97:5 127:10 132:12 137:23 140:3 148:15 180:12 180:20 behavior 25:22 185:4
backup 130:19 backward 55:22 bad 30:11 30:14 50:10 82:10 166:15 212:25 badly 48:17 baghouse 101:2 baghouses 97:18 Baltimore 191:3 193:8 194:5 196:2 196:16 196:21 197:3 bank 159:25	<pre>basic 10:14 97:16 167:20 202:14 202:16 205:10 basically 12:12 16:11 16:12 27:12 30:6 34:21 34:25 39:8 86:12 108:25 115:20 117:5 119:8 119:16 120:14 120:19 120:22 120:23 121:3 122:7 122:19 125:5 132:20 134:24 137:18 137:21 155:3</pre>	64:12 116:16 219:23 becoming 234:21 beginning 15:5 32:19 33:9 33:14 184:22 behalf 52:23 53:5 57:15 57:19 67:19 68:2 97:5 127:10 132:12 137:23 140:3 148:15 180:12 180:20 behavior 25:22 185:4

behind 61:20	best-available	Bill 20:14
187:3	56 : 16	billing 110:18
behold 93:11	better 8:3	billion 127:22
95:15	11:22 32:8 33:24	127:22 128:1
belabor 151:7	35:12 35:16 36:6	160:19 214:14
believe 11:3	36:8 36:9	216:8 221:1
11:25 13:6 13:18	36.25 37.8 39.25	bin 79:7 219:15
14:12 20:21 37:3	42:1 42:2	binary 32:9
95:18 95:24	42:24 45:19	177:11 177:11
144:12 149:3	46:12 46:15	177 : 16
149:6 149:13	46:17 46:23	Bingham 153:23
155:16 159:1	46:23 48:11	biomaga 72,10
170:4 170:5	48:19 51:7 51:14	
170:8 192:18	61:2 68:24 /3:23	bios 137:5
217:23 221:11	93.17 93.22	bio-variation
believed 34:13	96:20 116:21	155:2
	116:25 117:1	Biswanath
	117:3 131:14	203:18 204:13
believing 220:11	131:24 131:25	Biswantath 203:20
benchmark 141:19	133:9 144:25	bit 4:5 4:12 4:15
beneficial 155:20	151:25 165:6	5:1 6:11 9:11
159:22	166:14 1/9:24	10:1 12:6
benefit 42:15	187.19 187.25	18:22 23:5
42:18 90:3	188:4 188:19	23:9 30:2
147:25	189:12 189:12	33:25 36:22
benefits 159:18	196:20 214:10	3/:10 44:13
Bennett 11.2	220:20 236:14	40.17 47.5 40.25
148:13 148:14	beyond 29:8	52:9 59:12
Berger 52.15	57:4 64:13	61:9 62:1
52:16	85:8 87:2	65:16 67:1 71:14
Borgoria 52.0	88:22 89:21 90:6	82:9 82:13
Beiger S 32:9	160:14 229:7	93:8 93:22
beside 171:15	235:4	106:23 110:3
besides 107:14	Bhat 112:20	126.21 134.18
best 10:15	bias 81:9 211:2	170:16 170:17
10:16 28:5 30:12	213:4	172:4 182:20
41:18 47:7 58:18	bigger 151:4	184:9 185:19
81:3 85:1 124:14	153:25 165:16	186:2 186:7
131:14 139:21	165:21 192:12	188:25 191:24
208.8 224.18	biggest 128:19	192:8 193:5
200.0 224.10	167:21	199:4 202:1
215:8 220:3	76:25 77:1 83:10	boxes 134:2
-------------------------------	------------------------------	-------------------------------
220:7 222:22	91:5 96:25	BP 127:10 127:13
223:24 224:22	106:21 112:1 117:9 126:11	BPIPPRIME 24:5
black 62.24 62.24	151:13 156:16	BPIPPRM 17:17
129:18 215:13	163:14 167:10	23:16
bleak 68.23	168:19 169:13	branch 32:1 34:20
Blowitt 127.14	170:3 170:18	36:21 200:2
DIW 101.10	174:13 174:17	200:14
BTW 131:10	177:3 186:3	branched 199:24
blob 35:6	Bob's 106:19	branching 201:21
block 218:1	body 210:21	break 67:19 67:22
218:16 219:19 221.21 226.1	boiler 68:14	76:20 117:13
blocks 151.4	123:9 181:20	127:2 155:3
195:8 223:17	182:19	174:21 180:7 180:10 205:8
Bloom 45:20	boiler/process	213:16 235:16
blow 114:1	181:19	235:18 235:21
blow 114.1	boilers 165:10	235:22 235:24
210:15	boilers/process	breeze 103:1
blows 169.24	182:6	106:11 177:15
169:25 170:6	books 127:1	Bridgers 4:4 5:12
BLP 25:7 25:15	boom 171:11	57:13 67:17
25:25 26:1 26:11	Boot 206:19 209:6	76:17 76:23
26:11 98:14	boots 207:4	96:25 102:22
98:16 98:22 99:9	BOP 177:10	106:17 112:1
101:22 102:6	bore 155:2	127:5 132:6
102:17 107:8	bottom 45:22	139:20 148:8
107:14 107:23	63:12 66:15	156:1 162:9
108:2 108:6	116:2 160:4	171:22 171:25
109:11 110:12	184:13 208:7	174:6 174:15
178:3 179:19	208:15	180:11 198:10
blue 36.11	boundary 103:7	204:21 213:15
81:14 88:15 89:9	103:9 103:9	222:14 222:18
162:15 162:16	210:4 210:19	228:8 228:15
178:18	211:1 226:5	235:14 235:23 237:16 238:1
board 168:7	226:8 227:22	238:11
189:25	Bowline 18:3	
		BRIDGES 190:8
BOD 58:4 60:8	box 29:13 111:19	BRIDGES 190:8

97:7 175:5 223:3	12:16 15:17	80:8 80:13 82:5
235:22	17:13 18:16 19:5	bullet 64:5
briefly 74:19	19:14 19:14	65:5 107:9 120:9
99:16 181:4	19:15 19:16	209:5
184:6 185:16	19:21 20:4	bulletin 16:11
210:10	$20.0 \ $	17:1 142:22
bright 123:17	21:10 21:20 22:3	231:19
bring 16:5	22:5 22:6	bump 95:16 96:22
22:23 24:1 126:1	22:17 22:25 23:3	bunch 41:1 129:17
brings 26:15 77:7	23:12 23:13	bundle $27 \cdot 24$
223:9	23:17 23:18	
Britter 20:16	23:24 24:1	bungalow 105:21
21:5 22:1 27:12	24:6 24:6 24:8	buoyancies 107:18
brood 10.10	24:22 20:19	108:9
63.3 190.14	27.25 20.2 28.6 61.20 62.14	buoyancy 97:14
222.24	79:19 96:13	97:19 99:23
	96:16 96:17	99:24 100:5
broader 41:19	99:10 104:21	100:8 101:6
145:6 184:14	105:7 105:10	101:24 103:4
190.4 193.19	105:11 110:19	108:10 109:18
	121:25 169:21	110:2 187:20
broadly 190:21	170:7 178:18	buoyant 18:15
196:19	178:19 179:7	85:2 97:9
Brode 174:13	179:21 223:8	98:11 98:13
232:5	223:8 225:5	98:24 102:13
broke 60:12	223:14 223:17	102:15 103:21
broken 130:3		108:22 107:1
brought 12.2	buildings 15:23	107.7 100.20 110.17 111.23
13:12 45:11	17.16 17.22	150:21 152:5
59:16 106:24	17.23 18.9	152:10 152:14
185:11	19:8 19:9 20:7	152:17 176:24
browns 88:19	26:3 26:4 27:2	burdens 230:7
Bruce 58:4	62:9 63:5 103:10	burned 73:18
buck 100:13	103:12 107:17	215:19 215:21
budget 79:23	108:6 166:7	burns 72:10
budgets 7:5	225:7 225:10	business 106:15
		1
bug 49:16 231:1	225:12	busy 19:11 59:2
bug 49:16 231:1 231:25 235:4	225:12 built 110:12	busy 19:11 59:2 button 115:23
<pre>bug 49:16 231:1 231:25 235:4 build 140:9 225:7</pre>	225:12 built 110:12 bulb 174:10	<pre>busy 19:11 59:2 button 115:23 185:9</pre>

bypass 39:24	12:12 25:8 25:15	65:12 65:23
93:20 94:4	25:24 26:11	131:17 131:19
by-year 220:21	29:11 29:15	candidate 219:17
	29:25 30:11 30.14 31.0 31.19	candidates 85:6
С	30.14 31.9 $31.1031.24$ 34.15	62.12
calcu 101:11	$34 \cdot 19$ $37 \cdot 7$ $37 \cdot 23$	96.16 96.17
calculate	38:6 38:14 39:17	103:13 103:14
100:15 109:5	40:6 40:8	
120:21 136:25	40:12 41:13	152.22
calculated 19:7	41:17 43:11 44:3	133:23
120:8 133:2	44:16 45:23 46:3	cap 27:13 52:8
	47:4 49:15 49:20	capability
Calculating 100:4	49:23 50:8 50:14	47:21 77:15
calculation 101:8	50:25 51:15	82:18 109:8
101:8	52:25 53:8 53:25	111:23 144:6
calculations	54:8 54:13 54:17	218:2 229:8
109:14 133:23	54:20 55:2	capable 99:9
157:6	55:4 55:5 55:8 55:12 55:22 56:5	127:17 218:3
California 103:19	56:15 56:22 57:7	capacity 134:15
calm 79:9 79:12	64:23 65:4	Cape 113:6 113:21
110:21 111:3	84:9 84:14 84:22	114:14
111:4 118:25	84:24 85:1 87:11	capital 175.12
119:14 120:7	88:2 88:6	
120:8 122:18	88:16 89:4 89:11	Capture 101:3
122:22 123:4	107:9 131:5	182:23 192:20
123:5	131:9 131:17	221.13
CALMET 33:23	146.13 190.15	captured 24:11
33:24 35:4	190:22 191:7	captures 100:25
39.18 39.23	191:10 191:12	capturing 189:21
39:24 40:1	192:21 197:9	car 100:24
40:2 40:2 40:9	205:25 208:5	carbon 200.12
40:14 40:14	208:8 209:8	
40:17 40:22	225:21 232:5	card 106:15
40:23 40:24 41:2	232:6 232:8	care 119:12
41:9 207:25	232:23	125:23
208:3 232:7	CALPUFFS 146:16	careful 5:7 43:20
232:24	CALTECH 44:11	113:17 137:8
calms 112:10	camera 171:7	185:12
112:12 113:25	CAMx 30:12	carefully 57:9
114:4 114:12 173.21 104.16	30:16 31:3 31:10	64:6 84:4
1/3.21 194:10	32:21 33:2 34:24	Carlo 49:21 64:21
CALPUFF 12:7	41:18 43:24	

256

191:21 193:13	35:10
198:3	certain 32:5 33:2
case-specific	35:3 36:5 37:9
196:1	55:9 56:5 72:7
Casey 174:25	87:14 97:12
CASNET 192:4	certainly 37.6
catch 105:22	46:3 72:5 72:8
catch-22 64:9	76:2 77:21 82:19
categories	82:22 86:5 86:21
60:12 60:14	88:22 89:12
117:8 223:5	149:13 149:24
236:21	150:15 151:1
category 222:24	151:15 154:/
Cathy 58:5 67:15	CH2M 148:14
Catizone 9.13	Chair 9:15 11:1
9:14 213:25	11:2 58:6
caught $34 \cdot 20$	challenge 74:8
	153:22 175:13
cause 37:5 229:17	1/6:23 182:2
231:24 235:4	
caused 96:5	challenges 69:4
causes 41:12	/4:12 9/:8 1/5:2
161:22	176:18 181:2
causing 16:7	challenging 192.5
27:20 150:13	
229:15	$\begin{array}{c} 103.10 \\ \text{chance} 81.3 & 1/3.3 \\ \end{array}$
caution 73:6	Change 206:1
<pre>cautiously 70:3</pre>	
cavity 23:19	change 4:11 15:20
24:11	15:24 15:25
C-collaboration	16.18 16.20
235:11	16:24 17:1 17:21
cell 32:24 40:10	19:23 21:13
center $32 \cdot 2$	21:15 27:4 27:15
157·10 171·16	32:11 32:11
171:17 199.20	32:18 40:4 41:12
200:8 204:1	53:3 61:15
centered 161.8	109:12 118:24
	142.21 142:23
central 29:/	174:10 178:4

Carolina 162:13 200:19 **carried** 142:6 **case** 17:24 18:13 24:14 26:6 26:11 27:5 32:17 38:18 45:16 46:10 49:6 68:7 69:19 71:5 71:23 71:24 72:24 73:3 73:10 73:15 73:19 80:22 80:23 83:25 95:10 95:14 104:1 109:20 117:25 120:6 123:14 124:5 124:16 124:23 145:20 153:14 158:11 159:21 160:19 161:17 173:20 175:1 178:14 184:7 186:1 186:5 187:24 193:10 194:10 195:4 196:3 202:25 212:16 215:3 220:8 230:2 case-by-case 47:10 56:24 75:24 **cases** 17:7 31:7 31:13 61:7 69:19 69:21 71:3 72:17 72:22 72:24 73:6 78:4 81:17 81:18 83:3 96:20 109:18 115:2 116:10 116:10 136:20 143:22 153:13 159:22 161:21 185:21 186:19 186:21

257

Chris 58:6
chunk 119:25
Cindy 139:24
140:2 148:8
circle 157:9
circled 116:21
circles 86:12
circumstances
72:8
city 62:22 84:9 85:9 88:16 89:7 113:9 165:21 170:13
city-state
83:22 84:7 84:10 84:24 86:22 87:9 87:13 90:5 90:8 90:13
claiming 130:18
<pre>clarification 16:20 16:25 27:15 178:24 179:4 clarify 203:14 class 29:11 117:18 129:18 129:25 138:6 classes 129:16 130:2 138:5</pre>
classified
47:21 120:16 classify 119:9
class-run 46:5
clauses 179:15
clean 140:14
141:3 142:7
143:8 143:15
cleaner 74:17

196:18 212:9 223:18 227:18 231:11 231:18 231:19 231:23 232:19 changed 32:18 34:7 41:25 181:4 changes 5:15 6:7 32:5 33:9 44:3 46:9 57:2 66:15 141:5 142:2 142:10 142:17 143:10 143:11 143:19 143:21 143:23 144:1 144:12 146:5 175:21 217:20 225:6 227:15 231:3 233:9 235:4 changing 102:4 226:9 **character** 185:24 characteristic 75:9 characteristics 108:23 136:19 characterization 220:17 characterize 110:14 143:13 characterized 92:10 153:15 characterizing 189:21 **charge** 100:20 **check** 67:24 106:11 207:5 238:2

192:1 193:4

CHEMEQ 50:4

clear 33:8	closest 214:12	174:25
40:21 70:17 72:3	224:17	co-authors 213:24
134:19 141:1	close-up 169:19	code 15:24
142:3 151:22	closing 6:17	15:25 55:9
101:14 214:25	147:18 238:10	138:19 143:23
234.2 237.20	cloud 86:14	177:7 201:21
clearing 204:2		201:23
clearinghouse		codes 143:11
13:11 13:13	cluster 160:8	181:21 201:22
	clustered 160:4	codify 230:9
15:25 254:1	clusters 107:21	coefficient 45:11
clearly 31:23	109:22	
159:21 160:16	CMAQ 43:24	
101.2 101.19	44:11 44:16	225.25 220.2
click 173:19	49:11 49:13	220.7
client 175:19	49:15 49:16 50:9	Conerent 78:3
179:6 191:9	50:14 65:12	/8:3 80:21
clients 149:15	65:23 200:3	coke 97:6 97:6
149:17 150:9	200:6 200:7	97:20 98:6 98:19
180:22	200:7 200:8	100:3 100:7
climb 174:14	200:14 200:17	
climbed 171:6	200:23 201:1	COLLADORATE 8:5
174:16	201:1 201:3	collaboration
close 31:20	201:8	62:19 131:25
35:1 49:4	CMAQs 200:16	100:10
50:15 89:19	CMAO's 49:24	collaborations
91:23 92:1 92:16	50:21	59:12 59:14
95:12 110:18	CMAS 65.15	07.14
116:18 130:13	199:8 204:1	collaborative 6:6
135:2 135:8	163.1 3 160.4	14:1/ 151:3
189.5 192.18	CO 105:15 109:4	colleagues 168:19
214:3 235:20	coal 72:7 74:14	collect 135:16
238:19	97:6 101:2 157:1	172:9
closed 72.12	165:10 165:11	collected
	197:11 215:13	103:24 133:21
CLOSELY 32:15	coolin 165,12	139:8 139:10
		collection 132:17
CLOSET 46:25 47:1	COAMPS 210:14	194:14
/1:0 /2:22 73.2 96.7 195.21	coarse 34:4 36:2	Colombari
229:5	co-author 15:18	222:16 222:20
	97:4 112:19	222:21

Г

color 88:12	16:23 27:14 42:7	committee 9:12
89:3 181:21	127:12 131:11	9:16 9:19 10:4
195 : 13	132:3 142:12	10:7 10:7
Colorado 45:3	142:17 142:23	10:11 13:15 14:7
color-coding	143:14 143:20	28:16 52:3
105.12	144:3 155:24	58:6 58:7
195:12	179:13 231:4	59:23 60:23
colored 34:17	232:1 233:10	common 14:1 149:7
colors 87:19	235:8 236:6	149:22 168:15
87:20 89:9	237:11 237:21	176:22
158:16 195:13	237:24 230:1	commonly 98:14
195:14 215:12	230:0	communicated
column 35:14	commenters 54:19	108.13
195:7	comments 4:22	
columns 182:1	4:24 5:18 6:12	67.13
combat 191.2	6:22 10:22	
207.4	11.22 11.24	community 6:6 /:6
	12.25 15.17	13:8 42:14 51:14
combination /8:20	15.10 15.10	62:10 132:1
93:23	39.23 12.19	139:9 139:11
combinations	59.25 42.4 52.6 52.12 52.20	143:0 149:8
71:10 141:13	52.0 52.12 52.20	150:14 $155:16201.8$ 203.1
combine 46:17	52:25 53:5 57:12	201.8 203.1
177:1 177:9	57:15 57:18	233.19 233.20
177:12 177:22	57:20 58:1	$234 \cdot 4$ $234 \cdot 11$
combined 106.20	59:7 59:9	234:15 235:11
178.2	59:24 60:14	235:12
	65:20 68:1	compact 06.6
combustion /4:25	76:5 140:25	
comes 7:7 20:12	143:6 148:9	companies 155:22
58:13 64:23	155:23 156:2	company 43:17
196:15 232:22	156:6 171:23	163:4 163:6
comfortable 126:9	235:15 235:20	228:12 228:18
coming 6:19 7:2	236:2 236:4	228:19 230:7
8:23 9:5 22:21	230:8 230:12	comparable
38:22 41:4 41:13	237:12 237:22	24:21 26:5
42:4 62:7	230:9	26:9 84:23 115:6
68:13 97:21	Commission	115:8 184:17
134:7 152:3	53:22 191:15	194:19
154:11 222:1	Commissioner's	compare 115:11
command 202:19	53 : 23	156:14 157:4
comment 5:10 5:22	Commission's	159:5 193:15
7:7 13:22	53 : 24	195:20 197:17

compared 41:3	complex 45:1	87:24 88:10
54:7 55:23 98:25	99:12 99:13	89:19 92:18 93:1
99:3 115:11	99:15 100:3	94:25 95:5
136:2 136:6	165:19 167:14	95:7 95:8
137:20 138:9	183:21 185:2	95:11 101:11
156:18 158:2	185:2 198:4	104:9 104:11
159:13 161:6	224:19 225:21	104:14 104:15
194:17 210:10	232:6 232:9	104:17 105:1
compares 159:23	compliance	105:3 108:24
comparing 25:8	68:19 69:1	110:22 111:3
113:14 192:4	69:4 91:10 107:6	105.1 100.1
	125:19 125:21	123:1 133:1
comparison	127:25 133:24	133:5 $130:15177.17$ 170.2
44:15 51:6 55:13	134:15 134:16	1/7:17 1/8:2
8/:11 113:25	170:23 180:25	193:1 193:24
158:19 160:21	181:24 182:15	194:1 195:7
1/3:25 1/4:2	complicated 84:19	223:14 223:1
1//:18 196:8	226:8	230:1 231:11
197:25 205:25	1 75,12	concentrations
comparisons 83:20	compty 1/5:13	15:23 16:6
112:16 113:13	component 100:9	17:4 19:8
157:25 191:19	101:9 232:20	21:23 25:9 45:10
193:14 195:2	components 100:8	46:11 49:14 61:5
197:19 212:4		66:18 79:8 79:16
213:13	compounds 101:4	80:20 87:21
compatibility	comprehensive	87:21 88:7
55:23	57:20	89:5 92:6
compatible	computational	92:19 92:21
	154:16	92:23 92:23 93:7
51:15 200:25	computo (0,12)	93:12 106:5
compelled 54:7		107:4 109:25
compensating	computed 49:4	116.19 117.7
135:22 137:9	computer 217:17	118:2 118:4
complained 112:9	<pre>concentrated 82:2</pre>	118:6 120:7
complaints 46:2	185:25	121:18 123:19
complement 118:23	concentrating	124:18 141:15
120:3	106:8	141:17 141:20
	concentration	141:23 144:14
	16:9 19:13 19:13	158:2 158:5
59:LU 131:16	19:17 19:18	158:15 159:3
132:23 16/:6	22:13 24:6 24.12	159:24 160:3
16/:/ 233:8	38:2 38:3 73:7	160:/ 160:12
completed 55:8	77:24 78:4 79:14	160:14 160:17
55:13	80:17 81:3 83:20	161:3 161:16
		168:11 185:12

2	6	1
	ю	1

94:11 127:3

192:2 193:21 194:3 195:11 195:14 206:17 219:20 220:9 224:3 224:24 225:2 226:12 226:22 229:6 231:4 231:25 235:5	c
concentric 86:12	Ċ
<pre>concept 214:2 215:23 217:13</pre>	c
conceptual 132:19	c
concern 29:2 66:19 69:9 112:8 128:19 150:14	c
150:18 150:23 184:17	c
concerned 76:6	
concerning	
43:10 71:13 143:25	
concerns 10:17 13:14 39:10 47:6 53:10 54:19 58:17 140:23 145:15 155:21	
concert 92:18	
conclude 37:3	
concluded 54:9 127:3 220:19 238:21	
concludes 52:2 57:12	
concluding 82:17	
<pre>conclusion 51:9 70:23 71:14 106:4 110:9 131:22 146:20</pre>	

155:11 161:14 214:24 217:21 233:4 234:21 conclusions 27:3 41:17 89:17 94:1 96:3 127:20 138:19 189:12 221:9 227:11 concurrence 173:25 concurrent 172:11 173:12 197:2 concurrently 171:1 condition 72:6 106:7 216:16 conditions 49:22 49:22 50:4 50:24 51:7 54:11 79:25 80:6 80:10 82:7 82:23 83:5 83:22 83:25 84:11 84:19 89:7 91:12 94:5 106:9 107:5 110:20 110:21 120:5 138:7 144:15 152:15 157:15 188:18 189:5 208:23 216:23 233:6 233:7 conduct 56:14 98:8 234:8 conducted 85:18 **cone** 95:3 conference 4:2 5:22 6:2 6:8 7:8 9:18 10:2 11:5 11:12 11:15 11:19 11:20 12:3 12:24 14:15 15:2 45:22 53:14 54:24 65:14

132:2 132:18 147:17 171:17 185:18 198:23 199:6 232:13 233:22 234:5 235:20 236:2 236:20 238:17 conferenced 9:19 conferences 9:24 9:25 10:20 43:4 59:8 65:19 147:2 147:4 147:13 199:8 199:8 configuration 35:3 38:24 40:22 41:22 41:25 98:3 99:7 configurations 31:2 39:6 configured 40:3 97:18 configuring 79:9 confirmation 17:21 51:16 176:8 **conform** 221:21 confusion 201:24 202:2 202:2 conjunction 143:12 234:6 connecting 85:19 consensus 7:19 14:1 consent 56:7 consequence 16:22 consequences 69:6 118:19 173:6

58:21 131:23

262

24:24 42:11 57:1 conservation 56:8 88:18 79:10 93:11 93:12 93:13 conservatism 93:14 108:22 120:13 177:20 108:23 116:9 188:24 143:15 147:7 conservative 47:1 200:15 212:8 73:8 111:6 consistently 111:13 126:20 75:11 141:9 183:7 183:8 consolidate 52:22 183:9 constant 44:7 conservatively 45:8 45:14 75:14 46:7 46:20 consider 57:10 47:4 61:13 84:10 59:2 78:8 108:23 82:20 86:5 89:24 constantly 92:8 90:11 96:19 111:24 145:24 constants 153:12 146:4 162:6 constraints 173:1 183:24 107:16 176:3 189:20 189:23 195:24 197:7 constructing 80:3 219:14 232:10 consultant 149:16 considerable consultants 10:12 131:10 131:19 103:1 174:24 consideration 222:21 233:14 110:7 111:12 Consulting 97:5 144:19 185:11 consuming 182:13 221:8 221:22 **contact** 67:15 considerations 106:14 199:19 202:12 204:12 238:18 considered contacted 121:20 45:19 51:21 66:1 73:21 74:6 128:7 contained 231:17 146:20 221:13 contemporarily 224:13 177:9 considering **content** 44:5 44:7 15:1 145:1 183:3 45:13 46:18 203:25 221:15 context 68:5 224:14 68:21 69:25 considers 141:17 193:7 146:24 232:24 **continue** 6:4 57:3 consistent

143:7 169:6 204:22 continued 57:3 112:5 155:13 189:18 200:13 201:15 201:18 continues 184:2 continuing 43:16 67:13 209:17 229:10 continuous 173:10 continuously 204:6 contractor 174:16 174:17 236:10 contractors 164:17 contrary 27:10 contribute 10:21 189:8 229:18 contributed 201:7 contributing 94:16 101:5 188:21 224:11 229:15 contribution 16:7 146:11 191:16 196:15 **control** 71:10 73:22 121:19 227:2 controlled 68:9 73:19 125:25 128:4 controlling 89:6 120:6 controls 54:2 54:2 68:11 68:12 69:18 73:20

124:14 124:19 167:21 168:15	39:2 43:7 48:20 48:20	133:7 135:5 143:6 145:4
convective 82:7	corrected 39:4	148:20 148:24
84:18 97:23	158:3	10/:2 109:8
100:9 106:7	correcting 32:6	175.4 175.15 175.19 180.11
conversion	corrections 42:11	193:23 205:4
43:25 48:23 54:4 133:4 133:6	61:21	209:11 211:14
133:13 136:25	correctly 17:6	Coupled 54:3
137:16 138:22	153:7	couples 44:4
138:22	correlated 41:5	course 10:12
convert 167:21	correspond 32:16	18:19 28:5 41:20
converted 48:9	correspondence	59:20 69:2
192:2	13:23	/1:/ //:20 //:22
converts 194:2	corresponding	86:19 87:22
cool 171.4	54:8	100.6 100.12
	corrupted 104:3	102:18 113:11
Cooler 195:14		114:3 114:4
cooperation 145:9	COST 107:18	120:25 121:8
cooperative 53:16	100.24 ± 70.21 179.12 - 224.15	128:24 146:3
91:20	230:6	153:3 171:15
cooperatively	costly 235.1	173:16 236:2
146:1		courtesy 77:25
Coordinating 10:4	costs 140:19	cover 181:1
coordination		coverage 89:4
155:13	Council 10:5	covered 34:23
copies 78:22	count 195:15	58:11 58:12
core 132.20	223:22	64:17 64:22 65:9
132:22 202:22	countries 62:10	65 : 25 67 : 7
203:15 203:22	country 128:14	covers 28:22
cores 202:20	149:19 150:10	28:23 192:12
202:23	County 108:17	Coyote 92:2
corner 23:5	163:19	crazy 106:18
176:15	couple 5:15	226:14
corporate 164:16	6:25 9:20 9:23	create 22:20
corporation	28:15 40:25	140:18
213:23 236:16	49:10 60:13	creates 23:21
correct 7:4	60:24 77:5	credit 18:23
28:5 37:9	106:13 118:3	26:24 179:3
37:25 38:5	119:4 126:8	179:18 179:19

\sim	\sim	
Ζ	6	4

creep 88:7	216:22 217:5	76:1 77:20 77:21
88:20 89:12	cute 206:11	79:21 84:11
criteria 67:3		85:20 91:18
205:15 206:24	Cuts 165:23	105:12 112:5
207:2 207:5	cutting-edge	113:1 113:20
207:6 209:7	148:3	113:24 114:11
209:13 216:23	CV 52:5 52:18	114:12 118:22
critical 35.00	52:24	119:15 119:16
36.16 70.18	CV'S 52.21 52.24	119:20 119:25
70.19 97.12	CV B J2.21 J2.24	120:2 120:3
101.6 197.4		120:9 120:15
	$\frac{D}{dail:}$ 97.15 159.7	122:18 122:19
critically 138:13	$\begin{array}{c} \textbf{ually} & 0 \\ 182 \cdot 0 & 182 \cdot 0 \end{array}$	122:22 123:25
cross 40:15	102.9 102.9 182.12 182.19	129.7 120:5
CTDM 77:8	195:10 195:10	130:19 $132:17$
	219:16 219:25	133:17 133:20
172.13	229:25	134:6 134:9
	Dakota 91.7 113.7	134:21 135:16
Cube 20:8 22:18	117.3	135:17 137:8
cubic 129:20	±±7.5	137:12 137:20
Cumberland	Dana 127:10	139:7 139:10
44:14 48:2 51:5	127:13 132:6	139:14 156:23
cumbersome 102.19	dark 40:15	157:6 157:14
· · · · · · · · · · · · · · · · · · ·	dashed 19:19 21:5	163:23 164:5
curiosity 218:12	21:12 25:14	167:1 167:6
current 11:1	data 8:2 18:4	
43:16 43:21	18:4 18:5 18:7	16/:12 16/:12
43:23 45:4	18:8 18:11	168:16 168:17
63:7 63:22 63:24	25:5 26:10 29:24	168:21 168:21
64:8 64:11 68:20	30:1 30:18 30:23	160.6 172.10
74:5 75:1 149:25	34:11 34:12	172.25 172.2
201:4 203:17	34:13 35:4	172.23 173.3
204:14 229:7	35:4 35:16 36:10	173.20 $173.23174.9$ 178.7
currently 10:6	36:14 36:24	178.9 182.10
$c_0 = 100$		
62:7 102:6	36:25 37:22	182.13 182.20
62:7 102:6 196:24 227:20	36:25 37:22 39:17 40:17	182:13 182:20 183:17 183:25
62:7 102:6 196:24 227:20 curve 24:19	36:25 37:22 39:17 40:17 40:24 41:19	182:13 182:20 183:17 183:25 184:12 185:22
62:7 102:6 196:24 227:20 curve 24:19	36:25 37:22 39:17 40:17 40:24 41:19 41:23 42:7 42:13	182:13 182:20 183:17 183:25 184:12 185:22 186:6 188:13
62:7 102:6 196:24 227:20 curve 24:19 custodian 203:15	36:25 37:22 39:17 40:17 40:24 41:19 41:23 42:7 42:13 42:14 43:1	178.5 182.10 182:13 182:20 183:17 183:25 184:12 185:22 186:6 188:13 188:17 189:13
62:7 102:6 196:24 227:20 curve 24:19 custodian 203:15 customer 199:19	36:25 37:22 39:17 40:17 40:24 41:19 41:23 42:7 42:13 42:14 43:1 44:5 44:23 45:15	178.5 182.10 182:13 182:20 183:17 183:25 184:12 185:22 186:6 188:13 188:17 189:13 190:16 190:25
62:7 102:6 196:24 227:20 curve 24:19 custodian 203:15 customer 199:19 customers	36:25 37:22 39:17 40:17 40:24 41:19 41:23 42:7 42:13 42:14 43:1 44:5 44:23 45:15 45:19 48:4	182:13 182:20 183:17 183:25 184:12 185:22 186:6 188:13 188:17 189:13 190:16 190:25 191:2 192:5
62:7 102:6 196:24 227:20 curve 24:19 custodian 203:15 customer 199:19 customers 140:21 230:8	36:25 37:22 39:17 40:17 40:24 41:19 41:23 42:7 42:13 42:14 43:1 44:5 44:23 45:15 45:19 48:4 48:7 53:19	178.5 182.10 182:13 182:20 183:17 183:25 184:12 185:22 186:6 188:13 188:17 189:13 190:16 190:25 191:2 192:5 193:6 193:15
62:7 102:6 196:24 227:20 curve 24:19 custodian 203:15 customer 199:19 customers 140:21 230:8 cut 214:11 216:11	36:25 37:22 39:17 40:17 40:24 41:19 41:23 42:7 42:13 42:14 43:1 44:5 44:23 45:15 45:19 48:4 48:7 53:19 54:3 59:25 59:25	178.3 182.10 182:13 182:20 183:17 183:25 184:12 185:22 186:6 188:13 188:17 189:13 190:16 190:25 191:2 192:5 193:6 193:15 194:4 194:5

```
dates 133:21
                                             December 55:11
 195:3 197:2
 197:15 197:18
                                              94:10
                      datums 37:21
 197:19 209:10
                                             decent 35:18
                      Dave 211:21
 210:9 210:12
                                             decide 64:11
 210:17 214:18
                      David 11:2
                                              157:18
 214:20 215:23
                        103:2 213:17
 216:10 216:15
                                             decided 79:17
                        213:18 213:20
 216:24 217:10
                                              84:23 91:13
                      day 9:3 14:25
 217:13 217:15
                                              119:12 175:19
                        40:6 48:14 48:17
 217:18 218:2
                                             decision-making
                        48:18 66:7 82:25
 219:1 219:1
                        104:2 180:16
                                              146:25
 219:3 220:12
                        180:17 181:16
                                             decrease 4:8
 220:18 221:10
                        183:20 185:7
                                              227:4
 223:10 223:13
                        193:13 195:7
 224:8 224:9
                                             decreased 22:14
                        212:19 212:25
 224:10 224:15
                                              103:11
                        213:7 230:18
 224:18 229:16
                                             decree 56:8
                      days 6:20 9:6
database 13:5
                        9:23 30:21 58:11
                                             deep 153:21 154:2
 13:9 80:9
                        58:24 59:23
                                             defend 149:19
 80:11 82:24
                        60:24 64:18 66:4
 85:16 85:21 91:9
                                             Defense 149:18
                        118:3 119:4
 128:17 129:3
                                              203:7 206:4
                        126:8 143:6
 129:10 129:15
                                              206:10 209:20
                        145:4 148:20
 130:8 133:23
                        148:25 149:2
                                             deference 229:9
 138:1 138:4
                        152:12 155:14
                                             deficiencies
 173:25
                        175:4 181:5
                                              33:18 150:17
databases 18:2
                        183:4 184:15
                                              151:2
 66:22 77:13
                        193:24 195:17
                                             define 99:25
 79:18 79:21
                        211:15 230:18
 79:23 80:2 81:13
                                              109:21
                      daytime 103:23
 82:21 85:11
                                             defined 40:16
                        104:3 104:15
 89:19 129:7
                        104:24 104:25
                                             definitely
 135:5
                        106:7
                                              65:10 155:24
dataset 22:10
                                              193:3 218:11
                      deal 38:10
 44:13 44:14
                                              221:6 225:23
                        114:6 124:10
 44:14 44:17 48:6
                        152:17
                                             definition 16:9
 51:3 115:15
                                              17:4 38:20 41:24
                      dealing 129:1
 116:22 119:21
                                             definitive 79:13
 132:15 133:20
                      debated 131:16
                                             degrade 39:13
datasets 112:23
                      debugging 90:14
 112:24 113:5
                                              54:5
                        90:21 109:4
 113:10 133:19
                                             degree 22:18
                      decade 57:4
date 14:13 175:18
                                              23:14 47:23 99:1
                      decades 53:18
                                              217:1 220:18
 176:1 193:9
```

221:25 222:3	dependence
degrees 36:19	99:19 99:20
80:17 157:20	99:21
207:25 211:5	dependent 33:
216:19 220:19 221.4 221.17	99:6 111:10
221.4 221.17	depending 46:
144.19	139:2 204:2
delaving 150.25	dopiction 7°.
delays 146.23	86:23
deliver 67:22	depletion 44:
Delta 22:20 23:1	deposition
dol wo 101.2	44:21 44:22
181·21	153:7 192:3
domonstrate 17.24	193:2
68:19 133:23	depth 154:22
229:14 229:20	213:6
230:12 230:20	depths 66:10
demonstrated 57:6	66:12 212:18
144:6 147:21	Deputy 8:11
demonstrates	DEQ 131:16
217:10	derivative 20
demonstrating	derived 153:1
69:1 69:4	describe 53:2
232:6 233:4	91:8 105:23
demonstration	108:11 199:4
55:22 117:6	described 48:
demonstrations	53:14 55:12
4/:8 5/:10	56:20 56:21
Dennis 210:13	134:22 139:1
denominator 116:3	156:17 198:2
dense 123:19	199:22 209:3
Denver 52:18	description 1
55:12	deserves 111:
Department 149:18	design 40:8 7
190:11 190:12	92:23 109:25
206:10 210:18	163:24 164:1
dopond 122.04	168:1 214:13
aepena 132:24	215:2 220:1

99:19 99:20 99:21 pendent 33:21 99:6 111:10 pending 46:2 39:2 204:25 226:24 piction 78:1 36:23 pletion 44:9 position 4:21 44:22 53:7 192:3 93:2 **pth** 154:22 213:6 pths 66:10 56**:**12 212**:**18 **puty** 8:11 **Q** 131:16 **rivative** 203:12 **rived** 153:11 **scribe** 53:2 91:8 105:23 08:11 199:4 scribed 48:3 53:14 55:12 56:20 56:21 66:25 102:1 L34:22 139:13 56:17 198:22 L99:22 209:12 scription 106:5 **serves** 111:11 **sign** 40:8 79:16 92:23 109:25 63:24 164:12 68:1 214:13

designate 56:22 189:11 designated 141:24 designating 189:16 designation 180:24 181:14 183:15 184:24 185:1 189:10 189:14 190:5 designed 28:24 72:14 133:22 134:5 **desired** 233:23 **Despite** 104:5 **detail** 81:7 148:25 detailed 55:21 61:22 63:15 199:6 226:10 **details** 30:21 42:9 71:17 108:24 149:2 150:3 153:14 155:3 156:22 determination 21:21 determinations 53:11 56:17 56:24 determine 31:19 66:21 90:22 129:4 determined 216:14 determines 30:6 235:3 determining 145:16 219:17

deterministic 229:2

6

detrimental	diamonds 91:25	195:7 195:11
179:12	die 61:20	195:15 196:2
Detroit 62:17	dies 61.19	196:2 203:11
develop 18.8		210:21 212:5
20.22 77.15	diesel 236:24	215:12 222:22
78:15 131:19	237:2	222:25 223:16
133:22 146:15	difference	230.21
228:5	36:20 85:6 93:24	differs 99:18
developed 17.9	100:7 103:8	difficult 10:8
20:20 39:18	105:8 112:15	68:19 68:22
77:11 78:14	120:20 125:6	68:24 103:15
82:18 85:17	128:8 139:2	124:15 128:22
98:23 144:13	158:11 159:15	131:13 152:10
145:3 146:3	208.25 209.6	184:1 225:22
146:6 146:8	200.23 205.0	diffusion 104:20
192:19 201:10		diffusive 33:3
203:13 217:16	differences	34:23
developer 55:5	41:6 49:14 95.2 159.12	digging 153.24
developers		
42:19 49:18	different 4:15	dilute 33:16
203:17 204:1	6://:6 II:I/	dilution 32:22
dovoloning 10.2	11:24 12:22 23:6	32:23 32:25
01.1 206.20	25:25 28:8 29:17	dimensional 20:22
J1.1 200.20	$32 \cdot 3 \ 32 \cdot 14 \ 34 \cdot 10$	dimensions 12:5
development 39:20	35:24 40:20 45:4	100:5 101:24
65:11 69:11	45:18 47:2	108:7 154:22
80:12 145:21	50:5 50:6	179:7 179:21
198:15 198:19	50:11 51:13	dioxide $72 \cdot 12$
200.13 200.20	57:21 57:23	
200.13 $200.20200.22$ 201.15	62:14 70:14	DIPOLE 206:11
201:18 203:6	70:22 71:4 71:20	206:13 208:15
203:10 206:5	83:24 89:18	208:20
235:12	103:17 107:24	direct 172:22
developmental	107:24 109:21	218:23
18.4	116:13 117:7	directed 81:1
1	117:8 119:10	81:2
	121:10 123:0	direction 17:19
6:/ 12:11 43:10	138.5 130.1	32:4 35:10 36:14
develops 102:13	149.15 159.25	41:4 41:10 41:11
devote 145:19	161:23 182:25	64:3 78:6
diagnostic 208:1	184:16 184:21	83:24 90:16 99:6
diamatar 20-0	191:16 193:20	120:21 192:7
urameter 38:0	193:21 194:15	207:24 213:4

154:17 213:5 216:12 216:13 216:14 **discuss** 12:15 216:19 221:16 55:4 70:25 221:17 223:11 97:7 110:8 directions 190:24 233:23 77:23 80:19 discussed 11:16 80:21 81:6 88:20 15:2 22:8 49:7 88:21 88:23 89:5 63:17 155:21 89:16 89:22 95:3 175:3 192:22 113:19 113:23 203:24 234:5 211:5 216:18 discussing 68:5 **directly** 39:10 discussion 44:5 129:1 38:12 205:23 161:19 210:7 223:24 Directors 168:7 discussions 11:19 disagreement 52:10 60:23 159:2 207:21 102:9 149:13 disagreements **disorder** 153:19 154:4 dispersion 36:2 **disagrees** 143:17 62:1 62:6 62:11 84:17 disappeared 94:21 98:17 116:24 99:14 107:24 disapproved 56:12 123:20 123:23 disbursement 124:6 126:13 203:21 133:4 136:1 discontinuities 136:4 137:17 199:25 201:11 16:18 201:16 201:23 discontinuity 204:12 207:3 21:16 27:2 210:5 discouraging displaced 40:10 179:5 **display** 39:21 **discover** 207:21 displayed 73:5 discovering 60:21 disposition 103:3 **discreet** 172:14 103:17 104:18 discrete 61:11 104:22 61:14 distance 83:13 discretion 230:11 83:19 84:5 84:12 230:19 87:1 91:24 discretization 95:8 95:12 95:13 99:19 103:22

104:16 160:1 160:9 161:3 219:11 distances 22:14 48:13 64:16 64:25 84:2 85:8 86:8 distinction 143:17 228:14 distinguishes 143:10 distribution 25:17 74:17 109:17 158:5 198:25 203:22 Dittenhoefer 97:3 108:1 **diverge** 83:18 84:13 88:22 89:14 diversion 31:25 **divide** 78:17 83:1 **divided** 109:21 118:8 138:10 213:5 **divides** 78:21 **division** 62:15 **DNR** 196:23 **docket** 4:24 5:7 5:19 5:25 52:7 94:10 236:14 238:7 238:9 **document** 147:14 154:4 236:4 236:7 236:8 documentation 39:1 59:10 142:15 142:18 202:24

documented

269

167:3

199:16 201:20
documents 49:7
DOD 203:11
DOE's 211:16
dollar 169:2
169:16
dollars 224:15
domain 28:23
44:25 55:10
85:22 158:15
192:9 192:11
192:11 203:4
$203:9\ 207:0$ $207.11\ 210.11$
210:11 210:12
210:22 211:15
211:24
domains 210:24
dominated 80:9
done 12:13
20:16 21:20 25:4
29:11 32:5
34:3 41:7 41:8
34:3 41:7 41:8 42:5 43:11
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20 175:12 183:19
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20 175:12 183:19 187:14 188:6
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20 175:12 183:19 187:14 188:6 190:11 191:19 197:18 205:25
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20 175:12 183:19 187:14 188:6 190:11 191:19 197:18 205:25 214:1
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20 175:12 183:19 187:14 188:6 190:11 191:19 197:18 205:25 214:1 door 100:21
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20 175:12 183:19 187:14 188:6 190:11 191:19 197:18 205:25 214:1 door 100:21 doors 100:13
34:3 41:7 41:8 42:5 43:11 50:3 51:18 62:23 66:8 70:13 75:1 75:10 82:20 102:8 103:18 118:21 118:24 134:23 141:8 141:8 154:15 164:7 170:20 175:12 183:19 187:14 188:6 190:11 191:19 197:18 205:25 214:1 doors 100:21 doors 100:13

dot 62:24 115:1
double 232:22
Doug 45:20 127:14 132:8 132:12 132:16 135:20 137:23 139:21 207:15
DOUGWAY 208:11
downdraft 22:23
105:24
Downey 132:10 132:11
download 199:18
199:21
<pre>downwash 12:16 15:17 16:13 16:16 17:2 17:22 18:24 18:25 19:23 19:25 21:15 22:24 25:25 26:1 27:4 28:11 61:16 61:18 62:9 79:19 90:19 99:10 105:7 105:11 106:24 107:4 110:20 110:23 111:22 129:23 157:6 169:10 170:1 170:25 179:14 205:9 205:16 205:18 223:9 225:8 225:11 226:16 231:18 231:20 downwashes 168:12</pre>
downwind 22.13
24:2 36:18 104:10 129:8 134:1 138:25 139:3 157:19 158:25 160:1 160:6 160:9

Dr 112:19 **draft** 14:10 69:12 181:12 229:12 230:15 **dragged** 236:24 dramatically 32:18 106:2 draw 39:12 127:20 143:19 drawback 99:11 **dream** 206:12 **drew** 214:24 **drift** 135:4 **drive** 29:25 125:10 166:18 172:5 **driver** 49:21 151:12 **drivers** 150:13 **driving** 41:23 121:17 121:17 124:17 125:1 **drop** 24:20 157:3 206:8 droplets 44:1 **dropped** 212:11 **drops** 24:13 205:15 220:2 220:10 221:4 221:5 **DTE** 236:18 **dual** 202:21 **Dubbs** 174:25 **due** 11:22 15:6 42:6 47:8 57:6 57:6 75:8 94:10 100:10 109:22 159:3

58:3 59:3

176:3 180:18
183:7 191:11 209:9
Dulles 113:6
dumps 210:16
duplicate 56:20
during 5:10
5:21 77:20 77:22 104:2 104:12 104:25 105:21 106:7 106:8 134:8 145:22 155:23 173:22 201:19 212:25 213:6 232:4 233:22 234:5 236:2
dust 152:8
dwell 16:3
dynamic 154:16
dysfunction 103:13
103:13 E
E eager 147:22
dysfunction 103:13 E eager 147:22 eagerly 179:23 eagerlies
dysfunction 103:13 E eager 147:22 eagerly 179:23 earlier 25:4 48:3 52:7 53:14 96:22 97:9 106:25 148:17 156:17 177:3 178:22 187:25 191:25 192:5 192:24 197:20 199:6 215:8 220:3 221:22 231:23 236:6 236:19 238:8 early 15:4 38:21 148:18

easier 216:9	
easily 107:16	
131:2	
east 165:1 192:13	
eastern 165:11	
Eastman 162:23	
163:4 163:4	
163:5 163:21	
164:18 168:6	
easy 99:24 185:9	
economic 149:25	
150:8 152:2	
155:20	
economy 164:20	
ed 196:20	
eddies 61:20	
eddy 170:7	
edge 22:21	
23:17 24:2	
effect 22:16	
22:20 23:1 45:10 46:9 46:13 83:23	
effective 17:18	
22:9 24:25	
26:2 27:25	
28:2 28:7	
98:15 175:18	
176:1	
effectively 33:15	
122:6 124:3	
effects 16:16	
20:9 28:12 46:17	
54:18 104:21 126:13 136:9	
206:16	
efficiency 177:19	
effort 6:6 11:6	
11:9 14:17	

84:20 119:24
187:2 201:22
231:2 233:25
efforts 76:10
146:15 200:22
201:10 255:25
Egan 58:4
EGU's 92:2
<pre>eight 11:25 21:1 22:12 22:15 27:7 108:14 111:2 125:6 166:1 171:5 202:22</pre>
eighteen 36:11
eighties 112:7
112:9
eighty 122:21
EIS 131:16
either 11:18 32:9 33:10 159:7 162:16 188:7 207:10 216:12 216:19 222:18
elaborate 7:1
Eladio 77:3
198:11 198:16 204:21
electric 43:18
47:6 52:18 53:9 53:16 91:19 97:15 135:9 198:18 213:23
electrical
91:18 180:23
electricity
228:20
elements 201:14 201:17

elevated 24:17	73:12 74:11	162:6 201:3
79:24 95:10	74:16 74:23 92:8	204:3 234:14
158:17 187:14	93:2 93:4 93:5	235:9
208:22 212:16	93:17 93:24 94:6	encouraged
elevation 92.22	94:14 97:15	17.20 59.11
161.4 166.9	97:20 100:18	59:22 75:18
223:13	100:19 101:1	197:22
	103:5 108:21	oncouraging 50.24
	109:19 125:8	75.25 107.21
eleven 18:17 21:9	125:25 127:18	/5:25 19/:21
eliminate 16:18	129:7 134:6	energy 53:6
oliminatos 51.4	134:7 134:9	210:19 228:18
	134:10 134:11	236:19
elo 95:20	134:25 135:2	enforceable
eloquently 150:7	135:1/ 136:10	229:19
else 151.1 170.22	141:11 141:12	engage 6:4 233:12
227.17 227.18	143:15 151:9	234:1 234:14
235:19	154.11 157.1	234:19 235:10
	167.25 167.25	angina 122.0
elsewhere 50:19	169.11 172.10	
emergency 5:18	181:11 182:23	engineer 213:21
28:25 29:1	182:24 189:20	engineering 214:5
52:5 52:20	189:22 192:17	231:16
emission 54:1	192:17 192:20	engines 128:18
63:16 72:4	193:11 230:21	
72:5 72:16 72:20	emit 38.14 60.4	enhanced 34:11
73:21 93:4 93:21		34:15 98:24 99:3
101:9 101:12	emitted 165:14	102:15 110:2
101:12 104:19	emitting 92:9	enhancement
108:23 109:22	emphasize 202:5	99:4 99:22
115:7 115:10	206:2 206:22	enhancements 44:8
124:24 129:4	208:24	53:7 56:1 198:24
129:5 134:13	emphasized 79.25	204:11 204:14
13/:12 1/6:20		enhances 187:15
1/9:11 182:1	empire 129:6	147.22
223:8 227:0	129:9 132:15	
229:19 230:4	133:17 136:11	enter 194:2
230.23 237.3	employ 164:14	195:23
emissions 25:6	employed 52:17	entering 122:8
38:16 38:17 54:2		entertain 4:15
		ontine 40-14 OF 4
64.22 67.12	employment 180:25	entire 42:14 95:4
68.17 69.24	encourage 6:1 8:4	100:25 203:14
71.22 72.4	15:7 57:9	

Г

entirely 32:10	131:16 132:1	70:7 110:6
entities 126:17	132:2 140:9	116:10 116:22
140:17	140:11 141:1	118:22 140:6
	141:6 142:2	142:5 142:8
entity 1/2:14	142:9 142:20	142:13 145:8
entrainment 99:2	142:22 142:23	146:3 152:25
Environ 29:21	143:2 143:7	229:12 230:15
30:9 30:10	143:9 143:13	232:16
34:9 34:10	143:18 143:19	EPRI 53:20 77:3
39:8 41:14	144:5 144:10	80:9 82:19 83:14
203:17 203:18	144:12 144:13	146:15 199:16
environment	144:18 144:23	199:17 199:19
198.17 210.2	144:24 145:3	200:2 203:11
190.17 210.2	145:5 145:11	203:15
Environmental 4:1	145:13 145:18	EPRI.com 199:18
213:22	145:23 146:2	203:23
Environplan 97:5	146:10 146:10	.
Environ's 37.2	140:10 $140:10146.22$ 147.5	equal 110:5
	140.23 $147.3147.12$ 147.15	231:21
EPA 5:13 7:16	147.13 $147.13147.18$ 147.22	equally 36:3
7:23 9:17 9:24	147.10 $147.22147.25$ 151.22	107:17 107:17
	152.23 155.12	108:8 108:8
14:20 15:8 21:20	155.16 155.17	equals 84:2
26:13 28:19	162:6 164:7	equation 225.15
29:20 29:23 30:9	173:1 197:24	
33.11 31.8	198:25 199:7	equations 227:15
34.9 34.16 35.14	200:3 202:9	equipment 227:2
39.18 39.18	204:2 204:15	EOuIS 43:25
41:14 53:23	215:1 228:25	44:6 45:9
54:13 54:22 55:3	230:9 230:11	45:12 46:16
55:20 55:25 56:4	232:2 232:10	47:18 47:20
56:8 56:9	232:12 232:21	equivalency 202.6
56:14 56:21 57:1	232:24 233:2	
57:9 58:25	233:11 234:1	equivalent 12:4
59:4 68:20 82:20	234:8 234:11	83:17 84:9 84:14
91:2 91:16	234:14 234:19	84:16 84:17
96:1 97:10	234:24 235:2	8/:11 8/:13
98:5 98:14 102:9	235:5	1/9:/ 1/9:20
102:12 106:13	EPA-approved	ERM 180:12 180:17
107:10 107:13	141:21 141:21	error 211:4 213:6
108:25 115:15	EPAs 131:25	213:6
120:10 120:12	200:16	errors 35.3
125:15 127:16	FDA!e 20.12	37.4 37.9
128:16 128:24	25.4 A1.24 54.16	37.19 37.20
130:17 131:12	JJ:4 41:24 54:16	51.15 51.20

39:16 41:21 64:6	40:25 206:8	129:11 130:8
135:22 137:7	ETTEX-1 29·4 29·18	134:19 141:8
137:10	$22.0 \ 11.15 \ 11.16$	153:8 169:14
22222 101 · F	55:0 41:15 41:10	173:17 190:22
escape IUI:5	Eularian 118:7	192:11 199:15
especially 34:5	Eulerian 33:4	201:19 202:24
37:8 39:20 48:13	36.3 43.24	206:2 209:6
66:5 70:2 83:5		232.23 233.3
83:25 84:18	Europe 29:7 34:18	232.23 233.9
86:16 88:20	35:10 65:6	233.0 234.0
89:14 104:12	European 28:22	234:0 233:0
164:5 180:25		evaluations 12:12
182:6 187:8		29:20 49:11
188:17 189:17	28:8 34:3	53:13 55:7 55:12
191.10 196.23	54:23 55:6 69:15	55:22 56:7 56:14
224.25	70:22 79:17	60:6 66:24 67:11
224.23	133:18 136:1	110:25 132:14
essence 159:8	137:14 137:25	162:8 192:1
essential 118:4	146:15 155:19	192:4 205:23
	169:11 172:10	208:24 209:18
essentially	197:23 204:3	210.13
127:21 156:23	232:2	210.10
157:19 158:25	onolustod 27.22	Evansville
194:11 196:12		85:15 86:13
Essex 193:9	29:17 44:11 46:9	86:21 87:5 89:1
193:17 193:18		event 10:24 193:2
193:17 193:18 196:9 196:9	70:21 141:6	event 10:24 193:2
193:17 193:18 196:9 196:9 196:11	70:21 141:6 141:10 141:18	event 10:24 193:2 events 113:22
193:17 193:18 196:9 196:9 196:11	70:21 141:6 141:10 141:18 141:20 141:24	<pre>event 10:24 193:2 events 113:22 147:5 184:19</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23	event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2	event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3 231:12	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19 37:4 42:13 42:18	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's 66:4 106:17</pre>
193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3 231:12	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19 37:4 42:13 42:18 42:21 42:23 43:5	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's 66:4 106:17 everyone 4:13 6:2</pre>
<pre>193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3 231:12 estimating 61:3 152 1</pre>	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19 37:4 42:13 42:18 42:21 42:23 43:5 43:10 43:19 51:2	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's 66:4 106:17 everyone 4:13 6:2 131:22 137:25</pre>
<pre>193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3 231:12 estimating 61:3 153:1</pre>	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19 37:4 42:13 42:18 42:21 42:23 43:5 43:10 43:19 51:2 56:14 66:22	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's 66:4 106:17 everyone 4:13 6:2 131:22 137:25 139:15 180:15</pre>
<pre>193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3 231:12 estimating 61:3 153:1 etcetera 85:25</pre>	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19 37:4 42:13 42:18 42:21 42:23 43:5 43:10 43:19 51:2 56:14 66:22 77:13 77:14	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's 66:4 106:17 everyone 4:13 6:2 131:22 137:25 139:15 180:15 180:15</pre>
<pre>193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3 231:12 estimating 61:3 153:1 etcetera 85:25 FTFY 12:14</pre>	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19 37:4 42:13 42:18 42:21 42:23 43:5 43:10 43:19 51:2 56:14 66:22 77:13 77:14 79:18 82:18	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's 66:4 106:17 everyone 4:13 6:2 131:22 137:25 139:15 180:15 180:15</pre>
<pre>193:17 193:18 196:9 196:9 196:11 established 51:11 estimate 20:18 22:1 98:12 101:12 101:22 estimated 48:24 137:13 estimates 20:23 27:11 64:21 102:6 106:8 127:18 192:3 231:12 estimating 61:3 153:1 etcetera 85:25 ETEX 12:14 20:21 22:21</pre>	70:21 141:6 141:10 141:18 141:20 141:24 176:20 209:23 229:24 230:2 233:1 evaluating 18:5 28:25 82:19 136:4 179:6 210:4 232:10 evaluation 12:14 18:2 18:6 28:19 37:4 42:13 42:18 42:21 42:23 43:5 43:10 43:19 51:2 56:14 66:22 77:13 77:14 79:18 82:18 82:21 107:3	<pre>event 10:24 193:2 events 113:22 147:5 184:19 186:24 187:8 187:18 190:3 everybody 4:5 4:5 6:18 6:24 8:19 42:15 52:16 66:25 162:22 169:15 171:25 174:7 179:17 235:24 238:12 everybody's 66:4 106:17 everyone 4:13 6:2 131:22 137:25 139:15 180:15 180:15 everyone's</pre>

274

everyplace 211:6	115:22 185:17
everything 5:5	exceed 75:3
6:9 19:21 19:24 23:20 44:22 93:11	exceedance 181:23 184:20
119:23 151:15 170:18 217:25 237:8 238:14	exceedances 98:3 187:9 229:18
evidence 143:25 232:13	exceeding 85:7 89:23 167:17
exacerbate	exceeds 131:3
17:23 152:13	excel 109:13 110:14 217:14
exacerbated 21:17	excellent 174.2
exacerbates 143:1 150:20	214:1
exacerbating	except 21:3 92:10
151:18 exact 33:18 62:16	excessive 16:6 16:9 17:4 19:16
exactly 30.24	excited 126:4
31:20 33:8 40.4 40.18 41.10	exciting 79:23
148:23	exclude 188:21 224:6
exaggeration	excluded 131:1
128:15	executive 168:7
examining 21/:11	exercise 134:8
example 20:3 26:16 53:18	exercised 231:9
54:15 59:15	exercises 70:5
62:12 66:11	exhaust 94:4
110:21 113:14 113:23 133:12	exist 28:12 40:1 72:8
137:7 141:9 142:20 144:13	existing 18:18
146:7 147:6 147:15 185:21	127:23 140:8 199·10 229·10
186:2 186:3	exit 100.6
198:25 205:24	evnanded 65.00
210:5 212:5 212:18 229:11	66:24 66:25 147:7
examples 74:23	expansion

175:11 176:14 **expect** 20:9 20:19 50:7 76:2 95:11 103:17 238:15 **expected** 14:15 49:17 59:21 72:1 118:20 expecting 71:15 116:1 expedite 144:10 expedited 150:16 expediting 14:18 expeditiously 53:2 56:22 142:5 152:19 expenditures 175:12 expensive 173:5 173:5 176:23 experiences 180:21 190:19 191:4 experiment 29:4 41:1 62:23 63:15 78:7 90:2 experimental 182:17 experiments 111:1 129:3 206:9 206:12 expertise 147:21 **explain** 19:12 23:8 33:2 **explore** 69:17 exploring 74:13 **Exponent** 15:15 43:17 exposure 185:3

expressed 47:19	228:20	46:19 77:18 78:7
extend 100:20	facility 80:4	99:24 108:7
<pre>extending 5:22</pre>	108:18 164:19	151:16 194:19 197:21 208:16
35:10	169:17 172:17	214:16 220:14
extensive 153:8	175:10 176:4	222:7
extensively 65:25	178:17 178:24	fairness 42:20
181:2	179:9 179:24	faith 118:21
extent 10:18 13:1	224:19 225:6	falls 61:7 104:15
33:2 90:4 113:18	226:17 226:23	137:4
192:10	fact 11:23	familiar 203.5
extra 103:13	14:25 20:21 26:6 27.10 27.10 20.8	family 5.17
174:20	34:1 39:20 49:22	52.5 52.19
extract 109:3	50:1 60:19 64:25	force: 202.15
109:12 177:17	82:8 93:8	Lancy 202:15
extracted 44:2	96:15 110:16	Fantastic 204:20
48:5	134:20 139:9	Fargo 113:6 114:6
extraction 191:5	159:4 164:25	114:7 114:9
extraordinarily	209.9 212.0	11/:3
183:21	factions 88.19	farthest 158:24
extrapolate 63:19	88:24	fast 137:19
		1 7 3 • 1 5 1 7 / 1 • 5
extrapolation	factor 25.18	100.12 200.15
<pre>extrapolation 205:18</pre>	factor 25:18 25:18 25:23	198:12 209:15
<pre>extrapolation 205:18 extremely 95:21</pre>	factor 25:18 25:18 25:23 34:14 37:6 54:11	198:12 209:15 faster 13:25
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8</pre>	factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4	198:12 209:15 faster 13:25 favorable 51:6
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 </pre>	198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114.14 117.1</pre>	198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25</pre>	198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 </pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10</pre>	198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4
extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 F face 10:3 10:17	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20</pre>	198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 </pre>	198:13 174.3 198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 F face 10:3 10:17 44:6 81:6 faced 45:9 45 10 46 16</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17</pre>	198:13 194.3 198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 F face 10:3 10:17 44:6 81:6 faced 45:9 45:12 46:16 47:18 47:20</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17 208:18 226:23</pre>	198:13 194.3 198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22 February 55:18
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 F face 10:3 10:17 44:6 81:6 faced 45:9 45:12 46:16 47:18 47:20 facilitate 75:25</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17 208:18 226:23 factors 37:16</pre>	198:13 194.3 198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22 February 55:18 164:10
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17 208:18 226:23 factors 37:16 102:3</pre>	198:13 194.3 198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22 February 55:18 164:10 fed 210:7
extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 F face 10:3 10:17 44:6 81:6 faced 45:9 45:12 46:16 47:18 47:20 facilitate 75:25 facilities 25:11 99:12	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17 208:18 226:23 factors 37:16 102:3 fail 128:3 130:15</pre>	198:13 194.3 198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22 February 55:18 164:10 fed 210:7 federal 5:23
extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 F face 10:3 10:17 44:6 81:6 faced 45:9 45:12 46:16 47:18 47:20 facilitate 75:25 facilities 25:11 99:12 107:19 125:18	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17 208:18 226:23 factors 37:16 102:3 fail 128:3 130:15 fair 42:22</pre>	198:13 194.3 198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22 February 55:18 164:10 fed 210:7 federal 5:23 55:11 55:14
extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15 F face 10:3 10:17 44:6 81:6 faced 45:9 45:12 46:16 47:18 47:20 facilitate 75:25 facilitate 75:25 facilities 25:11 99:12 107:19 125:18 215:14 215:15	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17 208:18 226:23 factors 37:16 102:3 fail 128:3 130:15 fair 42:22 fairle 26 12 22 for the decempoint of th</pre>	198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22 February 55:18 164:10 fed 210:7 federal 5:23 55:11 55:14 55:20 56:11 228.22
<pre>extrapolation 205:18 extremely 95:21 183:10 217:8 237:1 eye 94:15</pre>	<pre>factor 25:18 25:18 25:23 34:14 37:6 54:11 61:6 75:4 89:10 89:20 101:12 114:14 114:14 117:1 120:6 127:25 130:6 130:10 130:11 136:20 137:4 137:13 137:15 137:22 161:22 208:17 208:18 226:23 factors 37:16 102:3 fail 128:3 130:15 fair 42:22 fairly 26:19 33:3 24.22 25:20</pre>	198:12 209:15 faster 13:25 favorable 51:6 favorite 185:17 218:17 feature 107:11 107:14 108:4 165:21 featured 82:21 features 98:22 February 55:18 164:10 fed 210:7 federal 5:23 55:11 55:14 55:20 56:11 228:23

feed 44:5	87:14 88:1	finally 14:24
feedback 197:24	90:9 91:21	30:22 35:20
200:20 204:4	95:5 125:5	94:23 95:16
feeding 109:11	figure 22:2 28:23	147:1 181:8
- feel 16.23 28.1	30:3 30:3 30:5	100:3 109:9 100.1 101.3
40.1 206.25	30:12 30:19 32:8	197.10 197.13
234.23 238.8	80:7 83:13	198:1 233:11
foolo 121.02	112:10 125:24	235:9 237:8
IGETS 131:23	173.21 212.1	finding 56.20
feet 166:19	214:10 216:4	63:2 70:19
fell 216:18	figures 42:8	findings 26:3
fellas 218:14	file 78:24	43:4 56:20 71:2
fellow 112:2	79:14 177:11	fine 47:25
114:24 155:21	177:12	64:25 65:2 219:4
felt 31:20	files 32:7	finish 150:2
154:2 178:24	37:20 78:21	170:17
fence 115:18	78:22 78:23	finished 235:23
128:20 128:21	78:23 177:16	FID5 56.11
223:22 223:23	filing 173:12	FIFS 50.11
224:4	fill 232:9	fire 108:20
fences 128:22	fill-in 190:1	fired 57:14 74:15
fetch 24:22	fills 200.1	128:18 135:6
fewer 112:18	filter 000 10	135:9 157:1 165:10 182:19
field 7:21 7:24	filter 220:10	215:13 215:14
8:1 8:8 34:19	filtered 219:16	first 9.11 9.16
35:12 48:2	filtering 220:2	12:11 19:25
51:5 54:7	220:12	28:18 31:18 35:2
62:23 63:12	final 14:6	35:22 44:17
63:15 129:12	14:11 30:25 49:8	76:19 77:1 78:24
161:25 162:8	54:16 56:16 67:6	81:18 82:25
179:24 206:9	67:18 69:12	85:18 92:7 98:12
209:19 210:9	101:23 144:9	103:6 104:24
223:0	148:18 180:16	105:6 113:18
fifteen 11:16	180:16 204:16	116:12 118:9
58:10 /6:20	204:10 217:5	121.10 122.20
100:22 123:5	finalization	126.8 130.8
fifth 25:20 92:13	142:13	133:16 136:9
fifty 18:20 79:11	finalize 230:9	141:1 142:11
80:14 81:24	finalized 237:9	142:14 143:18
83:12 84:3	237:10	162:16 177:23
86:3 86:4 87:6		185:7 185:22

Г

I

186:23 190:21 194:12 195:5	fixed 67:10	fluxes 210:6
199:3 199:25	122:17 151:23	flying 48:2
207:7 210:23 212:3 216:16 216:23 218:21 219:5 223:19 227:25	151:23 fixes 49:16 55:9 151:4 151:5 190:3 231:1 235:4	focus 10:2 44:23 44:24 46:21 57:23 81:9 92:5 118:13 121:2 122:1
fished 165:2	fixing 151:2	192:14 193:12
fit 60:25 81:10 81:23 82:4 82:15 83:6 107:23 115:17 196:3	<pre>flank 171:10 flat 24:16 24:19 84:23 85:2 87.12 88.4 89.24</pre>	<pre>focused 41:15 41:15 200:22 focusing 28:21 29:18 30:3</pre>
fits 178:21	93:9 93:10 93:16	68:3 201:10
fitted 77:12	93:23 94:6 95:2 95:8 95:9	201:12 209:21
five 11:24 18:23 24:15 29:17 56:4 59:18 60:25 80:4 80:14 81:12 81:15 81:21 82:2 82:10	136:17 137:5 207:9 207:17 224:20 flexibilities 70:1	FOIA 13:7 folks 7:11 8:4 8:10 8:25 10:11 10:12 11:3 12:12 163:1 217:16
83:5 86:3	flexibility	foot 165:22
89:20 90:8 91:22 91:24 92:11 92:25 93:25	173:22 188:13 FLEXPART 31:9 34:23	footprint 78:6 82:1 82:12
96:10 102:11	flipping 61:14	force 235:1
104:10 108:14 114:3 115:19 116:13 122:23	floor 97:2 166:19 205:6	forces 206:24 Forcing 140:16 forecast 210:4
125:4 144:5 186:21 204:25 212:5 223:16 224:17 237:3	flow 31:25 97:21 100:1 100:17 101:5	forecasters 209:24 forecasting 66:6
five-minute 80:23	101:13 227:7	forest 68:2
fives 60.25	flows 77.10	124:12 149:5
five-year 92:24	flu 132.13 139.21	forgetten 93:25
fix 35:2 126:22	fluctuate 77.18	fork 165.23
144:24 145:21 151:13 151:14	fluctuation 77:19	form 47:16
151:15 186:24 232:1	fluid 26:16 154:16	219:24 220:23

format 1.11	fourth 73.1 87.17	118.10 177.5
221•11	122.19 167.6	177:7 205:18
	169:9 182:11	230:18
54.10 57.9	For 237.19 237.19	fully 70.21 70
137:17 146:10	238:4	85:17 141:6
former 111.5	fraction 00.18	fun 67•4 172•4
143·15	90.19 90.19	function 100 5
forms 47:16	212:11	160:1
formula 16:15	frame 98:18	functional 95:
16:17 16:19 17:2	framework 142:6	fund 146:15
17:6 18:18 18:19	frankly 149:6	fundamental 21
18:21 19:20	free 122.5	
21:24 22:4	124:1 159:11	funded 43:13
27:0 27:15 27:25	203:3 203:8	43:10 43:19
175:23 231:21	238:8	209:20
formulas 62:12	<pre>freedom 29:22</pre>	funding 43:14
formulation	31:1 99:2	203:7
138·20 235·3	freely 199:17	furnaces 97:15
formulations	<pre>frequency 194:22</pre>	97:16
84:18	frequent 150:24	future 42:25 4
forth 16.10	234:15	49:20 58:12 9
89:3 119:6	<pre>frequently 151:11</pre>	127:18 129:11
forthcoming	228:20	146:2 147:10
198:21	front 86.25	184:3 184:8
forty 88.1	209:25	185:10 185:13
94:16 94:24	frustrations	190:20 195:25
Forty-oight	233:25	197:8 198:24
103:21	FS6 207:12	204:5 222:12
forty-five	fuel 72:7 74:14	234:20
22:18 23:14	121:20	G
forums 65:17	fuels 70:2 70:2	Gail 12:5
forward 6:5 6:7	70:3 73:18 74:15	gain 123.3
9:4 13:14 24:2	74:17	123:3 148:3
69:8 91:1 139:16	<pre>fugitive 97:14</pre>	148:3
148:2 162:18	100:18 100:19	Gainsville 113
176:13 234:2	101:8 152:7	game 162.17
234:18	full 38:16	yame 102.1/
fourteen 11:16	42:12 44:17	gap 119:16 121
12:21 81:25	45:15 51:3	Garrison 180:1
	/2:4 //:23 11/:9	

70:21 70:21 7 141:6 172:4 **on** 100:5 **onal** 95:8 46:15 ental 211:8 43:13 8 43:19 4 91:19 20 **g** 43:14 es 97:15 6 42:25 43:4 0 58:12 91:3 18 129:11 2 147:10 3 184:8 10 185:15 6 189:18 20 195:25 8 198:24 5 222:12 20

G 2:5 23:3 3 148:3 3 **ille** 113:7 62:17 9:16 121:12 on 180:18

gas 110:25 128:17	76:17 76:23	gives 126:20
128:18 129:4	96:25 97:4	giving 24:11 90:3
133:20 16/:21	102:22 106:17	90:3 142:11
215:14 215:15	112:3 116:24	142:16 148:15
215:17	117:12 117:12	1/5:1 222:22
gasses 97:21	117:18 117:23	glad 162:13
gassy 78.7 78.11	118:13 122:15	180:15
gabby 70.10	126:25 148:13	goal 149:7 149:22
gather /:12	180:14 209:15	goals 233:14
gears 4:11	237:17 238:14	golf 171:15
120:3 193:5	GEP 16:3 16:15	174:11
general 13:17	16:17 20:12	gone 86:20 168:23
57:19 58:22	20:13 21:21	175:8 223:24
199:5 213:8	143:4 175:16	gonna 169:22
generally 8:25	178:19 179:3	goodness 81:10
68:6 68:8 83:4	231:21	81:23 154:25
116:14 159:6	GEP's 20.13	Gossett 162:11
generate 113:17	$C_{22} = 5 \times 20213$	162:12 169:1
generated 60:18	67.20 68.1	171:24 172:3
106:9 112:24	acts 134.20	gotten 21:10 24:4
generates 228:19	172:15 237:8	/6:12 168:23
generating 91:18	getting 13.10	government 10:11
Generation 52.17	13:24 21:8	Governor 111:5
$\frac{125.10}{25.10}$	23:8 24:7	grade 153:2
$236 \cdot 24 \ 237 \cdot 2$	24:23 26:5	gradient 93:1
generic 95:1	26:8 35:19 75:20	gradients 211:9
	75:22 88:23 91:3	gradually 112:6
generous 90:3	119:25 125:19	160:6
gentle 94:7	130:13 138:7	Grand 53:21
genuine 119:24	153:24 154:24	grandfathering
geometric 208:17	209:15 213:19	179:15
geometry 103:6	214:3 225:10	grant 124:23
107:22	Gina 8:20	graph 130.2
George 4:4 5:12	Girardeau 113:6	158:19 160:8
6:15 9:8 12:1	113:21 114:15	graphic 202.10
12:17 13:12	given 64:2 149:24	
28:14 52:1 52:16 52:19 53:3 57:13	186:11 199:7	grapnical 39:21
57:18 67:17	229:13 221:23	graphics 202:14
		202:15 202:16

```
grass 65:1
gray 48:8 88:14
 89:9
great 4:11 6:14
 6:24 7:22 8:2
 9:6 92:1 132:2
 172:1 212:22
greater 22:15
 27:20 48:13
 130:4 140:10
 145:9 181:11
 181:12 194:3
 217:2 229:9
 231:21
greatly 94:5
 177:19
green 36:13 88:13
 88:13 157:9
 181:24 225:6
greener 81:15
grid 32:24 33:5
 33:16 40:9 40:11
 40:12 40:14
 40:17 41:1
 41:3 66:5
 66:13 115:17
 177:5 177:8
 200:3 211:22
grids 40:20
gross 234:25
ground 21:22
 22:13 87:24
 105:9 151:10
 152:14 157:3
 157:18
group 10:3
 10:25 34:21
 42:21 55:3 55:19
 58:3 71:2
 71:19 76:6
 108:21 122:5
 123:2 124:1
```

```
125:12 140:4
 163:1 195:6
 195:16 195:18
 195:22 196:3
 196:20 209:3
 211:23 233:17
 235:10
grouping 221:23
 222:1
groups 43:13
 60:10 91:25
 149:11
growing 87:3
growth 69:14
 155:20 189:18
quarantee
 163:22 168:3
Guerra 117:15
 117:16
guess 9:14
 15:20 17:1 39:22
 62:3 68:23 95:23
 112:8 119:21
 138:10 138:20
 155:9 163:20
 165:18 203:20
 209:13
quidance 14:5
 14:6 14:10 14:11
 14:14 20:13
 59:10 59:20
 59:22 68:21 69:5
 69:12 69:12 72:3
 76:14 139:18
 140:7 147:16
 154:3 169:14
 173:13 178:24
 179:2 179:14
 179:22 181:12
 188:14 195:25
 197:1 215:1
 229:11 229:12
 230:15 233:24
```

237:4 quidances 14:5 **guide** 171:5 quideline 20:12 21:21 54:22 142:5 142:8 142:10 146:8 231:14 234:25 quidelines 34:4 **guys** 9:2 9:3 Η **H2O** 210:20 210:20 **half** 8:16 18:4 18:5 18:19 19:6 19:21 20:4 20:8 22:3 23:13 24:15 40:10 80:11 86:17 86:18 86:18 131:15 153:25 154:1 154:1 167:22 184:11 184:13 205:14 205:16 205:20 226:24 Half-a-million 168:25 **handed** 14:2 handful 9:11 204:23 214:21 **handle** 204:10 handles 80:7 **hanging** 180:15 218:13 Hanna 57:16 57:17 138:21 205:5 205:7 happen 6:8 64:13 78:9 78:10 114:11 126:4

Г

135:3	149:9 149:21	214:16
happened 33:7	152:1 206:16	heavy 103:17
33:11 59:13	hear 6:21 46:1	height 16.3 16.15
112:17 119:4	75:18 145:5	16.17 16.19 17.3
119:8 119:18	145:8 151:20	17.7 17.10
120:17 148:20	163:17 238:16	18.1 18.17 18.18
happens 122:24	heard 6:25 8:16	18:19 18:21
207:22 223:25	14:12 16:17 30:2	18:23 18:25 19:4
	46:1 53:1 53:8	19:6 19:7
12.12 71.10 76.7	53:13 54:6 55:24	19:16 19:16
13:12 /1:19 /0:/	56:6 65:14 66:22	19:20 19:21 20:3
102.23 204.13	70:6 76:10	20:5 20:13 20:20
192.23 204.13	106:25 119:4	21:2 21:3
hard 138:9 158:12	135:6 135:7	21:20 21:22
195:13 203:2	144:15 145:10	21:24 22:4
203:21	149:1 150:19	22:5 22:6
hardly 87:7 88:15	150:22 151:6	22:11 22:15
89:8 92:25	151:17 151:22	23:14 23:23
Harrisburg 113:6	152:3 152:4	24:14 25:11
	152:11 152:21	26:17 26:20
haul 151:10 152:6	155:14 155:15	26:22 27:6
haven't 14:11	176:24 183:4	27:8 27:9
16:21 27:22	186:18 186:25	27:13 27:23
70:21 150:22	193:23 195:17	28:11 64:1
152:21 192:22	225:20 230:22	64:3 71:10 87:24
196:17 203:24	233:16 233:22	94:13 94:22
223:1 223:24	234:5	95:21 96:5 96:13
having 8:22	hearing 5:5 144:4	102:3 102:4
14:2 42:16 59:22	152:16 238:20	
67:21 69:17	238:21	105:9 105:16
128:23 152:1	heartened 151:20	100.6 100.14
173:6 177:20	heartening	109.0 109.14 143.4 175.23
217:4 226:16	145.5 145.8	177.25 178.15
226:16 226:19	143.3 143.0	178.19 179.1
Hawaii 129:6	heat 97:23	179:19 210:6
133:19 135:6	100:9 100:15	212:20 223:7
haze 53.12	109:20	223:8 225:14
53.24 56.10	heated 97:14	225:15 226:15
68:14	heater 181:19	231:17 231:22
heading 226:18	heaters 182:6	heights 16:14
headquarters	heating 100:10	18:11 19:2
164:15 164:16	boord 1 0.0	22:3 28:9 85:5
hool+h 60.10	52.17 52.02	94:13 96:14
nearth 02:18	33:1/ 33:23	96:15 98:15

108:5 109:9	218:10 220:1	167:5 167:15
109:16 110:18	220:24	187:13 193:24
110:18 110:19	he's 12.13	194:3 194:16
128:20 173:10	12.19 52.12	195:13 196:7
179:11 182:1	163.14 215.9	208:12 218:25
186:20 237:2		225:18
held 147:4	Hi 222:20 236:18	highest 7:19 31:4
He'll 52:6	nign 18:16	31:12 31:15
	23:13 24:3	47:14 72:25 81:2
Hello 132:10	24:5 24:11 32:25	81:13 87:17
198:13		88:11 89:2
help 7:8 7:14	/2:15 /3:1 /3:1/	89:3 151:11
9:20 14:18 14:19	75:2 77:17 92:19	158:15 159:11
14:20 33:2 38:13	92:19 94:24	160:12 160:13
42:23 61:8 61:15	96:11 104:6	160:17 182:11
62:20 75:25	104:7 105:4	230:16
127:15 129:4	105:4 105:5 105:13 105:19	highlighting 73:5
157:18 177:18	110:3 110:19	highly 33:3 33:21
179:16 179:17	136:12 137:22	41:5 93:6 164:4
187:3 187:5	138:9 138:10	
190:4 191:14	145:16 145:17	high-quality
200:20 222:25	146:14 160:7	129:10
226:11 230:12	161:21 165:22	highs 167:6
helped 146:15	168:11 168:11	hill 148:14 171:9
177:19 218:8	187:4 187:9	
228:5	187:18 189:8	hills 166:1 166:8
helping 59:5	208:15 212:8	166:18 1/1:9
125:18	214:22 216:7	1/1:15 1/1:18
halpa 120.5	217:8 218:9	1/2:13
	218:9 219:9	hilltops 168:11
here's /8:6 80:15	219:16 237:1	hilly 165:19
86:23 87:18	higher 18:22 21:9	166:11
91:23 $91:24121.8$ 137.3	26:23 26:25 27:8	Hirtler 97:5
$154 \cdot 25$ 165 · 8	31:6 63:24 63:25	historical 134.14
165.9 165.16	70:2 71:25	miscoricar 154.14
165.24 166.10	73:2 73:11 74:14	historically
166.13 168.1	78:4 82:9	229:1
169:19 170:23	87:20 89:5 89:23	history 175:5
170:23 170:24	92:13 92:22	hit 61.1 218.23
171:1 171:1	111:20 112:18	227.9
171:4 171:7	114:7 116:1	
171:8 181:10	116:4 116:7	hits 95:16 171:12
207:7 211:24	116:9 116:15	hitting 36:20
216:1 216:1	116:19 123:17	94:20 214:23
	138:8 145:13	

Г

216:3 226:20	84:11 84:12 86:9	86:24 87:4
Hmm 154:19	86:20 87:1	90:8 114:5 120:8
	88:9 88:11	122:21 125:10
HO 210:19	90:4 90:7	162:3 169:25
holds 116:25	90:15 90:20	184:15 194:7
198:2	90:24 90:25	194:9 212:5
Holston 165:24	95:21 97:25	214:21 216:10
here 0.14	109:7 109:15	216:24 219:8
nome 9:14	115:10 127:7	219:10 219:15
162:13 163:2	156:25 173:22	219:19 220:8
hood 100:25 101:5	176:15 195:6	220:17 221:6
hope 9:3 155:12	214:20 214:20	221:13 222:9
197:22 228:9	216:7 216:7	222:11 230:17
237:14	216:15 218:1	230:18 232:16
hoped 114.11	218:16 218:21	237:3
	221:8 221:20	hour's 83:24 90:5
hopeful 173:1	221:21 222:6	house 204:2
hopefully 4:5	226:9 230:1	210:18
4:16 9:10	230:11	bowle 114.25
13:25 91:3 153:6	hour-by-hour	now s 114:25
hoping 149:4	102:2 102:5	Huber 20:14
151:21	hourly 61:25	Huber's 22:7
borizontal	77:10 78:22	huge 50:17 152:22
19.15 33.13 41.7	81:14 81:16	206:7 225:3
84:17 104:19	81:20 81:25 82:2	hundred 26.12
126:13	82:7 82:11 82:12	
best 200.14	82:18 83:3 85:19	30:21 80:10 83:4 85:21 85:22
10SC 200:14	91:18 101:22	$92 \cdot 13$ $92 \cdot 15$
200:24	108:2 108:3	92.22 100.20
hot 97:21 97:22	108:5 109:8	115.18 169.4
100:11 100:16	112:25 115:10	
100:23 183:13	156.22 158.0	Hundreds 50:17
hotter 87:20	159.15 159.23	Hunt 20:16
hour 8:16 23:23	161:24 162:4	hybrid 98:12
38:4 38:15 71:23	169:11 172:9	HYSPLIT 31:5
71:23 72:23	214:18 214:20	31:14 34:23
72:23 74:2	215:22 219:1	
74.2 74.24 77.20		
/ 1.2 / 1.21 / / 20	219:3 221:2	I
77:23 78:8	219:3 221:2 hours 29:5 35:8	I ice 122:4
77:23 78:8 79:1 79:3 79:6	219:3 221:2 hours 29:5 35:8 35:8 35:22 37:24	I ice 122:4
77:23 78:8 79:1 79:3 79:6 79:7 79:12 79:13	219:3 221:2 hours 29:5 35:8 35:8 35:22 37:24 37:25 38:3	I ice 122:4 ice-free 121:4
77:23 78:8 79:1 79:3 79:6 79:7 79:12 79:13 79:15 80:18	219:3 221:2 hours 29:5 35:8 35:8 35:22 37:24 37:25 38:3 80:5 80:5	I ice 122:4 ice-free 121:4 123:1 125:12
77:23 78:8 79:1 79:3 79:6 79:7 79:12 79:13 79:15 80:18 80:19 80:25	219:3 221:2 hours 29:5 35:8 35:8 35:22 37:24 37:25 38:3 80:5 80:5 80:11 81:19	I ice 122:4 ice-free 121:4 123:1 125:12 I'd 9:16 11:5
77:23 78:8 79:1 79:3 79:6 79:7 79:12 79:13 79:15 80:18 80:19 80:25 81:19 83:2 83:23	219:3 221:2 hours 29:5 35:8 35:8 35:22 37:24 37:25 38:3 80:5 80:5 80:11 81:19 85:25 86:3 86:17	I ice 122:4 ice-free 121:4 123:1 125:12 I'd 9:16 11:5 14:24 15:17

29:22 58:2	121:15 131:8	162:12 162:13
97:4 110:16	132:11 132:13	162:13 163:2
110:23 112:19	133:11 133:16	163:9 163:12
113:7 127:13	136:8 139:25	164:4 166:2
128:16 174:11	148:11 152:20	166:3 167:23
174:25 178:20	152:20 157:25	168:13 170:3
183:3 205:22	177:14 184:6	170:7 171:20
205:24 213:23	205:21 223:4	172:25 173:14
Idaho 45:3 61:7	223:10 235:25	174:17 174:24
	238:4	174:25 180:13
1dea 7:22 66:5	illustrate 185:20	180:17 180:19
74:10 90:1		180:20 181:1
134:24 192:16	illustrates 23:11	185:16 190:10
ideal 108:7	99:21	190:21 193:5
ideas 8:6	I'm 6:20 9:3 9:14	195:1 198:13
	9:14 11:2	198:16 204:8
identical	15:16 16:1 17:10	206:1 210:9
107:18 108:8	18:12 19:1	213:20 213:21
<pre>identified 108:17</pre>	19:9 19:25 26:25	218:14 221:10
118:25 188:17	30:3 33:1	222:20 222:21
<pre>identifv 118:1</pre>	39:14 39:22	223:3 228:17
120:22 121:16	41:10 42:12 43:9	236:18
124:16 124:25	43:12 44:23	image 178:17
138:11 183:11	44:24 48:4 52:17	imagery 121.23
188:20 190:3	58:9 68:1 68:3	imagery izi.23
219:12 236:11	68:23 68:24	imagine 96:6
236:16	70:11 74:13 79:3	154:12 172:7
identifuing 06.1	81:8 83:15	<pre>immediately 33:15</pre>
idencitying 90.1	84:6 87:16	33:16
Ides 127:8 127:9	90:1 92:5 95:6	impact 76.7 94.17
ignored 122:8	95:22 95:22	151.11 162.8
122:19 144:19	95:22 106:23	166:22 182:23
ignores 128.6	10/:1 108:11	185:14 186:1
	108:25 112:22	186:6 189:24
IHOP 210:17	110.4 127.12	191:17 191:17
211:13	127.16 127.19	217:4 226:20
II 43:17	120.22 120.22	226:22 227:10
I'll 9:25 13:3	140.3 140.4	227:10
17:1 17:8	140.22 148.13	impacted 161.19
17:24 19:11 20:3	148.14 148.15	
28:20 31:23	149.4 150.1	impacting
33:24 48:7 52:22	150:23 151.7	219:13 221:8
59:19 60:13	151:21 152:20	<pre>impacts 54:1</pre>
66:11 76:15	152:22 153:14	69:15 71:6 73:22
112:16 119:5	156:4 162:12	134:4 140:17

150:8 150:24	<pre>important 7:9</pre>	142:6 144:18
151:1 152:2	7:13 25:1	146:16 146:17
153:1 155:19	30:22 32:4 33:13	146:19 146:24
177:2 177:9	37:17 47:17	192:25 197:10
177:23 178:13	47:22 58:23 63:2	233:21 234:3
179:25 180:1	104:8 105:2	234:4
182:22 182:25	111:24 120:10	improves 47:12
183:12 185:24	134:5 138:2	47:13 94:5
187:4 187:12	138:11 138:13	
189:8 191:11	139:6 139:12	improving 63:9
191:12 196:9	140:14 141:3	145:2 147:19
196:18 221:14	164:19 164:20	233:14
226:16	164:20 182:16	impulse 105:12
impairment	189:2 189:3	inaccurate 57:4
53:20 146:12	189:15 197:12	146:11
imperative 234:24	202:11 209:3	inadequacies
implantation	209:5 219:12	146:9
2.32:17	234.12	inadeguacy 146:13
implement	impose 67:5	ingdomiato
107.12 146.5	imposes 140:19	
107.13 140.3	<pre>impossible 84:2</pre>	03:13 100:5
implementation	84:2	inappropriate
43:18 56:10	impressed 162.25	41:22 154:3
56:11 70:7 74:12		229:11
76:14 140:14	improve 37:10	<pre>inaudible 45:12</pre>
189:10 190:4	58:21 62:21	106:2 120:24
190:5 228:22	/1:11 /6:11	198:2
234:13	105:13 105:17	inch 38:9
implementations	106:10 145:21	incidentell.
49:25	191:25 192:7	
implemented	improved 59:15	213.0
46:8 151:16	63:11 65:10	include 49:20
154:10 231:5	67:11 67:11	61:22 65:23 67:1
implementing	106:3 131:23	124:20 170:22
141:2 233:20	211:12 233:4	202:14 202:23
implements 146.24	233:24	203:11 227:25
	improvement	220.0
implications 69:7	28:8 46:24	included 70:9
130:/	83:1 123:6	93:3 113:24
implies 137:16	101:10	204:10 233:3
importance	improvements	
97:12 145:24	46:22 51:1 55:15	includes 43:22
147:1 169:17	6/:8 /5:18 9/:11	43:25 51:1 203:9
	130:20 142:4	223:7

<pre>including 17:22</pre>	increasingly
58:4 59:4	58:13 229:8
59:13 73:1 105:1	234:12
113:3 145:6 190•15 232•11	Incrementally
233:13 233:16	46:8
inconsistent 27:9	<pre>independent 18:4 18:6 137:21</pre>
<pre>incorporate 62:21</pre>	independently
98 : 17	115:21
incorporated	Indiana 85:15
102:20 126:14	87:5 108:17
130:23 131:12	111:18
177:6 234:7	indicate 109:24
incorporating	192:25 195:12
58:20 62:16	195:21 216:2
63:11	indicated
incorporation	146:18 192:24
99:10	<pre>indicates 37:2</pre>
<pre>incorrect 37:21</pre>	82:25 103:25
<pre>incorrectly 37:3</pre>	104:3 105:1
increase 4:9 4:10	indication 159:16
16:6 20:5	indications
20:19 21:7	191:25 192:6
22:3 22:4 24:5	197:20
24:7 24:23 26:18 26:20 26:23 27:6	<pre>indicative 123:10</pre>
27:7 67:13	individual 108:21
160:13 178:5	109:15 109:16
194:21 225:14	183:11 184:19
227:22 231:24	226:21
232:15	individuals
<pre>increased 21:23</pre>	140:21 236:11
22:12 87:3	industrial 68:9
103:11 113:24	68:18 140:20
114:17 114:19	180:23 182:6
114:20 155:15	200:4 215:5
161:25	industrialized
increases 15:22	214:16
/⊥:⊥⊥	industries
<pre>increasing 61:3</pre>	68:25 97:13
61:8 225:13	141:1 151:21
228:25 234:22	

<pre>industry 10:4</pre>			
10:12 47:6 53:10			
68:5 74:22			
97:6 97:13			
98:6 98:23			
130:20 131:9			
145.0 $145.14145.17$ 145.18			
145:19 145:20			
145:25 145:25			
146:13 146:16			
147:20 148:1			
149:16 150:9			
151:9 1/6:22			
233:14			
industry's 145.15			
151:22			
infinite 138:8			
infinity 130:25			
inflation 128.12			
influenced 88:5			
89:25 92:6			
influencing			
178:19			
<pre>information 11:22</pre>			
13:9 15:11 29:21			
29:23 31:1			
43:1 53:19 67:15			
90:15 90:22			
140:24 142:24			
144:8 146:17			
156:9 172:22			
199:20			
informed 55:25			
inherent 72:13			
213:2			
inherently 72:11			
<pre>inhibiting 144:20</pre>			
in-house 103:22			

202:11 202:14 **initial** 32:22 **instantly** 130:25 32:24 43:14 63:4 202:15 202:16 instead 60:3 202:19 109:1 175:9 189:22 206:7 214:25 216:6 interfaced 39:21 219:19 216:11 217:12 Institute 54:25 **interim** 201:6 217:19 218:4 58:5 97:7 111:17 237:1 237:18 218:16 237:18 237:25 198:18 initially 237:25 Instituting 43:19 136:22 156:8 interject 4:23 175:17 177:20 instructed 176:25 intermittent 178:6 **initiate** 33:12 236:20 236:21 179:24 instrument 135:8 237:14 **INP** 115:1 integral 232:7 internally 11:13 232:25 **input** 13:16 14:23 international 32:6 42:23 132:3 integrated 210:20 143:3 147:12 38:14 109:20 173:14 174:3 interpolation intelligent 163:1 185:13 197:15 40:7 40:13 40:18 **intended** 181:22 197:23 208:2 40:19 41:7 41:12 195:12 232:9 238:18 61:10 61:15 205:20 **intends** 107:10 **inputs** 49:13 143:7 70:22 141:13 interpretation 208:3 210:5 124:8 124:16 **intensive** 102:16 227:17 **intent** 120:13 interpreted 208:1 inside 123:18 120:14 intersected 94:23 insights 148:4 interest 12:20 interspersed 190:18 198:7 13:2 47:19 108:9 112:14 209:24 insists 67:3 intertwined 212:22 in-stack 75:9 28:1 28:2 interested 8:4 195:23 196:4 introduc 12:9 8:15 8:18 8:20 196:5 196:21 introduce 11:18 12:22 installed 171:2 139:25 148:12 14:16 74:13 installing 198:6 106:12 106:14 introduced 145:14 145:25 instance 75:24 21:16 162:1 206:15 138:6 185:14 introduction 12:9 interesting 74:18 instances introductory 80:5 92:20 142:19 144:6 198:20 93:6 114:21 185:3 **invented** 200:2 116:23 154:6 instantaneous 172:7 237:7 inventories 206:13 207:16 interface 134:13 135:1

inventory	38:9 41:18 93:15	119:22 126:22
134:15 134:16	108:10 136:17	132:14 140:23
136:11	219:4 237:20	140:24 145:7
Inversion 12:13	<pre>isolated 134:3</pre>	145:13 145:16
invoction	184:19	145:24 147:1
02.15	TSOBBOPTA 43.23	147:5 147:12
03.13	46.14 46.16	147:22 148:2
investigators	47:11 47:24	150:17 189:6
54:6	49:15 49:17 50:9	190:14 197:4
investor-owned	50:21	234:14
53 : 15	icotropia QE.1E	italics 16:12
invited 234:16	89:2	it'd 58:24
<pre>inviting 9:17</pre>	issuance 14:5	items 7:8
9:18	issue 7.13 7.21	iteration 122:2
<pre>involved 9:23</pre>	23:6 23:10 38:10	122:3
11:11 13:24	64:18 73:8	iterations 122:17
14:20 20:15	93:5 95:23	it's 6:21 6:23
28:24 53:17	96:1 96:8 103:14	9:6 11:8 15:4
132:17	111:11 111:13	17:3 17:19 18:15
involvement 13:20	117:4 121:9	18:15 18:16
42:19	130:16 133:4	18:21 18:22
<pre>involving 206:9</pre>	136:24 139:16	20:20 22:2
Irag 210:14	144:21 144:25	23:5 23:9 23:9
- 10.2	146.2 146.14	23:12 23:12 24:9
109.15 111.16	152.23 154.5	24:16 24:18
108.15 111.10	172:16 178:22	24:19 25:1 25:10
Irwin 108:13	184:1 184:2	26:1 26:9
108:20	184:8 197:12	27:17 27:20
Irwin-recommended	236:23	20:10 30:24 32:9
109:6	issued 14.13	33.18 36.4
ISC 84:6 84:22	237:7 237:13	38:7 38:9 40:2
84:22 84:23 85:1	icence (122, 712)	40:10 41:6 41:19
87:11 88:16 89:2	ISSUES 0:22 7:3	43:2 48:12 51:17
89:11 98:18	7.177.200.21	57:25 58:23
101:21 109:2	10.23 11.17	61:17 67:23 68:7
152:25 153:5	$12 \cdot 15$ $12 \cdot 18$	68:24 69:2
153:5 154:10	13:25 14:18 39:1	72:9 73:25
ISHD 112:25	51:4 53:18	75:6 76:9
island 80:2 80:12	55:4 59:16 59:20	79:22 82:10
80:16 81:12	60:2 64:14	82:10 82:12
109:20	69:8 69:20 76:11	82:19 84:19
ien!+ 07.16	79:20 91:12 97:8	89:11 94:10
1011°C 27:10	111:15 111:24	95:23 IUU:5
101:6 101:7	193:3 195:15	joke 170:17
---	--------------------------	--------------------------
101:14 101:14	195:17 198:4	Jones 174:23
101:17 102:16	198:15 204:19	174:24
102:19 103:14	206:18 207:8	Tecerb 15,10
103:20 107:23	207:9 209:21	Joseph 15:18
107:23 107:25	210:20 214:13	judgment 173:2
111:11 114:21	219:2 219:3	217:6
115:16 115:16	220:9 220:25	jump 20:25
117:11 119:23	221:1 221:11	119:5 223:4
120:1 120:3 120.4 123.5	224:17 224:18	jumped 71:24
120.4 123.5	223.22 237.7	
123.10 $124.0124.16$ 125.16	I've 5:19 6:19	Jumps 24:16
124.10 $123.10126.5$ 128.7	65:14 67:7	June 118:12 119:7
128:22 130:21	89:9 114:23	164:11
133:10 133:18	116:2 118:10	June's 94:11
134:3 134:4	12/:/ 153:6	justification
134:19 135:6	169.3 171.20	225:22 232:17
137:20 138:8	215.12 218.10	
138:9 138:10	213.12 210.10	
138:11 138:12		61:9 232:19
139:6 144:8	.Tames 119.21	Justin 228:9
144:16 148:17		228:11 228:16
149:16 149:23	Janet 8:11	235:14
150:13 153:15	Jeff 211:22	
153:23 155:7	Jeopardy 237:23	K
158:6 158:11	Tine 102.25	Kalisz 58:5 67:15
158:23 161:14	102.25	Kansas 113:9
162.10 103.23		122:10 210:22
164.15 164.24	Job 149:18 149:20	211:25
165:9 165:24	214:1	Kentucky 165:11
165:25 166:6	jobs 149:9	kev 17:5 17:5
166:8 166:8	Joe 12:9 13:6	99:22 140:7
166:11 168:2	28:16 28:17 43:9	147:13 148:2
169:17 169:21	52:1 53:2 53:8	206:21 208:23
170:11 170:14	54:6 55:5	keyboard $222 \cdot 17$
170:15 170:18	55:11 55:24 56:6	
171:3 172:1	56:20 56:21 65:8	kicking 152:8
172:4 172:7	77:25 206:1	kilometer 29:13
173:5 181:16	Joe's 12:10	30:1 32:24 34:11
181:1/ 181:18	John 108:13	34:12 36:8 36:24
102.24 102.22	108:20	64:8 64:24 83:13
102:24 103:22	inined 0.10	85:9 85:22 85:22
103.24 190:12 102.1 102.10		86:7 86:8 88:2
$\perp J \angle \bullet \perp \perp J \angle \bullet \perp 0$		95:12 104:17

100.02 101.0	110.12 110.14	115.10 154.0
109:23 161:8		115:10 154:9
166:4 206:8	119:17 119:17	154:13 154:18
207:8 211:24	121:11 122:7	154:22 155:8
kilometers 29:8	122:7 122:25	160:6 160:18
29:10 29:12	125:4 126:8	210:22 221:24
33:17 33:17 34:2	126:10 126:19	largely 75:8
35:17 36:1	knowledge 116:5	
42:1 64:10 64:14		larger 205:12
80.14 84.3	known 1/:3	largest 213:3
85.8 86.2 86.4	129:5 135:7	lact 1.6 1.7 6.19
86.10 86.15	150:17 200:5	
00.10 00.13	Knoxville 164:23	9:0 9:20 9:22
00:10 00:17 07:3		12:24 13:4
0/:0 0/:14	KOdak 163:5	15:2 15:7
88:1 88:22 89:12	Kumar 77:3	15:11 30:21
89:13 89:15		35:20 49:9 67:14
89:20 89:21	L	91:5 109:25
89:22 90:2	labeled 119:14	111:17 112:10
90:7 90:9		114:1 117:17
90:11 91:21	lack 14:6 42:6	118:3 119:4
92:15 94:16	111:23 145:11	120:9 122:3
94:24 95:6 95:17	186:15	126:7 133:8
96:23 103:23	Lagrangian 63:1	148:20 149:1
157:12 160:5	64:15 118:7	164:11 164:12
160:15 160:23	183:23	165:1 169:4
161:1 161:5		171:2 175:3
161:10 161:11	120 12	181:5 181:11
207:18 211:22	139:13	183:4 183:5
218:18	Lake 108:17	188:14 193:23
kinds 24.24 117.6	218:16	195:17 215:1
117.7 145.7	lakes 165.2	224:23 228:14
		228:15 235:25
Kingsport 163:8	land 45:8 47:18	1ato 15.3 15.5
164:13 164:21	55:12 55:14	
164:22 165:20	55:20 224:2	42.5 199.10
Kingston 164:22	224:6	later 12:16 33:25
know 21.17 74.6	Langrangian 197:6	56:17 66:11 92:5
KIIEW 21:17 74:0	197:8	175:19
Knipping 77:3	Tangwanthy	lateral 62:1 63:3
198:12 198:16		126:12
knock 220:6	140:2 140:2	laterally 62.2
knocking 225:10	laptop 57:14	latest 197.16
knot 121:10	large 24:7	
121:13 124:3	28:23 34:23 50:3	Latter 143:16
126:18	JI:4 63:3 77•19 94•17 98•3	launch 6:13
knots 86:11	109:20 110:19	layer 32:22 103:8

103:9 103:9	left-hand 35:14	level 4:8 21:22
103:13 103:13	leftovers 12:24	22:13 36:12
103:14 105:21	legacy 199:21	42:20 71:6
185:3 209:22 210:4 210:21	legitimate 72.2	/3:1 /3:/ 75:23 79:24
211:1 226:5		94:19 95:25 96:7
226:8	legs 171:18	96:19 103:21
lavering 33:16	leisure 204:19	104:6 104:7
lavers 210.19	205:3	106:6 120:13
1ayers 210.17	length 17:18 22:9	151:10 157:18
layout 1/8:1/	23:10 23:16	212:10 229:6
lead 68:15 133:12	23:25 24:4 24:12	levels 36:12
137:1 232:20	24.14 24.20	73:12 73:21
234:25	25:1 26:2 28:1	135:4 156:11
leading 15:21	28:3 28:4 28:7	leverage 235:11
22:21 58:3 211·21 228·18	99:8 178:20	liable 93:2 93:4
leads 61.10	lengths 17:17	Lieberman 215:19
74:9 96:6 146:11	<pre>lengthy 14:6</pre>	life 95:19
200:6 232:15	146:23	light 36:23
233:4	less 16:16	80:1 80:8
leaks 97:22	17:12 21:6 30:15	81:19 82:22
100:21 100:22	33:18 36:4	82:23 83:24
learned 121:8	36:7 47:22 47:24	94:12 96:9
155:1 190:19	48:16 49:1	120.5 130.21
learning 166:3	54:20 74:3	144:1 162:2
166:3	74:3 86:2 87:2	171:11 171:19
least 18:10 34:14	89:4 94:13	174:10
42:19 47:10	99:1 114:10	lighter 178:20
51:21 52:3 56:24	116:3 130:5	lighthouse
73:22 78:9	130:5 145:8 145:25 162:5	83:22 83:23
87:7 93:13 117:2	173:5 215:25	86:19 171:11
134:12 1/3:8	226:24 230:22	likelihood 130:13
	231:16	likelv 15:5
115.14 205.21	lesser 20:9	15:8 36:7
237:8	let's 4:7 5:19	69 : 19 176:20
Lebeis 236.18	57:13 76:20	178:22 183:2
236:18	89:21 91:14	183:7 183:13
led 154.9	95:14 103:19	likewise 68:13
201:22 202:1	154:5 173:7	231:12
212:9	10U:/ 213:10 216.3 235.20	limit 48:24
	210.3 233:20	49:2 49:3 64:8

64:11 64:24	152:5 152:11	57:23 59:17
90:12 185:25	152:14 152:17	65:16 66:12 67:1
204:9 214:7	158:25 159:7	71:14 72:14 76:6
limitation 105:25	159:7 176:24	82:3 82:9
106:1 108:12	202:19 206:14	82:11 82:12
177:4	207:14 207:16	82:13 89:9
limitations	208:8 223:22	93:8 93:22
48:7 60:3 81:8	223:23 223:23	106:23 107:21
83:16 107:14	221.23 232.2	124.6 126.21
110:12 110:13	linear 99:19	132.16 137.18
197:4 229:19	129:14 168:2	152:21 158:11
limited 7:4 7:5	lines 22:2	163:10 164:8
14:20 74:15	97:18 99:8	164:13 166:13
82:20 90:2 107:3	193:20 207:12	170:17 172:4
108:18 153:11	207:13	172:5 184:9
173:17 198:25	linked 203:24	199:4 202:1
limiting 45:6	linking 203:25	215:8 220:3
46:19 132:21	- Linux 202.18	222:22 223:24
188:7	202.18	224:22 225:18
limits 69:23		live 91:15
73:16 73:17	$\begin{array}{c} \textbf{Iiquid} 44:5 \\ \textbf{A} \cdot \textbf{7} \textbf{A} \in \cdot 12 \textbf{A} \in \cdot 19 \end{array}$	living 171:12
73:18 143:4	44:7 43:13 40:10	Llovd 12.10 12.14
230:4 230:23	list 17:11	15:14 15:15
line 19:19	52:10 60:11	28:14
19:22 19:24	107:9 145:8	load 191.12
20:11 20:12	223:4 223:10	191.18 191.24
20:24 21:5		230.18
21:5 21:12 25:10	listed 10:25 11:3	
25:14 36:13	13:3 97:10 115:3	10ads 191:21
36:15 45:22 46:5	231:7	lobes 77:24 78:9
50:16 50:17 64:7	listen 4:12	local 29:5
66:15 97:9 98:11	listening 60:23	66:20 92:12
98:13 98:24	literature	147:7 191:5
99.23 99.3	51:12 201:21	198:8 233:12
99:17 99:18	little 4.5 4.12	234:17
99:22 100:2	4:14 5:1 6:11	locate 169:9
100:6 101:23	8:10 9:11 10:1	located 99:13
101:23 102:13	12:5 18:21 19:11	157:9 157:12
102:15 106:22	22:16 23:5	157:13 169:5
107:1 107:8	23:9 30:2	location 40:9
115:18 128:21	33:25 46:17	40:15 122:10
128:21 137:5	48:25 49:1 50:15	157:8 170:10
143:19 150:21	52:8 52:9	170:15 193:17

Г

198:4 223:9	50:12 58:16	104:5 104:7
locations 114:9	58:22 60:20	104:14 105:20
163.7	61:16 63:8	106:24 107:4
	64:8 64:14	114:20 117:4
Logan's 185:17	65:4 66:23	118:20 119:12
logistics 5:2	67:4 75:15 75:16	120:23 124:21
long 11:2 17:16	76:12 92:7 97:14	126:23 143:2
20:21 23:12	101:3 112:12	144:15 145:22
24:21 25:10	112:18 114:5	150:19 151:6
78:18 78:19	114:7 117:19	152:14 186:13
78:20 97:18	125:17 125:18	186:19 186:22
107:17 107:22	128:24 135:3	186:24 188:6
108:8 150:4	135:7 138:12	189:6 194:9
165:12 165:13	138:15 139:9	194:22 196:23
166:23 167:4	144:15 145:10	205:9 214:21
169:21 213:20	151:17 162:1	214:22 223:11
213:21 221:15	164:3 165:10	230:13 232:14
229:4 237:18	166:1 175:2	232:16 233:6
237:25	175:11 198:2	lower 24:23 31:14
longer 58.14	198:14 205:23	60:19 64:2
116.8 151.4	209:10 210:21	70:3 73:13
176.8 176.16	211:19 212:17	75:7 75:16
176.19 231.9	214:9 215:10	88:6 112:17
	225:11 225:20	116:15 139:5
Long-range 13:5	225:24 225:25	160:8 187:21
66:24 206:7	226:16 227:21	193:25 194:1
Longview 163:8	22/:24	195:14 195:18
214:13	lots 33:14 46:1	226:12 226:21
loop 72:12	loud 151:22	227:6 227:7
	10000 174.11	227:7 227:7
10056 81:11	227.13	lowering 226:14
82:3 82:12 83:0	-	227:10
lose 23:1 149:4	low 18:15 30:15	lowest 30:12
loss 105:14	31:15 47:16	47:14 92:24 93:7
lost 119.16	59:15 60:8 60:18	121:5
119.25 120.15	60:21 61:7 61:17	
123.3	63:23 67:9 72:11	IUCKILY 169:18
	/5:12 //:16	lucky 139:9
lot 7:14 7:23	77:22 77:22	lunch 117:13
8:16 8:23	79:24 80:5 82:11	127:2 127:4
21:18 21:18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220:4
32:11 32:20	92.1 93.11 $94.1091.21$ 95.15	1,1,21,22, 161.0
33:13 33:22 42:5	95.21 95.25 06.5	LUAULY 104:2
43:1 45:2	96.7 96.8 96.9	
4/:15 4/:19	103.20 104.1	<u> </u>
	TO2.20 TO4.1	

machine 202:21	manuals 202:23
mack 98:7	Manuel 153:5
MACS 206:19 MACTs 68:14 MADRID 200:10	<pre>manufacturing 149:17 150:9 163:7</pre>
<pre>magenta 158:16 magnify 54:17 magnitude 4:8 26:20 26:23 </pre>	<pre>map 91:23 181:10 March 4:3 127:9 171:6 236:22 237:4 marigold 123:15</pre>
<pre>magnitudes 80:20 main 12:2 117:25 151:8 223:5 mainly 70:4</pre>	<pre>mark 11:1 60:7 148:11 148:14 156:1 180:8 180:17 186:11 Marko 103:2</pre>
major 54:2 63:14 66:15 68:10 74:24 99:11 163:7 229:13	Martin 218:16 Maryland 190:11 191:3 191:8 mask 135:22
<pre>majority 230:17 MALE 168:25 manage 13:13 managed 58:4</pre>	138:12 masking 137:9 mass 24:17 38:21 38:22 38:25
Management 9:15 117:10 118:12 119:7 203:16 manager 198:17	Massachusetts 15:16 massive 100:23 match 36:25
<pre>managers 45:8 47:19 55:12 55:14 55:20 mandatory 14:3</pre>	41:9 107:22 107:25 matching 48:12 136:4 137:16
Manhattan 122:10 manipulate 227:18	<pre>material 29:2 32:3 mathematical</pre>
<pre>manner 149:9 229:2 Manual 153:5 153:6</pre>	20:23 168:8 170:6 matter 101:4 124:18 124:19

200:11 matters 32:20 33:22 **max** 87:15 88:12 **maximize** 221:13 **maximum** 19:8 20:18 21:6 21:22 22:13 24:16 24:19 69:23 87:24 134:11 158:7 182:9 182:12 216:17 219:22 219:25 224:3 229:25 **may** 6:8 54:13 68:15 69:18 74:15 76:6 83:6 87:25 90:11 93:20 93:21 94:11 105:20 107:5 107:10 111:14 111:21 120:5 135:24 145:25 149:10 153:3 153:13 155:22 155:22 159:22 172:13 202:6 203:6 203:12 219:9 221:20 224:15 224:21 226:5 226:14 229:17 237:25 **maybe** 7:24 8:5 13:24 15:11 25:16 25:18 33:18 36:4 39:16 45:8 49:19 50:10 59:3 59:6 60:25 72:23 82:3 82:14 95:22 96:8 96:16 96:19 117:23 123:10 126:4 147:9

150:5 151:3	104:10 104:10	mechanism 131:11
151:14 151:23	116:4 142:12	medical 52:5
152:19 173:17	145:12 205:15	medium 181.19
221:25 223:1	208:18 228:2	182.18
224:5 224:10	meantime 57:6	
220:24 228:2	meanwhile	meet 128:23 214:7
	131:18 131:18	210:10 222:25
McCabe 8:11	measure 99:25	meeting 10:9
McCarthy 8:20	128:10 135:17	11:14 15:3
MCHEM=6 48:10	135:18 157:16	48:3 55:3
McNally 210:13	182:19 190:25	65.14 65.18
- McOueen 211.23	191:2 207:20	111:17 124:15
MD 160.2	237:1	147:6 209:16
169:2	measured 25:5	233:17
MDMT 169:2	25:8 26:10	meetings 6:16
Meadow 166:16	37:1 129:21	8:13 8:18 10:8
171:17	134:/ 141:21	10:19 11:13
mean 6:3 6:4 28:1	182:10 182:10	147:13 234:11
32:11 36:6 42:20	193.6 193.15	meets 124:9
57:3 100:23	195.2 195.3	megawatt 156.25
110:21 120:11	195:20 195:22	
122:9 122:16	196:13 196:14	member 10:9
123:16 124:10	210:21 211:18	155:22
124:24 125:15	measurement	members 10:6
126:3 128:3	174:17 184:11	10:25 13:15
135:1 135:12		53:20 57:20 58:7
138:8 153:5		140:7 142:4
210.25 211.1	56.6 128.11	membership
211.2 211.1	136:17 172:23	11:17 13:2
224:18 235:16	173:8 173:10	memo 5:25 27:15
magndar 79.2 79.5	173:12 229:10	121:8 125:16
79.22 90.18	measures 33.20	236:22
161.25 221.18	37:12 43:6	memorandum
moondoning	43:7 75:21	16:21 16:25
$104 \cdot 7 104 \cdot 20$	191:17 206:21	memory 77:7
105.1	208:14 209:8	- memos 179.4
meaning 128.1	measuring 38:19	
	49 : 6	
meaningful 142:12	mechanical	19.8 53.9 43:3 49.8 53.9 51.6
142:16 144:2	94:12 94:14	55:24 74.21
14/ : 8	94:22 186:20	107:4 138:24
means 39:15		

152:4 206:23	117:20 118:1	103:22 104:2
mentioned 5:20	118:3 121:16	105:9 105:10
14:25 30:20	meteorological	110:23 111:2
37:19 40:6 52:19	37:4 39:14 63:19	115:19 130:17
57:18 60:5	64:4 66:3	130:19 153:20
60:9 61:2 65:5	77:10 79:21	153:20 153:21
107:10 108:2	84:10 89:18	173:9 175:22
111:16 119:19	102:17 110:13	175:22 175:23
119:21 121:22	112:5 116:13	176:10 176:11
125:19 126:12	120:8 120:15	176:14 176:16
177:3 192:24	131:3 132:25	178:1 178:5
197:14 200:11	156:9 183:21	179:2 185:23
215:5 215:8	184:12 186:5	186:1 186:21
215:22 217:20	187:2 187:17	188:8 205:19
218:11 220:4	188:1 188:18	211:2 211:4
mentioning 117:9	189:5 189:13	212:20 212:21
3 1 0 -	194:4 207:14	method 45:6
merge /9:/	209:18 209:23	60:7 63:22 63:25
/9:14 1//:16	211:20 233:5	100:4 124:17
merit 30:3 30:4	meteorology	124:20 129:13
30:5 30:12 32:8	9:16 34:1	132:21 212:10
MESOPUFF 47:23	87:13 95:4 103:6	216:6 219:14
47:24 49:2 49:2	109:10 143:13	methodology
mesoscale 206:9	156:24 158:9	75:1 220:12
207:20	158:10 159:14	221:19
	159:20 161:15	methods 67:8
message /4:5	Meteorology's	206:3 210:3
met 21:25 34:13	103:24	231:17
54:3 55:11 55:20	meter 38:7 66:9	Mezzo 211:17
85:11 92:2	85:5 85:20	213:12
121:21 124:25	87:8 114:10	mic 205.1 235.19
168.24 169.2	115:4 115:4	
169.6 169.16	115:24 119:9	Michael 97:4
170.10 173.23	123:3 129:20	micrograms 71:7
178.7 178.9	169:4 178:15	71:8 129:19
183:25 190:16	205:14 205:16	178:12 182:13
197:2 197:15	207:23 211:2	microphone 4:22
198:6 210:8	213:3	5:9 222:15
213:1 218:25	meters 18:16	222:19 238:5
219:1 219:3	18:16 18:20	microphones
223:10 224:8	18:23 19:3 36:11	236.15
224:15 224:18	36:13 92:13	
metals 97:13	92:22 94:15	midale 23:4
metdata 112.9	96:11 100:20	78.2 87.19 87.23

297

122:17 165:8	155:22	mixed 132:22
208:6 208:9	Minneapolis 113:8	mixing 63:5 66:10
209:5	117:17	66:12 94:12
middles 230:10	Minnesota 125:17	94:15 94:22
Midwest 192:13	minor 128:25	95:21 96:5 96:12
MIFF 35:5 174:3	minua 40.11 40.12	96:14 96:15
mightier 193.19	$\begin{array}{c} \text{minus} & 40.11 & 40.12 \\ 127 \cdot 24 & 157 \cdot 19 \end{array}$	105:4 105:15
Wike 012 05	213:7 217:1	212:18 213:6
MIKE 213:25	minuto 53.0 55.25	MM5 30.1 3/.11
213:23 230:10	$76 \cdot 20$ 77 · 2 78 · 15	34.12 35.4
mile 80:2 80:12	81:15 81:21	35:4 35:16 35:25
80:15 81:12	82:14 83:5	36:8 36:13 36:18
154:1	83:7 113:3 113:3	36:22 36:24
miles 153:25	119:20 120:2	36:25 39:17 40:4
154:1 166:1	150:20 156:17	40:7 40:9
224:10	156:25 158:1	40:11 40:15
military 67:3	186:9 235:18	40:17 40:17
206:15 206:24	minutes 44:23	40:24 41:3 41:13 42.1 44.5
mill 72:1	49:9 58:10 67:21	45.15 46.18
million 49:22	78:18 78:19	191:4 191:5
50:3 169:2	78:23 78:24 78:25 79:6	198:1 210:10
169:16 170:19	82:4 82:10 85:20	210:14 211:20
192:18 224:15	100:22 148:19	211:21 211:24
millions 50:18	163:16 174:20	212:16 212:21
mills 68:19	180:21	MMD 184:12
69:3 69:13 71:17	mired 233:25	MMIF 29:25
72:9	misaligned 38.4	33:23 39:8 39:22
mind 133:5	mica 22.10	39:24 40:7
134:6 149:6	miss 32:10 33.10 36.7	40:7 40:8
162:22		40:11 40:18 41:2
Mine 153:23	missed 153:3	41:4 1/4:1 1/4:1
mineral 224:5	missing 36:20	197:22
minimal 130:14	120:8 122:21	mobile 196.17
minimize 138:17	194:16	modo 22.4 40.2
225:9	mission 103.4	$\begin{array}{c} \text{IIIOGE} 55:4 \ 40:5 \\ 41 \cdot 9 \ 87 \cdot 12 \end{array}$
minimum 59.23	152.7	113:12 131:21
61:8 66:8 205:13	mitigation 101.17	model 12.12 13.11
213:2 216:17		16:10 16:13
mining 149:16	Mitt 111:5	16:16 16:24
151:8 151:9	mix 139:5	16:25 17:6 17:13
		18:5 18:9

18:24 18:25	105:14 106:3	200:3 200:9
21:13 25:2 25:25	106:13 111:5	200:14 200:15
26:21 27:15 28:4	114:5 114:17	200:17 200:20
31:3 31:21 31:24	117:1 118:6	200:24 201:5
32:21 32:23 33:1	118:7 118:7	201:23 202:4
33:3 33:4 36:3	118:7 122:9	203:3 203:7
36:5 38:14 39:14	127:24 128:16	203:9 203:10
41:21 41:22	129:22 130:8	203:16 203:17
41:23 41:24	130:9 130:11	203:23 204:1
42:13 42:19	130:18 130:20	204:2 204:4
42:22 43:11	130:23 130:24	206:24 208:2
44:12 45:3	132:14 132:19	208:7 208:16
46:4 49:11 49:18	133:8 136:1	209:6 209:12
53:1 53:11 53:25	137:12 137:14	210:5 210:6
54:3 54:10 54:17	141:9 141:11	210:8 213:1
54:20 55:5 55:16	141:16 141:18	223:6 223:14
55:16 56:2 56:15	141:23 143:23	224:3 224:13
56:23 57:2 57:11	143:25 146:8	225:1 225:20
60:20 61:24 62:5	146:21 151:11	226:2 227:15
62:21 62:25 63:1	152:25 153:4	227:19 229:18
64:15 65:24	157:8 157:21	229:23 230:6
66:21 67:2 67:11	158:14 159:5	230:16 231:3
69:24 72:3 73:13	159:12 160:24	231:6 231:9
73:22 76:11	161:2 161:17	231:10 231:13
78:13 80:21 81:3	161:18 162:4	231:15 231:19
81:16 81:17	167:9 167:24	231:22 232:5
81:20 81:22 82:1	168:1 168:2	232:8 232:20
82:11 82:13	168:8 168:10	232:20 232:22
82:15 83:11	169:12 171:9	233:5 233:8
83:17 83:17 84:7	172:17 175:13	233:20 234:1
84:9 84:10 85:10	176:25 177:1	234:3 234:4
86:19 86:22	177:21 178:1	235:3 235:5
87:10 88:17	179:25 181:7	235:6 235:12
88:17 88:24	183:14 183:14	modeled 19:23
88:25 89:10	183:20 183:22	19:25 21:13
89:10 90:8 90:13	183:24 184:7	21:15 39:5 45:16
90:23 91:6	184:9 184:12	71:22 72:16
91:9 91:14	185:14 186:12	72:24 75:13 93:9
93:1 93:2 93:3	187:1 188:2	93:10 95:2
93:12 93:16	188:10 188:18	95:4 111:18
93:24 94:5 94:20	189:4 192:4	115:21 136:16
96:17 98:1	192:7 192:21	136:21 142:21
98:1 98:14 98:17	196:21 197:7	143:5 156:23
98:22 99:14	19/:9 198:8	156:25 157:7
99:14 104:18	198:14 199:12	159:4 161:20
104:23 105:2	200:1 200:2	167:13 193:11

193:13 208:16	156:10 156:15	89:8 98:8 107:15
225:4 226:12	156:21 157:2	127:17 128:15
229:20 231:24	159:13 159:17	130:12 131:20
232:16	159:21 159:25	131:23 136:6
modeler 55.5	160:2 160:11	140:6 140:11
162.22 162.23	160:11 160:22	140:13 140:17
167.10 167.23	161:23 162:7	141:2 141:4
107.10 107.23	162:24 163:2	141:5 141:20
modelers 113:8	166:3 166:21	142:2 142:5
114:24 147:6	169:13 170:18	142:11 142:13
166:21 234:18	172:12 173:3	142:15 143:11
modeling 9:18	175:7 176:7	143:12 144:13
10:2 10:3 11:5	177:24 180:24	145:3 146:5
11:12 11:19	181:8 181:15	146:25 147:19
11:20 12:2	183:16 189:2	148:3 152:17
12:6 12:7	191:6 191:13	157:24 159:2
12:16 14:4	192:9 192:11	164:4 172:10
14:5 15:1	199:8 211:24	184:24 185:7
26:17 28:11	224:11 227:19	185:12 190:5
37:14 42:14	227:20 228:21	190:14 191:1
44:25 51:14	229:14 230:10	199:25 204:6
54:24 55:3	230:12 232:8	205:24 207:3
55:4 55:19 57:10	233:17 233:19	208:3 208:11
58:1 58:16	233:20 233:24	208:13 209:4
59:8 59:25	234:3 234:11	209:18 210:4
60:1 63:7	234:13 234:15	210:14 210:24
68:21 69:5	235:10 235:11	211:9 211:10
69:8 69:20	models 26:13	211:20 212:13
71:3 91:10 91:13	28:25 29:17	212:14 225:20
97:8 97:10	30:13 30:16	227:14 227:20
98:9 99:23	31:16 33:15 36:2	228:25 229:6
101:18 102:8	40:20 41:20	229:8 231:1
102:11 102:14	42:10 42:17	231:5 233:16
106:22 109:9	43:24 50:1 51:13	233:24 234:22
114:23 114:25	54:22 57:22	234:25
132:1 140:12	58:18 60:16	model's 42:20
140:23 141:4	62 : 11 62 : 17	141:10 142:24
141:6 142:8	63:11 64:4 64:24	Models 4.2 228.25
143:21 143:22	65:5 65:13	
143:24 145:6	66:3 66:6 67:4	modern 184:4
145:7 145:13	69:2 75:19 76:11	191:1 193:14
145:1/ 147:2	82:2 82:7	modes 113:11
14/:5 14/:12	83:16 83:18	229:10
14/:14 14/:16	83:21 84:5 84:12	modification
14/:2U 14/:22	84:25 85:3	106:10 231:10
14/:23 156:6	87:9 87:12	

214:23 215:2 216:3 216:13 216:20 218:18 218:19 218:23 219:13 monitored 93:3 96:21 136:15 141:19 179:25 192:5 221:14	<pre>morning 5:2 5:3 6:18 8:13 9:13 15:14 28:17 52:2 52:15 56:21 67:18 67:23 76:18 76:24 112:3 127:1 148:17 178:22 186:4 186:18 Morris 203:18</pre>
monitoring 58:15 58:20 59:25 67:11 91:7 91:13 137:20 158:20 168:16 182:10 183:17 224:9 225:2 229:16	<pre>mostly 15:23 17:9 mountain 157:17 157:17 165:22 170:12 171:10 171:13 171:14 mountains 166:7 207:0 207:17</pre>
<pre>monitors 44:20 44:21 66:20 91:14 91:22 91:24 92:11 93:25 94:2 97:17 111:19 111:21 129:9 138:25 157:11 157:18 158:22 172:8 193:6 193:7 193:8 193:16 220:13</pre>	Mountaintop 157:14 movable 100:25 move 56:21 69:8 139:16 171:22 176:13 moved 62:15 moving 6:5 60:15 65:12 70:2
<pre>monitor's 45:1 163:23 monologue 67:23 Monte 49:21 64:21 Monterey 92:9 month 59:2 217:12</pre>	97:1 112:6 120:19 120:25 144:7 Mueller 156:3 156:4 156:4 Mueller's 172:16 multicolor 189:24
monthly 195:9 195:10 months 9:20 117:24 175:19 195:8 198:21 201:6 203:2 204:18 211:14	<pre>multiple 39:12 77:24 79:5 91:15 99:5 102:15 129:8 202:20 220:13 multitude 129:21 munitions 210:16</pre>

modifications 142:13 143:7 187:16 230:25 231:3 235:4 235:7 modified 35:8 45:5 67:1 105:21 142:15 143:4 **module** 44:10 45:13 55:1 55:7 107:8 200:3 **modules** 54:19 146:16 200:16 200:17 201:7 201:11 **moment** 70:10 199:11 **moments** 154:23 **money** 84:15 131:10 170:16 179:6 monitor 25:8 25:14 92:15 92:21 93:6 93:18 109:22 110:6 133:25 134:1 136:14 139:3 141:21 157:13 161:13 163:19 163:20 164:3 164:9 164:10 166:15 166:15 166:16 166:17 166:22 167:3 167:4 167:5 167:12 167:17 169:7 169:7 169:9 170:4 170:22 170:23 170:23 170:24 183:9 214:12 214:12 214:19

235:3

mustard 81:15	narrow 19:5	network 91:7
MVEP 230:22	20:1 27:22	207:21 211:17
myriad 100:12	185:24	neutrally 152:14
100:18	narrower 20:8	Nevada 206:12
myself 58:3	Natick 15:15	207:8
205:25	National 56:8	newer 54:23 56:15
	121:20 155:21	newest 106:13
N	157:5 197:18	Newman 213.25
NOY 128:10	<pre>nationwide 185:1</pre>	
NAAQS 68:20 71:12	natural 128:18	news 237:9
74:2 74:5 74:7	190:12 191:8	nice 58:25 107:12
91:10 107:6	nature 183:7	123:22 137:24
110:1 129:11	184:18	164:24 165:21
133:3 133:11 133.14 134.2	Navy 208:6	203:20
135:25 135:25	NCAA 162.17	nicely 115.17
136:3 136:6	NCAR 102.17	124.6 165.8
136:10 136:10	NCEP 212:9	
136:14 136:17	nearby 63:5 91:20	132.10 130.20
136:23 137:1	215:2 224:4	
137:12 137:14	nearest 62:9	night 4:6 4:7
13/:1/ 146:12	<pre>near-field 34:5</pre>	105.21 106.9
162.11 175.2	35:21	114.1 212.12
175.10 175.25	nearly 12.8	212.25 213.4
177.18 178.3	193.10 193.12	213:7
181:1 181:3		nighttime 05.21
181:23 181:24	necessarily /0:19	103·24 104·4
181:24 182:3	73:19 223:13	103.24 104.4 104.12 104.16
182:14 183:10	necessary 41:8	104:16 105:6
184:1 184:23	179:11 235:5	
191:3 192:17	necessitates	122.22
193:6 193:13	229:22	
193:21 193:22	neck-of-the-woods	nineties 112:7
193:25 193:25	164:21	112:9
194:2 195:4	Needless 164:19	ninety 25:19
195:11 223:1		25:19 85:25
229:13 229:10	150.9 152.1	110:1
230:24	130.0 132.1	ninety-eighth
NADD 102.3 102.5	neither 48:21	87:16
	140:22	ninety-ninth
name's 52:16	Nelson 210:1	87:16 87:17
Naresh 77:3	nest 211:25	nitrate 44:24

45:24 45:25 46:14 47:16 48:10 48:21 49:5 50:21 51:5 54:5 54:10 54:14 57:9 146:10 193:2 nitrates 54:8 55:2 193:3 **nitric** 48:9 193:1 nitrogen 44:21 191:24 **NMN** 211:23 211:25 **No2** 4:9 8:17 8:21 59:14 60:6 63:9 68:3 68:8 68:12 70:12 74:19 75:4 75:9 75:19 76:11 97:25 125:22 128:9 128:10 128:11 128:12 128:13 129:20 132:14 132:19 132:23 132:23 133:2 133:5 133:5 133:6 133:8 133:14 133:15 135:5 135:18 136:1 136:5 136:15 136:16 136:21 136:24 137:1 137:3 137:4 137:14 137:14 137:16 137:17 138:22 138:22 139:16 191:3 193:22 193:25 230:3 236:25 237:18 **NOAA** 113:1 113:4 **nobody** 171:12

no-ice 124:1 **non** 84:8 85:1 86:21 120:3 183:13 nonattainment 189:11 189:17 non-attainment 164:11 183:6 183:16 **non-BLP** 108:11 110:10 non-buoyant 85:5 98:2 non-city-state 84:25 88:17 **none** 46:21 129:23 217:5 nonetheless 11:23 nonexistent 187:22 non-quideline 51:22 **non-model** 159:1 non-obtainment 184:20 non-precipitating 45:14 non-preferred 231:22 non-straight 86:6 non-threshold 119:11 **noon** 127:2 **nor** 146:22 151:1 230:1 **normal** 135:13 **normally** 29:17 **north** 18:7 85:14 91:7 113:6

117:3 162:13 200:18 207:11 northeast 158:14 164:22 166:13 171:8 **northern** 45:3 northwestern 111:18 **note** 71:21 99:18 102:12 128:9 163:13 215:12 **noted** 37:4 82:6 231:19 **notes** 198:20 noteworthy 175:9 **nothing** 125:14 135:11 notice 8:10 129:17 143:3 143:20 208:25 231:4 232:1 233:9 235:7 **noting** 73:25 November 55:8 56:9 117:18 **NOx** 48:9 54:4 54:14 68:16 75:9 nuclear 29:2 29:3 197:20 numerous 140:8 **nutrient** 191:12 191:18 191:21 **NWS** 105:12 112:24 NWS-84 37:22 **NX** 40:10 40:11 40:11 **NY** 40:12

	126:5 132:24	oh 63:12 87:25
	173:8 176:1	106:17 110:9
09292 177:23	1//:5 180:4	112:18 112:22
OA 44:11	210:21 222.0	12/:/138:/
Oak 61:6	occur 40:16	174.25 104.17
OAQPS 11:14 62:19	139:17 141:14	
237:19	146:23 158:15	Onio 115:9
OAR 8:12 8:20	100.17 221.10	oil 72:7 135:6
objective 156.13	occurred 141:13	135:9 195:5
	203.10	215:14 215:15
objectives 10:14	occurring 61:18	215:10 215:21
observation	100:16 160:17	akar 7.15 20.17
30:7 45:24 63:20	ocean 211:7	31.17 33.6 35.25
161:9	o'clock 127:7	36:1 37:2
observations	204:25	37:19 41:14 43:9
25:14 34:17	October 6:10	45:22 50:25
34:25 46:12	11:21 29:23	51:24 52:12
40:25 47:1 48:12	odd 115:16	57:17 82:5 83:10
$111 \cdot 20 136 \cdot 2$	Oddly 114.16	91:4 91:5 102:21
136:6 138:9	116:20	110:9 110:16
156:19 157:4	offor 4.15 4.22	115:23 116:5
157:25 160:21	22.10 42.10	119.13 121.21
160:23 161:6	52.12 68.15	127:5 127:10
196:19 209:19	70:16 173:24	136:14 139:22
obstacle 20:22	183:3 235:25	148:11 151:6
145:10	offered 55:16	158:4 158:18
obstacles 96:13		163:3 163:16
145:9	52.23 162.6	165:13 169:23
obtain 168:4	52.25 102.0	180:11 198:10
173:8 199:21	offers 101:21	213:17 219:6
obtained 29:22	office 47:22	220.25 222.20
obvious 98.4	offices 62:14	230:25 237:23
223:21	official 5:6 6:1	Oklahoma 62:22
obviouslv 59:15	officially	210:22 211:17
68:3 68:9 69:9	236:6 236:8	211 : 25
69:10 69:13	238:19	OLAD 206:13
70:20 71:13 73:4	offset 218:20	206:14 207:16
73:14 74:21	218:22	208:11 208:16
75:20 77:16	off-tape 100:14	208:20
79:20 80:21 83:8	oftentimes 101.2	old 30:23 37:8
83:21 87:3 91:12	OTCENCTINES TOT:2	45:7 45:23 45:23

46:4 47:4	ongoing 179:8	142:22 144:2
48:11 48:16	on-paper 69:22	148:5 234:10
48:19 49:1	on-site 91:22	235:25
50.19 51.8 73.17	168:21 168:23	opposed 14:2 20:6
74:7 193:8	168:24 169:5	101:21 129:6
193:17 193:17	173:23 224:14	129:8
196:8 211:10	onto 95:14 100:24	opposite 64:3
older 165:9	opacities 101:10	opt 89:15
199:22	opacity 101:10	optimal 172:25
OLM 75:6 133:23	open 63:20	optimistic
191:2 195:16	103:4 147:19	68:25 69:21 70:3
195:18 195:22	153:2 153:10	71:5 71:9
196:3 196:20	203:3 203:8	optimize 175:20
OMEGA 210:14	205:1 221:3	optimized 35:11
omit 230:16	224:1 235:10	35:21
one-day 104:19	235:16 235:19	option 102:2
one-hour 87:15	opening 67:22	172:14 176:12
156:7 156:11	opening 07.22	189:25 195:6
158:7 160:2	open-mic 4:18	197:17 200:15
175:2 175:18	operate 140:8	optional 153:9
175:25 177:24	140:21 230:8	options 39:11
179:16 181:1	230:18	39:13 167:20
181:3 183:10	operated 231:7	173:19 231:7
214.8 221.14	operating	231:9
222:5 225:1	134:14 163:20	orange 215:14
229:12 229:15	215:18 237:3	Orangeburg 113:7
229:21 236:25	operation 151:9	oranges 158:16
one-minute 216:15	189:19	order 7.11
216:17 216:24	operationally	26:20 26:23
217:10 218:2	135:3	48:24 74:22
218:4	operations 68:9	103:3 139:5
ones 7:9 11:7	69:15 70:1	147:11 155:19
72:20 82:24	opinion 13.19	175:16 195:4
92:16 120:25		202:5 204:18
188:21 224:1	opportunities	221:17
224:13 225:13	68:15 14/:12 23/.10	ordinance 223:12
220:3		Oregon 85:13 86:7
one's 165:7	6.18 67.25 70.24	86:20 87:1 87:19
one-to-one 50:16	71:18 83:7 91:17	organic 44:10
one-year 19:7	142:12 142:17	101:4

213:2

44:4 78:21

90:14 109:4

177:10 187:7

79:4 79:8

organization 11:9 orientation 85:12 101:25 **oriented** 148:25 149:1 origin 51:10 199:4 original 35:7 35:13 35:14 41:3 132:17 159:19 177:24 223:17 originally 61:11 74:1 139:7 162:12 176:18 originating 153:2 **OTAG** 210:11 **others** 4:21 7:25 42:15 46:9 82:24 125:23 140:25 202:9 211:16 211:17 212:15 222:23 236:1 otherwise 15:10 57:3 79:22 ought 63:14 64:25 65:21 65:22 172:17 ours 71:4 162:1 173:18 ourselves 69:16 outcome 183:2 **outcomes** 156:11 177:21 **outdated** 229:11 **outline** 15:19 178:20 **outlook** 69:1 69:18 70:12 **output** 41:4

outputs 72:25 210:8 **outside** 17:14 144:12 145:2 193:18 outstanding 126:25 oven 98:19 100:11 100:13 100:21 100:23 100:24 103:13 103:14 ovens 97:22 overall 73:13 82:5 82:9 94:1 106:1 167:25 170:9 184:17 199:3 226:22 232:20 overemphasize 37:15 overestimate 54:13 159:8 161:18 overestimated 161:6 overestimates 133:13 161:20 overestimating 161:2 overlap 30:6 33:22 38:4 38:19 225:3 overlapping 173:11 222:3 over-predict 25:15 140:17

305 144:14 over-predicted 159:12 196:6 over-predicting 25:17 46:13 47:5 58:19 93:13 110:5 133:15 152:1 overprediction 46:2 47:24 over-prediction 55:2 81:20 88:24 94:3 126:23 128:15 130:3 130:4 136:20 136:24 overpredictions 26:7 26:8 overpredictions 16:1 61:6 64:19 88:25 89:11 235:1 over-predicts 54:10 130:9 232:14 **overstate** 137:17 overstated 76:7 137:15 overstates 138:22 overview 25:9 43:20 57:25 199:5 **owned** 53:16 **oxygen** 97:16 ozone 44:9 132:21 132:22 133:1 133:25 134:1 135:10 138:24 139:5 183:12 194:2 197:2

Ρ **p.m** 29:5 **pace** 172:4 package 28:10 packed 5:14 38:17 page 148:23 149:7 149:14 **Paine** 58:4 60:8 61:1 64:20 76:25 77:1 83:10 91:5 106:21 126:12 156:16 163:14 167:10 168:19 172:6 172:6 186:3 **Paine's** 151:13 **paint** 68:23 paired 16:7 136:16 pairing 136:3 137:14 224:24 **Palaau** 135:6 **Palace** 169:22 **Palm** 103:18 **panacea** 159:22 161:15 pancake 61:10 62:3 78:2 210:18 **Panel** 8:13 Pankratz 103:3 **paper** 20:17 22:7 22:10 45:21 48:22 68:2 68:18 69:23 70:4 94:11 105:22 105:23 117:9 117:24 121:15 124:12 209:11 210:1 210:1 213:9

213:11 **papers** 10:19 15:12 29:18 43:4 209:12 paradigm 161:23 parallel 99:5 99:8 106:12 169:6 200:18 parameter 22:9 28:3 28:7 99:23 99:23 100:5 100:8 133:3 parameterization 133:11 133:12 138:16 138:18 172:21 parameterizing 138:15 parameters 31:21 32:14 93:21 94:4 99:24 101:24 103:5 103:20 118:1 121:17 124:25 185:13 185:13 186:5 187:3 187:17 188:1 189:7 189:13 190:2 210:21 223:7 **parapet** 225:16 parcels 85:21 85:24 86:9 87:7 90:9 **park** 170:13 **Parks** 56:8 **parsed** 129:15 **partial** 90:18 participate 10:11 10:20 76:15

306 234:17 participating 11:18 participation 15:8 147:8 238:12 particle 63:1 particles 54:5 particular 10:24 15:9 28:20 29:2 29:4 32:17 38:10 44:24 47:6 54:10 92:14 92:21 143:9 150:18 150:22 150:22 152:9 153:2 158:11 159:10 159:19 159:20 161:17 187:24 198:3 205:22 particularly 71:4 100:3 144:7 160:14 181:8 193:2 233:6 particulate 45:25 57:8 68:16 101:4 200:11 **parties** 13:17 13:21 **partner** 171:19 **partners** 233:19 partnership 147:25 **pass** 34:2 40:17 124:21 128:2 128:4 175:17 207:6 227:19 227:19 227:19 **passed** 6:3 40:4

passing 40:14

126:1 176:8	27:14 131:24	50:11 50:21 60:1
176:9 176:10	peering 37.15	74:3 75:12 75:13
178:1		79:11 81:24
pass-through	peer-reviewed	81:25 82:1
39.17 10.3 10.22	51:12	85:7 85:7
/1.9	pending 16:20	85:25 86:3
41.9	56:7 179:14	87:2 92:25 93:10
past 54:6 58:11	234:13	95:2 95:9
58:23 59:13	\mathbf{p}	95:15 113:18
60:24 64:18 74:7		114:4 114:15
105:22 131:10	Penn 211:20	122:18 122:22
143:6 145:4	people 5:4 7:2	123:5 125:6
148:24 149:10	8:23 16:5	158:7 182:14
152:12 155:14	30:20 43:20 58:9	212:8
155:15 183:19	58:24 83:10	percentage
185:9 199:7	124:11 132:18	81.24 194.15
199:8 199:15	139:8 139:10	194:21
206:6 209:21	163:1 214:5	
223:2	227:12 228:4	percentages
path 145:9 234:2	ner 22.5 38.15	113:16
paths 35:23	66.9 71.23 71.23	percentile
	72.23 72.23	25:20 87:17
pattern 35:18	104.2 110.23	158:20 159:10
87:18 89:2	111.2 114.10	159:24 219:14
89:3 89:6	124:23 127:22	219:16 219:24
89:13 92:17	127:22 128:1	219:25 220:8
92:17 95:7	129:19 130:17	220:10 220:22
123:23	130:19 134:14	221:2 221:5
patterns 88:10	134:15 134:17	230:1 230:2
92:11 184:14	156:25 160:19	perfect 65:3
Paul 117:17	181:11 181:13	150:3 151:14
Dausos 100.14	185:23 186:1	170:10 170:14
Pauses 190.14	188:8 193:13	perfectly 94.19
pay 189:4	205:14 205:16	95.25 96.18
paying 170:18	205:19 207:24	
PRI . 210.6 212.9	211:2 211:2	perform 38:13
	211:4 212:21	55:16 142:16
peak 81:25	213:3 214:14	235:6
90:24 95:4	216:8 221:1	performance
95:7 110:22	percent 16:6	31:7 33:20
160:5 185:17	19:17 19:19 20:5	34:2 34:3
peaks 95:11	20:10 21:24 22:3	34:14 37:5
pedigree 51.10	22:4 25:16 26:18	37:6 37:12 39:14
F J 01.10	27:13 48:25 50:2	47:13 48:11
peer 10:18	50:3 50:7 50:9	76:12 93:25 94:5
		104:23 105:17

Г

106:3 106:10 133:9 137:12	175:10 175:20 176:13 227:20	pick 31:13 128:11 218:17
137:15 141:10	237:7 237:10	picked 211:14
142:25 144:1 145:22 150:15 156:14 169:12 206:21 208:14 208:20 209:1 209:4 209:8 216:2 229:25	237:13 permits 72:20 72:21 permitted 69:23 72:4 74:1 135:4 permitting	picture 38:8 62:22 68:23 71:5 71:9 103:8 149:5 170:9 171:4 171:5 181:17 184:11 211:15
232:3 232:6 232:10 232:21 232:22 233:3	13:18 13:22 228:22 Perry 77:9	<pre>piece 120:11 189:2 189:3 PIETRO 9:13</pre>
233:5 233:15 234:6 234:8 234:24 235:6	persistence 131.3	pipeline 175:16 175:22
performed 36:9	persistent	piping 100:14
36:9 51:7 157:2 performing 133:23	77:18 84:1 personal 180:18	pit 108:15 150:21 152:24 153:7
<pre>performs 35:19 104:24 perhaps 115:12</pre>	<pre>perspective 29:10 74:22 131:13 Pete 9:14 213:24</pre>	153:10 154:11 154:12 154:17 154:20 155:7 155:10
133:13 230:20	Peterson 12:4	pits 153:3 153:18
<pre>period 5:22 36:16 36:16 37:24 83:6</pre>	petitions 26:14	- 153:18 154:7 154:9
83:7 92:24 114:19 116:6	Petroleum 54:25 58:5	placed 55:10 92:9 166:19 166:22
135:2 155:24 157:2 160:22 160:25 201:19	<pre>phase 43:16 43:17 43:25 45:12 60:25</pre>	places 37:21 37:22
201:20 206:18 215:20 215:21	PhD 149:3 150:2	Plains 92:1
216:18 237:11 237:21 237:21	phenomena 116:23	102:7 132:3 144:1 164:9
periodic 155:4	phenomenal 6:21	166:9 168:18
periods 38:1	phenomenon 114:21	171:20
79:11 78:18 79:9	185:5	plane 168:14
80:25 83:2 116:8 151:5 156:25	physical 61:18	planning 15:1 15:3 42:25
permit 72:6 73:16	physically 184.5	p⊥ans 56:10 56:11 140:8 143.14
73:16 134:9	physics 41:21	179:24 228:23
	F	

plant 25:9 92:2	166:25 215:24	65 : 24
109:24 115:12	plots 42:8 95:6	Plume-in-grid
133:20 134:8	135:21 158:4	31:11
134:13 134:14	160:20 208:4	nlumes 32.19
164:13 165:4	nlotted 138.5	33.16 38.10
165:13 165:15		78.11 94.18
165:20 165:20	plumbing 33:5	94.19 94.21
166:2 166:6	plume 24:8	95:24 96:6
166:14 167:22	24:10 24:17	108:20 200:4
169:19 1/0:10	31:24 32:2 33:19	
	34:18 35:9	pius 35:7 35:8
175.7 175.10	44:9 48:3 56:6	39:4 48:9 108:14
176.12 215.0	61:11 63:4	127:24 150:17
1/0:12 215:9	78:2 78:3 78:4	137:19 212:24
213:19	78:5 78:6 78:8	212:24 213:7
plants 29:3 97:16	79:22 80:21 81:1	210.7 210.23
214:6 215:6	81:2 81:10	
215:13 236:23	83:4 83:17 83:21	PM 59:20 68:5
plant's 179:25	84:7 85:3	68:12 68:21
plav 140:7 140:13	85:19 90:20	101:11 101:12
174:11 182:16	94:13 94:20	14/:16
226:11 237:23	94:23 95:16	pm10 175:14
nlaving 162.16	90:10 90:15	pm2.5 8:21
	99.4 99.5	14:14 183:13
plead 186:23	99:10 99:17	podium 180:13
please 203:22	99:20 101:23	- Bodrog 60.7
233:19 236:3	102:5 102:15	Podrez 60:7
236:16 238:8	104:21 105:4	point 4:23 16:4
pleased 97:10	105:9 105:11	18:3 21:5
148:22	105:23 108:2	24:13 24:15 25:6
plot 25:13	108:19 109:3	36:21 40:5
50:13 104:13	109:5 109:6	$40:5 \ 54:2$
129:14 129:14	109:11 109:14	54:15 $51:1069.12$ 72.19
135:25 136:9	110:2 110:15	80.14 81.21
136:10 136:18	130:25 131:4	81.22 84.3
137:1 137:6	132:19 134:1	86:4 88:14 106:6
138:3 138:12	157.20 162.9	108:9 110:22
157:8 157:10	176.20 102.0	111:2 122:22
157:22 158:4	185.25 200.5	122:23 125:2
158:8 158:9	221.18 226.4	125:3 125:4
158:18 158:18	227:5 227:7	133:8 156:20
159:23 160:2	227:8	158:12 158:24
160:5 160:10	nlumo-in-arid	159:11 161:13
160:23 161:7	prume-in-gria	184:19 185:3

186:22 187:25 222:12 228:9 **pointer** 165:5 points 21:7 21:11 21:12 40:9 40:11 40:12 40:15 40:15 40:17 41:1 41:3 50:17 50:18 86:14 129:8 151:8 158:24 197:3 **poke** 42:16 **polar** 87:13 **policy** 16:15 21:16 96:19 140:5 147:14 polisource 115:14 115:16 pollutant 68:7 222:6 pollution 196:12 **poor** 37:5 211:11 **poorly** 50:23 128:4 **popular** 87:15 population 226:3 **portals** 203:24 **portion** 28:21 192:12 position 214:2 **positive** 97:17 positively 55:15 **possess** 147:21 possible 58:20 102:9 105:4 152:12 203:3 205:9 225:9 possibly 10:16 63:10 154:4

213:12 222:1 222:7 **post** 177:11 177:12 177:16 **posted** 205:2 **post-one** 79:15 post-program 177:10 potential 54:1 60:4 108:18 182:17 182:24 182:25 189:22 230:16 potentially 140:18 183:15 184:2 184:8 188:23 189:7 198:2 198:5 **pounds** 71:22 71:23 72:23 72:23 74:24 193:13 **power** 29:3 47:6 91:20 115:12 157:1 198:18 213:23 215:6 228:9 powerhouse 165:7 167:21 169:20 powerhouses 165:15 powerpoint 123:10 practicable 56:16 practical 148:4 150:1 150:5 151:15 152:18 **practice** 231:17 pragmatic 150:1 150:5

prairie 65:1 **pre** 120:1 pre-AERMINUTE 85:16 **preamble** 54:12 **pre-ASOS** 85:16 196:24 **preceded** 142:14 precipitating 45:14 precision 229:7 predict 48:20 49:5 49:23 104:25 108:2 182:22 184:5 186:15 196:20 208:12 predicted 30:7 38:2 54:8 81:17 81:18 82:8 83:4 94:17 102:5 118:6 129:19 141:23 187:18 195:19 195:22 196:10 predicting 15:22 50:20 50:22 60:22 prediction 51:5 62:25 87:10 92:18 96:4 128:6 130:5 131:20 137:22 143:2 151:19 188:2 193:1 195:3 196:14 predictions 23:22 50:2 57:8 58:15 84:13 105:6 110:2 110:20 111:20 135:23 136:2

140:15 172:24	presentation 4:14	pretty 24:16
188:19 191:1	4:19 12:18 52:11	24:19 30:11
191:24 192:7	67:18 70:6	30:14 30:15
193:15 195:3	70:8 83:9 97:7	31:14 36:1
predicts 54:3	102:24 118:11	41:5 50:15 75:11
168:12	119:3 127:15	100:2 104:3
predominant	132:8 133:17	104:6 116:9
166.12	138:21 139:22	119:20 122:16
100.12	139:25 148:15	123:16 126:4
predominantly	148:16 148:18	129:10 167:13
80:1	156:2 156:6	171:3 173:15
preference	165:1 172:2	174:5 179:12
85:14 141:22	183:25 199:2	181:17 192:12
174:8	199:13 200:25	196:15 197:22
nnoformod	222:22 228:10	207:17 209:15
	232:4	223:21
	presentations	prevailing 166:12
140:7 231:1	4:17 4:20 5:11	
231:5 231:6	6:13 6:23 9:4	
231:10 231:10	9:10 11:25 12:11	19:22 21:12
231:12 231:15	28:15 29:19 39:9	
233:15	55:21 77:2	59:8 82:6
preliminary 77:14	77:2 97:1 120:12	83:24 98:11
191:22 192:25	198:22 199:7	
premium 140:15	205:1	191:1 194:18
	nnocontod (1.10	198:22
prepared 4:21		Previously 59:11
48:22 52:25 97:7	5:0 11:7 12:5	PRIDE 206:11
149:19 196:13	12:4 20:17	206:13 208:15
prepares 155:12	24:4 29:20	208:20
preparing 53:22	30:8 31:8 21:12 60:7 70:14	
53:24 180:24	$31:12\ 00:7\ 70:14$	PIIMAIILY 60:18
	110.11 110.6	72:10 129:25
prerelease 199:1	226.12	
pre-released	230:12	229:2
202:8 202:10	presenter 163:14	primary 37:5
204:14	presenters 5:11	133:19 151:12
Prescribing 230:4	76:18 233:23	192:14
	presenting 101.15	prime 17:6 17:8
prescriptive	132.12	18:3 20:2
229:21		23:18 23:22 62:8
presence 103:10	pressing 185:9	231:17 231:20
103:12 229:16	pressure 97:18	primetime 21/1.3
present 11:8 16:2	prestigious	Prime Cime 214.0
19:10	162.14	Princevac 103:2

principals 205:10	129:2 135:19	122:1 125:11
principle 64:24	136:7 143:2	125:24 142:1
printing 5:24	144:18 152:13	1/9:9 183:21
prints 184.13	163:12 163:12	189:11 197:6
	163:25 205:10	217:9 217:19
prior 80:3 143:14	problematic 94:14	234:1 234:23
198:21 233:1	problema 22.0	processed 121:6
	23.22 27.20	121:16 122:9
1/1.21 58.23 59.5	31:23 35:25	124:20
97:11	38:23 39:22	processes
nnionitination	39:25 40:1	- 104:21 133:7
7.10	49:6 57:5	processing
	58:15 63:22	74:11 117:20
prioritize /:8	128:24 132:4	124:4 124:17
<pre>priority 7:19</pre>	138:20 140:19	156:23 161:15
145:13 145:16	164:3 186:13	162:4 196:23
145:17 146:14	213.8	processor 29:25
private 233:13		102:18 120:2
234:16	procedure 61:10	202:21 202:22
probability 86:25	78.19 78.21 79.3	230:21 232:3
230:13	79:7 79:17	232:7 233:8
probably 20:15	101:16 102:7	processors 200:18
30:23 46:1	107:24 109:6	produce 40:11
58:9 59:9	procedures 27:4	produced 31:11
59:17 62:4 62:20	- 77:13 91:16	54:14
65:3 IU2:2U	142:20 143:8	producing 140.15
105:10 $105:10116.20$ 130.15	144:11 147:24	product 171.10
133:9 164:17	proceed 148:16	product 1/1:16
164:18 168:13	proceeded 68:22	production 107:19
170:19 170:20	nrogeodings	108:18 137:1
184:25 188:8	147·24	productive 151:25
204:24 217:3	7.7 13.16	products 203:12
220:6 220:19	14.18 42.4	professional
226:19 236:9	42:5 42:18 42:23	217:6
problom 17.15	56:3 57:1	profile 184:11
17.24 21.17	69:11 72:10	212:3 212:7
22:24 23:11 26:2	72:13 72:13	profiles 110:14
28:2 28:6 43:7	75:22 75:25 76:2	174:1 174:3
61:16 66:13	/6:15 /9:9 /9:15	191:5
77:16 91:11 94:8	00:13 IUI:15 101.17 102.6	profiling 173:14
96:5 125:17	IUI.I/ IUZ:0	

prognostic 64:4
66:2 190:16
197:14 209:18
program 41:25
69:13 145:1
173:4 190:12
191:9
programs 10:21
40:19 68:10
68:14 217:17
228:23
progress 53:12
144:21 192:1
prohibitive
176:21
project 77:4
167:18 168:5
178:11 210:20
projected 23:10
23:15 23:18 24:4
28:4 157:20
178:20
<pre>projective 17:17</pre>
projects 14:8
14:8 69:7
69:14 125:21
150:25
promise 7:10 7:17
198:2
promised 14:14
103:25
promising
191:25 193:3
promote 10:15
76:13 235:12
<pre>promulgate 56:11</pre>
pronounced
85:13 116:16
proof 214.2
215:23 217:12

proper 35:10 37:9 properly 40:2 40:3 41:21 66:20 124:20 126:14 **property** 34:21 170:12 170:14 223:23 227:23 proportional 213:4 proportionality 153:12 proposal 144:8 proposals 8:6 **propose** 110:6 169:13 proposed 17:18 56:1 91:9 91:16 101:16 101:22 102:14 110:3 142:17 144:23 151:13 163:13 215:1 protection 4:1 53:23 protective 149:9 149:21 protocols 8:7 **proved** 104:8 200:3 **provide** 10:18 10:22 11:22 13:22 14:22 40:24 68:1 131:11 140:24 142:24 143:3 154:7 155:18 159:18 188:3 188:11 197:23 198:7 199:2 202:9 204:4 234:2

provided 11:4 49:13 130:20 142:7 142:22 144:2 188:13 199:6 200:19 204:15 provides 97:23 106:4 187:19 providing 58:1 82:20 91:2 127:17 155:23 **Province** 165:18 **proving** 142:14 provisions 141:2 **proxy** 214:25 **prudent** 107:7 **PSD** 98:4 175:10 175:20 228:22 229:1 **pseudo** 183:15 **PTE's** 182:18 **public** 4:14 5:5 5:10 5:22 6:13 9:10 16:22 55:10 65:18 65:21 127:8 132:3 142:11 142:14 142:16 142:22 143:3 143:14 143:20 144:2 147:11 149:9 149:21 151:25 155:24 200:21 203:4 203:9 233:9 235:7 235:19 237:11 237:21 238:19 publically 53:15 **publicly** 134:21 137:24 199:17 200:7

publish 132:2	putting 40:14	155:5 156:7
puff 33:9 37:9	113:10 218:20	161:22 168:13
38:11 38:14	Puttock 20:16	179:13 180:5
38:15 38:17	puzzled 95:22	230:19 237:20
38:24 64:15	95:23	questions 4:16
64:24 83:16	PVM 196:20	26:16 11/:20 202:21 204:20
85:19 85:20	DV/MRM 59.14 63.10	203.21 204.20 214.5 218.20
205:24 206:13	67:9 75:6 132:21	237:22
puffs 33.14 34.20	138:20 195:15	mick 166.25
34:21 38:25	196:21	181:18 228:7
86:18 88:8		micker 13.24
PUFF's 32:5	Q	
	Q&A 5:20 8:16	quickly 21:19
	173:11	144:7 151:17
pull 8:1 224:12	Qiguo 102:25	mite 16.4
pulled 194:5	102:25	quice 10:4 17.10 18.6 18.10
pulp 68:18	Q-Q 129:14 129:14	25:10 25:15 26:1
pulses 120:20	135:21 135:25	26:12 32:25 34:4
purchase 224:5	136:17 136:25	35:18 35:23
	137.3 138.12	36:22 36:23
purchasing 224:2	quality 4:2 44:20	37:10 39:1 39:14
pure 33:21	$44:25 \ 54:22 \ 55:4$ $140\cdot10 \ 147\cdot21$	44:13 4/:5 4/:1/
purely 11:8	213:21 228:21	62:1 103:15
purple 157:23	233:17	114:24 116:12
158:23	quantify 84:4	117:4 134:18
purpose 118:17	muantile 25.13	170:16 178:11
141:7	25:13 66:23	180:1 182:20
purposes 36:6	66:23	184:16 185:18
122:11 141:11	quarter 19:4	188:25 190:13
160:21 185:2	163:22	191:24 192:8
190:6 228:22	guench 100:24	197:16 222:6
pursue 179:5	quenching 98:7	quotation 120:11
	muestion 17.5	quote 54:15
pursuing 225:19	17:5 43:6	128:21 231:6
push 179:16	49:10 60:18 62:6	quoted 153:6
pushed 100:22	63:18 63:20	
100:23 100:24	64:17 65:24	R
<pre>pushing 98:7</pre>	103:7 114:22	Rabideau 58:6
puts 140:15	127:16 127:19	RAD 44:2

radar 12:23	190:14 192:17	115:25 191:3
radio 104:16	192:19 233:5	193:22 193:24
211:19	ranges 195:8	195:10 195:14
radius 86:8 86:14	<pre>ranging 193:19</pre>	195:18 196:7
212:4	rank 30:4 30:14	ratio's 89:14
rain 44:1 44:1	30:15 31:4	rays 80:18
rainfall 209:24	31:5 32:13	reach 70:22 70:23
raise 26.25	rapidly 24:13	reached 127:6
152:22 225:17	104:15 104:15	127:8
raised 6:22 39:10	rate 38:11 101:13	reaches 24:9
147:1 175:16	124:24 132:25	react 132:23
218:11	133:13 136:25	reacted 55:15
<pre>raising 9:2</pre>	176:20 223:8	magetion 122.25
218:19	227:0 227:7	reaction 132:23
Raleigh 15:9	mated 24.12	reactions 137:18
Balph 203.18		reactivate 169:8
203.20	rates 48:23	readily 76:1
Damot 102.17	72:5 72:5	ready 51:23 214:3
	115.7 115.10	real 23.17
ramifications	129:4 129:5	39:22 91:15
189:16	182:1	95:19 125:8
RAMS 210:11	rather 35:5	129:7 135:17
ran 31:18 31:18	35:6 37:25 38:25	135:17 141:14
32:21 41:1	141:12 216:10	147:12 151:1
41:2 45:3 45:4	222:1	154:17 155:6
80:22 87:11	ratio 18:1	167:10 169:21
113:12 114:12	18:17 19:13	184:5 214:3
122:2 122:4	19:15 19:19 20:4	214:24 222:10
122:4 123:6	20:20 21:3 22:11	222:10
166:17 167:1	23:23 24:14 50:1	realistic 98:8
167:4 167:9	60:7 75:9	186:16 188:9
10/:9 109:8	75:11 81:20 82:9	realistically
$208 \cdot 3 \ 211 \cdot 21$	88:10 88:13	64:22
211:23	88:16 89:8	reality 131:24
	93:3 153:16	
random 35:3 64:21	195:5 195:23	134.5
range 17:14	196:4 196:5	
20:2 41:19 49:22	190.21	
JU:4 83:11 83:16 117∙7 115∙5	ratios 17:10	0:24 9:0 $1/:523.21 26.5$
115•13 116•17	21:21 22:15	27.1 27.16 27.21
127:25 185:23	27:8 89.19 89.23	28:1 30:18

32:9 32:25 33:13	105:4 141:3	161
35:18 37:13	162:21 176:19	161
41:23 42:7 42:16	233:1	182
47:8 48:20	reasonable	223
49:5 58:24	48.16 53.11	rece
60:1 60:25 63:13	76:13 84:4 90:12	
64:1 65:13 65:17	135:12 140:11	re-c
66:16 66:21	146:22 228:2	223
73:17 75:17	228:3	reci
90:11 90:23	maagamah lu	154
95:19 104:11		154
104:24 108:10	/8:11 84:22 94:7	reci
118:20 119:12	92:11	86:
122:11 124:9	reasons 129:21	ma – a
125:10 125:15	180:19 196:10	re-c
128:10 128:13	recall 142:8	104
128:21 131:20	199:12	recl
137:24 150:13	recap 181.5	recl
151:20 163:16		123
174.2 175.6	received 29:21	reco
170.24 170.25	29:24 31:1	69:
170.24 170.25	1/5:10	74:
179.15 179.13	recent 15:20	174
186.20 186.22	15:25 54:21 57:2	
194.9 212.1	60:4 142:19	reco
212.13 212.14	154:15 179:4	reco
214:14 215:2	190:23 197:3	reco
215:10 217:9	209:12 231:18	51:
217:10 217:15	recently 28:20	129
218:8 218:8	28:20 29:20	reco
218:24 219:2	190:23	26.
220:14 220:19	reception 120:21	75:
222:9 223:3		119
223:16 224:19		
224:20 225:3	90:21 90:24	
225:11 225:22	90:24 92:14	13:
226:3 226:7	121.5 161.12	6/ :
226:8 226:9	177.4 177.5	130
226:15 226:16	177.8 223.25	231
227:8 227:10	± / / • O 22 J • 2 J	reco
227:13	receptors 80:13	55:
<pre>rearranging 225:7</pre>	8/:14 92:9	164
reason 24.0	95:5 107:15	210
17.0 17.12 17.05	159:25 160:14	reco
41.9 41:10 41:20	160:25 161:3	10.

1:4 161:5 1:18 177:4 2:21 223:12 3:13 224:7 **ss** 76:22 haracterize 3:19 rculation 4:9 154:13 4:18 205:11 rculations 5 irculations 4:23 155:8 **aim** 120:14 assification 3:4 **gnize** 14:20 10 74:10 11 165:2 4:25 gnized 57:5 gnizing 60:2 **mmend** 13:21 18 83:8 9:12 mmendation 12 27:17 42:3 17 93:15 9:2 189:15 mmendations 1 63:14 6 108:13 8:19 181:9 1:8 mmended

1 56:5 108:19 4:11 181:13):3 232:12

mmending

42:12 42:12

66:19 196:24	68:16 69:22	215:7
233:2	179:11 225:4	regional 53:12
recommends 56:13	re-evaluate 224:8	53:24 56:10
recompile 177:7 177:10	refer 43:21 112:23	65:13 68:14 134:4 136:11 172:11 183:12
reconcile 201:22	reference	191:10 192:20
reconciliation	204:23 213:11	233:12 234:17
202:3	references 9:22	Register 5:24
record 5:12	142:11 209:11 213·10	regu 56:22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	referred 200:24	regular 112:25
70:15 148:14	referring	112:25
148:21	112:24 151:13	regularly 154:20
recorded 121:6	refine 76:8	regulated
193:9	186:25 194:24	140:16 149:8
records 215:18	200:20 204:6	150:14
recover 204:22	218:25	regulation
recovering 139:21	refined 139:17	regulations 68.13
recreate 134:22	1J1:24	regulations 08.13
rectangular	201.17	regulative 155:16
153:15 154:21	refinements 91.11	regulators 140:16
red 36:15 81:13	111:25 150:16	regulatory
129:24 181:22	204:5	37:14 53:8 56:23
195:13	<pre>refining 217:17</pre>	57:4 65:6
reds 158:16	reflect 131:24	68:10 69:25
reduce 55:1	148:19	120:4 127:17
167:25 168:1	reflects 43:22	141:4 141:5
175:21 177:19	<pre>regarding 13:11</pre>	141:7 141:11
188:24	14:4 39:11 102:9	141:16 141:25
reduced 70:1	156:6	141:25 142:3
106:2 154:11	regardless	147:24 173:13
160:18 177:25	161:4 229:16	175:8 197:17
reduces 186:6	regards 52:19	228:21 228:23
reducing 191:18	regime 85:15	231:8 234:13
reduction 25:11	105:11 135:11	
9/:16 176:20	region 45.2	
reductions	108:14 197:1	retate 101:9
TEAUCCIONS	214:9 214:13	related 12:15

	-
39:23 47:7	79:18 80:10
51:4 140:7	103:24 107:20
140:23 141:4 142:18 190:14	206:9 207:10
204:11 236:20	releasing 38:24
238:17	200:22 226:4
relates 13:5	relegates 231:22
relating 181:6	relevant 10:23
181:7 189:1	37:13 98:21
190:25 190:25	reliance 228:25
197:5	234.22 molied 10.0
relationship	18.6 53.23
149:12	141:22
relationships	relief 179:13
relative 34.3	relies 62:8
36:23 44:12	reluctant 146:4
46:12 88:24 99:6	rely 141:2
	<pre>relying 60:1</pre>
41.17 93.14	remain 184:8
165:8	202:5 203:15
release 28:9	remained 181:4
32:19 35:22	183:18
36:10 36:15 37:1	<pre>remaining 94:3</pre>
38:8 38:11 62:24 79:24 79:24 80:3	remarks 82:17
85:5 86:4	remedy 17:18
97:21 99:1 102:4	remember 66:6
106:6 106:12	88:3 117:22
200:25 201:6	189:9
202:13 202:17	remembers 117.23
202:19 202:25	
203:8 204:17 206:14	remodel 237:5
released 27.17	
28:20 29:2	45.12
29:4 36:17 37:23	remove 27.18
38:24 87:23	72:12
14/:14 200:/ 200:21 201:5	removed 131:3
releases 29:1	repeat 13:3 47:3

318 repeated 5:8 repeatedly 130:22 replacement 51:19 **report** 30:9 30:9 30:25 37:2 39:8 43:2 43:3 53:22 53:24 70:10 70:14 70:16 70:20 71:21 76:8 reported 71:1 **reports** 48:21 199:16 199:17 199:19 represent 74:18 157:11 157:15 186:10 representation 10:10 188:9 representations 84:7 representative 73:20 74:16 75:16 123:8 153:19 224:21 228:17 representatives 55:19 represented 158:24 representing 159:8 represents 158:8 158:10 reproduce 31:19 request 13:7 29:23 31:1 45:8 47:9 175:21

176:2 176:6

238:5

requested 4:13	176:3	71:20 72:15
4:20 228:15	resources 7:5	72:25 75:7 75:15
requests 56:13	7:16 7:23	77:14 79:13 82:5
144:10	14:21 145:11	84:21 85:1 89:18
require 68:11	145:19 146:1	90:10 91:9 91:10
68:12 73:20	148:1 190:13	93:10 104:23 115:11 125:11
131:24 229:6	191:8 235:12	131.1 131.2
required 56:9	respect 68:6	131:7 140:6
69:18 79:16	respond 96:15	143:22 143:24
120:4 229:19	responded 59:1	156:18 157:4
requirement	response $28 \cdot 25$	158:3 159:5
14:3 178:9	237.12 238.16	159:6 161:8
229:21		161:11 181:22
requirements	responses 29:1	103:11 104:10
- 176:15 221:22	responsibility	188.4 191.14
230:10	155:18	191:20 191:20
requires 102:17	<pre>responsible 38:23</pre>	192:25 194:25
143:9 150:15	rest 4:6 4:7	196:6 197:21
229:13 230:15	4:8 62:9 109:9	217:12 218:4
requiring 75:23	restricted 94:21	225:4 230:5
reran 178:14	restrictive	retention
	230:23	150:21 152:24
22.7 22.6	result 12.24 14.2	153:7
ZZ:7 ZJ:0 /3·18 62·15	14.7 26.9	rethink 126:18
190.11 191.9	$33 \cdot 10$ $34 \cdot 16$ $36 \cdot 6$	225:25 226:6
198:18	40:12 47:2 48:15	retirees 164:18
reserved 80.11	50:14 50:14	retrieved 167:1
	73:11 73:13 75:3	retrofit 56.17
reset 64:10	94:22 96:4 96:21	
residual 98:19	119:15 214:5	review 10:19
102:11	230:6 231:3	16:23 27:14 47:9
resolution	231:11	54:22 /0:18
13:25 14:1	resulted 11:13	71:10 $75:24$ $90:498.6$ 117.11
14:3 34:1	resulting 77:24	118.15 131.25
35:17 36:2	- 	138:20 145:23
36:8 66:13 156:9	$25 \cdot 12 \ 27 \cdot 9 \ 29 \cdot 19$	176:6 201:20
211:11 218:25	30:8 31:19 32:12	210:1 213:9
219:4	32:18 35:12	236:11
resolved 69:9	37:10 38:10 39:5	reviewed 176:2
69:21 69:22	39:25 45:23 46:7	210:3
119:22 237:13	50:12 50:12	rouious 102.10
resource 102:16	53 : 13 71 : 11	TEATEMS INS:IN

revised 35:13	RMSC 212:20	211:16
35:15	road 68:13 122:20	routines 44:11
revisions 55:17	124:10 181:25	row 177:23 181:25
Rex 20:16	roads 151:10	rows 195:6
rid 132:7	152:6	rubber 124:9
160:12 161:24	Roger 17:17	mulo 52.12
217:8 218:10	23:8 24:25	53·25 53·25
225:12	107:10 108:5	54:12 54:16
ride 38:21	139.1 185.6	144:5 144:9
ridge 61:6 165:18	232:5	231:4 232:1
170:24	Roger's 27:25	<pre>rule-making 56:3</pre>
ridges 158:13	28:3 133:16	run 6:15 31:3
186:10	role 140:7 140:14	31:5 31:9
right-hand 35:15	149:15 182:16	32:16 33:1
rights 224:5	Romney 111:5	33:4 34:8 34:9
ring 95:5	- Ron 12·3	35:11 35:13
rings 88:2	moof 07.17 07.17	35:13 35:14
Bio 148.15 150.12		35:16 35:16
150:18 150:23	rooftop 108:7	37:23 38:15 40:2
153:22 155:13	108:10	41:20 42:10
155:20 155:24	room 58:14 131:23	42:17 42:20
rise 85:3 96:10	141:25 182:14	46:4 46:5
98:13 98:16	Root 211:3	77:11 78:7 78:10
98:24 99:3	roses 113:17	79:1 79:5 79:6
99:6 99:10 99:17	196:12	80:8 80:13
$101:23 \ 102:5$ $102.15 \ 104.21$	rough 166:6 166:7	82:5 84:11
105:4 105:11	166:8 214:11	124.1 125.8
109:3 109:5	216:22	124:1 125:0
109:11 110:2	rougher 64:1	141:12 158:13
110:15 211:19	roughly 18:14	166:23 168:14
212:4 226:4	154:21 158:13	200:18 202:19
221:5 221:1	210:24 220:24	202:22 202:25
rises 108:19	roughness 63:23	211:20
risk 98:6 98:19	63:24 117:21 166:4	running 35:4
102:10 102:11	100.4	113:3 156:14
RIVAD 44:8	rouna 162:17 180.9 190.9	TUILE 21.4 21.10
river 165:23	219:5	31.10 31.16
RMS 211:3	routine 107.5	31:23 33:11
		33:24 34:8 34:10

34:16 39:18 81:1 81:5 92:10 163:20 165:13 167:22	170:3 194:17 194:20 221:22 224:9
<pre>run-through 92:7</pre>	153:17 161:15
<pre>rural 103:8 225:25 226:6 rushing 173:2</pre>	185:1 191:5 191:10 192:21 197:9 198:8 213:12
Russian 118:6	scan 236:13
Ryan 67:19 67:20 68:1 76:18	scatter 41:6 50:13 50:15 208:4 208:8 208:10
SAB 8:13	scattered 160:7
safe 238:12	scavenger 45:11
<pre>Sage 203:16 203:19 Salem 85:13 85:18 86:7 86:20 87:1 87:19 90:1</pre>	<pre>scavenging 45:24 139:3 scenario 124:1 124:2 125:2</pre>
sales 167:9	210:15
<pre>salesperson's 106:15 samplers 29:6 29:8 63:15</pre>	<pre>scenarios 57:22 71:3 71:12 123:7 178:21 211:23 schedule 5:15</pre>
207:13 samples 29:6 29:9	9:11 15:6 67:21 117:14
<pre>sampling 129:8 207:12 San 118:12</pre>	scheduled 5:14 52:3
SARMAP 210:11	schedules 14:8
<pre>save 171:23 173:20 saw 42:8 71:2 72:16 73:11</pre>	<pre>scheme 43:23 44:1 44:9 47:23 47:25 49:18 50:6 88:13 89:4 101:18 102:14</pre>
73:23 89:17 89:22 94:14 96:23 107:9 113:19 115:22	<pre>schemes 49:25 50:5 Schewe 12:17 110 2 115 12</pre>
133.16 154.22	112:3 11/:18

237:17 237:17 237:23 **school** 162:14 **Schulman** 12:10 15:14 15:15 **SCICHEM** 63:11 66:1 198:14 198:19 198:20 198:22 199:3 199:4 199:5 199:7 199:9 199:11 199:13 199:15 199:23 199:24 200:1 200:2 200:5 201:9 201:12 201:14 201:17 202:6 202:7 202:8 202:9 202:25 203:12 203:15 203:23 204:11 **science** 10:15 51:14 101:21 131:14 131:14 205:10 scientific 201:20 scientifically 232:19 SCIPUFF 31:8 34:22 65:1 199:12 199:13 200:1 201:11 201:18 201:19 202:6 202:7 202:8 203:6 205:25 206:5 208:1 208:2 208:6 208:8 209:8 210:6 212:22

SCIPUFF's 62:12

Scire 12:9

15:19 28:16	212:21 213:3	27:10 63:13
28:17 43:9 55•5 65•8 77•25	233:2	118:15 125:17
00.10.01.10	secondary 14:14	171:3 183:7
score 30:12 31:12	44:10	183:12 196:22
31:15 32:8	secondly 100:17	198:25 223:24
scores 31:13	187:1 188:12	227:11 231:23
31:15 34:25	seconds 38:16	232:13
SCRAM 205:2	206:18	sees 41:13
screen 12:23	Secretary 11:3	segmented 85:19
1//:14	section 26:14	selected 77:12
screened 218:6	213:22	204:10 216:8
screening 221:6	sectional 200:9	<pre>selectively 227:2</pre>
scrubbed 165:8	sector 70:9	semi 7:18 183:23
scrubber 227:4	217:1 221:25	seminal 210:1
scrubbers 176:22	233:13 234:16	send 38:18 203:22
seals 237:18	sectors 68:18	sending 15:16
SEAMAC 191.20	71:4 220:18 222:3	sends 52:18
		senior 198:16
Seaman 210:2	Seeing 14:16	213:21
213:9 213:11	$62 \cdot 25 87 \cdot 2 89 \cdot 10$	sense 22:17 29:14
seasonal 45:16	89:13 93:23 96:8	51:11 126:15
<pre>seasonally 45:9</pre>	110:17 116:7	168:15 194:1
47:12	126:23 128:13	<pre>sensitive 33:8</pre>
season-by-	186:14 187:4	33:18 36:3
season 188:15	187:12 220:22	36:4 123:13
seat 235:24	220:24	sensitivities
seats 180:13	seem 195:21 211:5	184:4 190:1
second 7:14 35:11	223.21	<pre>sensitivity 31:23</pre>
48:1 65:5 66:9	seemed /1:25	44:15 49:10
76:24 104:2	208:11 218:17	105:6 105:15 101.10 105.13
110:23 111:2	seems 15:9	189.2
114:10 118:18	24:13 61:16 66:3	
124:23 130:17	139·9 146·4	163.6 227.0
130:19 1/3:20 185•2/ 186•1	151:15 191:23	103.0 227.0
188:8 190:8	192:7 196:3	107.17 100.0
205:14 205:16	seen 8:14 9:22	τυι:τι τυς:α
205:19 207:24	12:25 13:7 14:11	separately 177:21
210:17 211:2	14:16 16:21 26:6	September 14:10
211:3 211:4		

229:12	8:17 14:14 29:19	115:4 123:7
Sergio 117:14	53:18 54:6	128:20 148:16
117:15 117:16	58:9 60:4	175:1 175:11
series 91:6	77:23 88:20	215:21 222:7
serious 111.12	89:10 89:22 111.17 111.20	222:1
111.12 1/0.18	112.11 128.1	shortcoming
212:12	131:10 132:18	217:25
soriously 111.6	142:19 146:19	shortcomings
111.11 111.12	152:5 153:23	217:19
189:23	154:14 155:17	shorter 64:25
service 121.21	233:23	115:5 115:6
157.5 197.18	severe 110:23	116:11 187:13
213:23	150:8	Shortly 175:17
Services 213:22	severely 150:8	<pre>short-term 229:4</pre>
213:22	Sf6 129:3	shot 168:4
session 4:14	shade 162:16	171:7 171:14
76:19 76:24	shallow 95:3	\perp / /: \perp 4
127:8 127:10	105:20	showed 27:5
205:1 235:25	shape 22:19	37:7 68:4 93:7
sessions 5:21	78:8 153:15	139:1 100:21
9:12	154:8	
sets 18:11 42:7	shaped 154:20	Snowing 20:1 23:2
43:1 113:1	shapes 17:13	88:17 91:23
221:10	share 125.11	116:19 117:6
setting 108:5	190.18 192.23	129:22 129:23
122:6 131:15	236:12	182:11 182:15
166:10	shared 146.18	182:19 184:10
settings 40:23	sharea 140.10	193:22 224:3
41:23 99:13	snarp //:6	shown 28:22 39:13
settlement 169:10		71:12 73:12
setup 34:7	106.9 109.4	122:14 183:13 204·18 207·13
seven 11:25 81:22		215:17 231:24
82:1 105:10	Sne's 8:18	shows 20.17 50.19
148:17 150:2	shift 120:16	51:2 103:8
163:14 166:1	156:3 160:16	128:14 129:19
192:10 192:10	<pre>shifting 52:8</pre>	130:9 157:8
sevenfold 27:6	shifts 83:23	158:4 158:19
seventies 112:7	shocking 110:4	167:9 168:3
seventy 115:19	short 8:24	170.9 171.10
several 8:13 8:17	83:11 83:16	175:6 181:10

185:21 185:22 193:16 193:16 196:15 207:19 207:23 218:1 shrink 24:12 shrinks 89:6 shut 123:8 166:25	52:21 68:4 92:18 101:25 109:2 129:13 184:13 184:14 184:15 186:6 189:7 193:23 197:15 208:7 208:12 211.7 233.25	178:8 179:16 229:13 SIPs 56:11 56:12 230:10 SIRAN 210:13 sit 6:19 6:20 115:20
<pre>side 123.8 100.23 sides 23:3 100:13 132:22 sight 149:4 208:25 208:25 Sigma 61:8 61:8 90:17 90:17 212:24 212:24 212:24</pre>	<pre>similarly 87:4 141:15 196:5 201:16 232:9 simple 10:15 41:17 101:14 106:9 185:21 simplified 54:16 simplified 54:10</pre>	site 36:10 37:1 45:24 47:2 63:20 141:22 151:12 157:15 158:23 158:25 174:2 174:9 206:12 207:8 207:15 209:2 209:2
<pre>sign 73:24 signal 109:1 109:1 signed 5:25 significance 67:2 103.7 206.22</pre>	<pre>simplify 144:10 simply 219:15 231:25 SIMS 182:20 simulate 183:22 204:7</pre>	<pre>sited 66:20 sites 92:10 158:21 159:5 192:3 207:7 207:15 209:3 211:16 211:16 212:5 212:19</pre>
significant 15:22 16:24 27:5 34:14 48:6 51:1 79:22 94:8 104:17 140:18 142:10 178:5 183:6 192:25 194:9 194:21 209:6 209:7 230:6 231:24 232:15	<pre>simulated 156:12 158:6 159:24 160:24 161:12 161:16 231:16 simulating 197:6 229:25 simulation 19:7 44:17 45:18 189:24 simulations</pre>	<pre>sitting 58:7 220:14 situation 69:17 121:18 149:25 198:4 222:24 situations 159:18 230:13 six 21:1 31:10 34:11 81:21 110:1 122:2</pre>
<pre>significantly 114:13 114:20 159:3 194:16 232:14 signs 211:19 212:4 223:22 silver 64:5 similar 43:24 47:2 48:15 50:12</pre>	25:7 36:8 50:8 54:21 simultaneously 148:3 single 38:17 38:17 79:19 90:4 90:5 90:7 202:21 SIP 69:11 73:17 108:17 176:15	122:18 156:24 167:14 sixty 18:22 35:8 78:17 78:21 78:25 80:11 103:22 sixty-five 19:3 115:24 size 66:5
153:19 154:22	slough 138:16	solution 107:12
----------------------------	--------------------------------	---------------------------------
155:10 165:25	138 : 17	144:22 152:18
181:20 182:18	slow 211:19 212:4	175:24 176:8
186:1	slugs 38.12	176:9 176:10
skeptic 162:25		176:19 177:6
163:2 172:8	small 17:10 32:18	187:5 205:9
skeptical 164:5	33:9 38:8	205:21
skewed 23.21	112:3 181:13	solutions 150:1
128:5	smart 163:1	150:3 150:5
Classical 166.10	166:20	150:6 205:20
	smelter 25:5	solve 135:18
slag 108:15	smoke 80:7	163:11
sleep 4:10	<pre>smoother 76:3</pre>	somebody 63:14
slice 118:10	Snyder 20:14	150:2 169:21
slide 5:3 8:14	Snyder's 18:7	somehow 7:12
1/:11 19:25 35•15 35•15	So2 8:17 8:21	someone 5:17
61.23 67.14 68.4	14:9 43:25	83.12 119.19
77:8 134:24	54:4 68:4 68:8	236:6
136:15 150:24	68:12 68:16	comothingle
193:16 228:11	69:10 71:6 72:11	214·23
slides 13:4	97:25 102:8	
16:2 19:10	107:6 107:19	somewhat $4:1/$
31:8 35:14 59:19	118:16 146:12	65:2 /1:25 94:25
60:13 60:16	150:/ 150:LL 157.11 157.10	149:11
78:13 87:18	158.7 163.11	somewhere 23:19
119:5 122:15	163.25 165.14	25:19 30:13
140:5 148:17	167:20 169:11	30:17 167:19
194:11 195:1	175:2 175:18	sonar 36:12 36:24
204:24	175:25 176:14	169:5 172:23
slide's 19:11	176:20 177:24	173:9 173:11
slight 58:15	178:8 179:16	sonic 36:11 36:23
96:10	180:24 181:8	120:18
slightly 46.7	181:10 182:11	sorry 41:11 57:14
63·11 81·18	182:20 189:1	112:22 132:12
	214:7 222:5	sort 48:15
SILVER 89:9	229:13 229:13 230·11 237·18	57:25 59:18 64:3
slope 93:9 94:7	200.11 207.10	64:9 65:20 65:22
95:3 95:9 95:15	soapbox 150:11	72:11 74:14
sloped 95:25	software 156:18	75:21 77:7
slopes 18:8	156:23 1//:15 206:20	//:/ 81:14 85:12 92:12 136:7
slot 52:4 52:22	200.20	136:8 206:3

206:21 208:7	203:8 206:14	215:13 215:14
211:7 213:12	216:3 216:13	216:4 216:5
214:8 214:11	216:20 217:1	218:7 218:17
214:23 214:23	217:3 219:15	219:13 219:22
214:25 222:24	221:7 221:14	219:23 220:21
223:5 223:15	221:16 222:2	221:3 221:15
224:5 224:12	223:6 232:8	221:23 221:25
226:4 226:11	sources 21:18	222:4 224:11
226:12 227:8	25.6 25.10 44.18	229:14 229:17
227:9 227:18	45.2 54.3	230:13 230:16
sorts 96:12	54:15 68:10 74:1	230:17 230:20
100.00	74:6 74:25 74:25	236:20 236:21
Sound 120:20	75:10 85:2 91:15	237:14
226:14 232:18	91:20 91:21	south 85:14
soundings 113:1	91:23 92:4	165:23 171:14
source 18:13	92:8 94:15	207:11
18:15 18:15	96:7 96:12	southeast 113.23
54:18 57:22 78:2	97:9 97:15	
87:19 87:23	98:1 98:2	Southeastern
90:15 90:25	98:11 98:25 99:5	228:18
91:25 93:19 98:2	99:7 99:18 100:3	Southern 228:12
98:13 98:25 99:7	100:19 102:15	228:17 228:20
99:17 99:19	107:8 107:15	230:7
99:22 100:2	108:9 108:22	southwest 44:19
100:6 101:23	108:24 109:7	113:23 157:14
101:23 101:24	109:15 111:17	158:14 165:11
102:1 102:4	115:1 115:8	166:13
102:13 103:4	115:9 115:13	space 30.4 30.5
103:5 103:20	115:19 116:17	33.21 37.15 40.5
106:6 106:22	116:18 127:23	40.5 135.22
107:1 109:1	128:2 128:3	10.5 155.22
	128:4 128:25	spacial 40:7
111:23 115:1	128:25 130:1	92:11 104:8
124.2 125.0	140.9 140.0	104:13
140.17 142.12	140.20 140.20	spacing 99:8
152.11 152.14	146.12 150.21	spanned 178:11
156.20 157.7	151:10 151:11	spans 192.11
157:9 157:12	151:19 152:5	
157:20 157:21	152:18 181:15	spatial 158:4
157:22 157:23	181:15 182:15	<pre>spatially 177:9</pre>
157:23 159:1	183:11 188:21	speak 4:13
159:4 159:10	191:16 192:21	148:5 185:10
159:19 159:19	193:12 196:17	234:10 236:5
161:20 176:25	207:16 208:22	anakar 52.4
181:12 203:3	215:6 215:11	speaker 53:4

150:6	205:12 205:12	147:5 203:10
speakers 148:23	205:13 210:25	206:4 206:10
155:17 215:8	212:19 213:5	<pre>sponsoring 198:19</pre>
<pre>speaking 38:5</pre>	232:10 233:0	206:5
68:1 69:10 140:3	speeds 36:21	<pre>sponsorship 52:4</pre>
196:19 228:17	61:17 63:25 64:2	spot 104:3 220:14
special 213:17	77:22 112:13	spots 183:13
specialty 9:25	112:17 114:7	
10:20	114:8 114:9	105.18 105.19
specific 7:3 7:16	114:16 114:18	106:1
11:25 14:13 53:7	114:20 117:4	compand 26.4
57:24 58:12	130:16 130:21	63.3 63.4
59:19 70:8	143:2 145:22	$64 \cdot 22 \ 116 \cdot 12$
150:17 181:6	186:13 186:19	
184:15 184:15	104.22 210.0	spreading 24:10
188:20 207:1	223.11 223.11	62:2
221:7 222:23	232:14	spreadsheet
<pre>specifically 14:9</pre>	spend 152.20	109:13 110:14
118:9 132:15	152·20 168·10	21/:14
189:1 211:18	179:6	Springs 103:19
<pre>specified 37:22</pre>	spending 170:16	spun 163:6
specified 37:22 124:2	spending 170:16	spun 163:6 square 116:21
<pre>specified 37:22 124:2 specifying 123:1</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15</pre>	spun 163:6 square 116:21 211:4
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 100.15 100.10</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 120:25 120:2</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 127:11</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138.5 138.6</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 102:11 102:25</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 70:25 00:6</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 91:10 92:21</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91.11 95.20</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1 111:10 111:11</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14 34:11 34:15</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91:11 95:20 104:4 105:20</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1 111:10 111:11 114:18 118:20</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14 34:11 34:15 35:11 35:19</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91:11 95:20 104:4 105:20 107:4 110:20</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1 111:10 111:11 114:18 118:20 120:22 144:15</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14 34:11 34:15 35:11 35:19 35:21 37:10</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91:11 95:20 104:4 105:20 107:4 110:20 110:21 111:1</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1 111:10 111:11 114:18 118:20 120:22 144:15 147:2 150:19</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14 34:11 34:15 35:11 35:19 35:21 37:10 spoke 236:12</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91:11 95:20 104:4 105:20 107:4 110:20 110:21 111:1 138:7 233:6</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1 111:10 111:11 114:18 118:20 120:22 144:15 147:2 150:19 151:6 152:15</pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14 34:11 34:15 35:11 35:19 35:21 37:10 spoke 236:12 spokes 80:16</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91:11 95:20 104:4 105:20 104:4 105:20 107:4 110:20 110:21 111:1 138:7 233:6 stack 16:3</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1 111:10 111:11 114:18 118:20 120:22 144:15 147:2 150:19 151:6 152:15 185:23 185:25 </pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14 34:11 34:15 35:11 35:19 35:21 37:10 spoke 236:12 spokes 80:16 sponsored 54:25</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91:11 95:20 104:4 105:20 107:4 110:20 110:21 111:1 138:7 233:6 stack 16:3 16:14 18:11</pre>
<pre>specified 37:22 124:2 specifying 123:1 spectrum 136:13 speculate 82:3 speculated 82:13 speed 41:11 60:8 64:12 66:9 67:9 90:17 91:11 103:11 103:25 104:1 104:5 104:7 105:13 110:22 111:1 111:10 111:11 114:18 118:20 120:22 144:15 147:2 150:19 151:6 152:15 185:23 185:25 186:24 188:8 </pre>	<pre>spending 170:16 spent 11:9 131:9 131:15 154:24 190:13 spikey 216:1 spikiness 215:22 spirit 151:3 spirited 149:12 spite 137:11 split 34:21 splitting 32:5 33:12 33:14 34:11 34:15 35:11 35:19 35:21 37:10 spoke 236:12 spokes 80:16 sponsored 54:25 60:6 60:9 77:3</pre>	<pre>spun 163:6 square 116:21 211:4 squares 129:24 160:20 St 117:17 stability 129:15 129:18 129:25 130:2 138:5 138:6 stable 79:25 80:6 81:19 82:21 82:23 82:23 83:5 91:11 95:20 104:4 105:20 104:4 105:20 107:4 110:20 110:21 111:1 138:7 233:6 stack 16:3 16:14 18:11 18:18 18:23</pre>

l

18:25 19:1	226:21 226:25	227:13 229:3
19:4 19:16 20:13	227:3 227:3	229:5 229:22
21:2 21:22 21:24	231:16 231:20	234:21
22:5 23:4 23:5	staff 11:14	stands 210:19
23:13 23:16	15:8 59:4 121:20	233:1
26:17 26:20		
26:22 26:25 28:9	stakeholders 59:4	star 126:12
38:6 38:8	62:20 144:17	stars 129:17
63:25 71:10	147:8 147:23	start 17.2
75:10 79:19	148:4 191:15	22.24 24.12
80:10 81:2 92:12	stand 65:20	33.19 35.9 35.17
92:16 93:20	171:13 179:9	$61 \cdot 3 \ 76 \cdot 24 \ 83 \cdot 18$
93:20 94:4 94:18	203:19	84.13 88.8
95:1 95:10	stand-alone	88.8 88.20 89.14
98:7 98:15	199.25 201.23	127.9 127.13
99:1 99:3	202.4	164.4 181.15
99:18 99:20	202.4	218.15 220.5
99:24 99:25	standard 56:3	210.15 220.5
103:16 103:16	71:7 73:4	started 22:14
103:16 103:19	73:15 75:4	23:19 24:1
106:15 115:24	75:8 115:1	35:6 112:4 119:9
116:12 123:7	125:22 127:25	180:9 199:10
123:7 123:9	128:7 128:13	205:8 214:19
123:13 123:18	128:23 152:9	217:14 218:19
123:25 124:19	152:15 156:7	218:20 219:6
128:20 143:4	156:15 157:5	219:7 219:10
175:20 175:21	158:8 163:24	219:11
176:19 177:25	163:25 167:17	starting 23:20
179:1 179:10	178:4 178:16	29:5 60:15 88:23
182:1 187:12	183:8 184:18	89:11 191:7
187:13 187:21	184:22 185:8	stants 102,10
223:7 225:17	206:21 214:8	Starts 192:19
226:14 227:1	217:24 219:25	state 56:10 75:23
227:23 237:2	220:23 224:25	84:9 85:10 88:17
stacks 16.16	229:20 230:5	89:8 115:8
16.19 17.6 17.12	230:14 232:22	130:24 147:6
17.13 20.7	236:25	162:4 162:7
27.8 27.23 28.11	standards 4:10	163:22 167:1
96.9 96.10	16:8 58:13 58:17	183:24 188:9
107.21 110.17	69 : 2 69 : 5	190:11 197:7
115.4 115.6	71:13 73:23 74:3	211:20 226:1
116.9 170.1	74:8 74:8	228:22 233:12
175.15 175.16	97:25 98:4	234:17
175:22 179.3	124:15 140:10	statements 39:7
179.19 226.3	150:15 184:23	236:3
226.15 226.19	207:3 225:1	states 12.10
$\angle \angle \cup \bullet \pm \cup \angle \angle \cup \bullet \pm J$		SLALES IS:19

2	2	a
	2	2

stretch 9:14

strictly 38:5

stringency 4:9

56:12 129:1 140:20 141:1 230:11 231:6 231:14 **state's** 230:7 **States** 135:14 163:8 228:19 230:19 station 92:3 121:3 121:21 123:1 125:12 157:1 stationary 193:12 stations 91:18 116:14 121:4 197:20 statistic 30:4 statistical 206:2 statistics 30:1 33:21 87:15 **stats** 41:24 **status** 14:4 199:3 231:12 231:22 Stauffer 211:21 **stay** 15:13 **stayed** 8:15 **stays** 96:18 100:14 **steady** 162:4 162:7 188:9 steady-state 183:22 **steel** 108:15 111:16 149:16 **stemming** 178:23 **step** 17:19 38:16 79:14 150:5 192:6 198:11 204:24 **stress** 137:23

220:6 221:18 **Stephen** 156:3 **steps** 79:4 156:24 180:2 217:21 218:5 step-wide 151:16 152:19 Sterling 194:6 **Steve** 57:16 57:17 67:17 77:9 138:21 156:4 162:9 162:10 162:10 162:12 172:8 172:15 172:16 174:6 174:9 180:1 205:5 213:15 213:25 Steve's 173:25 **stoic** 52:14 228:11 **stone** 170:15 **stood** 176:17 **stop** 164:23 **story** 47:3 68:24 68:25 225:16 straddling 16:19 straight 64:7 112:24 114:2 straightforward 101:7 101:14 103:15 strategies 71:10 **strategy** 134:17 streamline 75:22 179:20 streamlines 22:23

184:21 185:8 stringent 58:13 184:23 229:21 230:5 234:22 strong 22:21 22:22 22:24 212:14 **strongly** 143:17 structure 18:21 19:2 19:20 23:11 23:15 structures 20:1 20:25 21:8 27:12 27:21 27:22 **stuck** 178:25 **studied** 27:16 27:19 155:1 studies 7:24 8:1 8:8 17:25 27:11 29:12 43:11 54:9 60:5 62:18 66:8 75:15 98:19 104:1 105:6 129:12 153:11 153:18 154:8 154:15 154:16 209:19 210:10 studying 53:17 **stuff** 109:13 138:13 138:16 214:9 **stumbled** 119:19 **sub** 82:17 156:22 162:3 sub-categories 223:17

sub-G 18:11 **sub-GEP** 17:12 19:2 **sub-group** 200:4 sub-guidance 181:12 **sub-hour** 83:2 sub-hourly 77:11 78:16 79:20 81:5 81:15 81:17 81:21 82:2 82:15 93:21 156:16 158:10 159:14 159:17 159:21 160:10 160:11 161:24 186:4 188:10 **subject** 51:16 74:20 228:21 232:1 subjects 57:25 submissions 229:13 **submit** 105:3 108:25 164:9 175:19 235:7 236:7 236:9 237:22 submitted 4:24 94:9 111:16 164:7 233:9 236:4 238:6 238:7 submitting 5:18 52:6 **sub-part** 98:19 102:11 sub-routines 49:23 49:24 subsequent 13:4 subsequently

11:14 substantial 144:20 substantially 31:14 32:8 32:12 47:12 48:19 52:21 159:7 succeeding 81:4 successfully 55:7 **sudden** 119:11 215:25 **suddenly** 60:20 **suffice** 67:25 sufficient 27:16 145:11 suggest 61:21 90:10 143:6 144:12 suggested 15:4 58:24 61:12 143:10 144:17 144:24 214:25 236:22 suggestion 27:23 suggestions 6:23 42:10 42:17 60:22 62:5 67:10 144:20 145:2 suggests 69:19 135:24 **suite** 140:6 **sulfate** 44:1 54:4 146:10 sulfates 54:7 **sulfur** 44:21 70:2 70:3 72:7 72:12 74:15 **Sullivan** 163:19 summarize 47:3

48:7 48:21 50:25 71:1 140:22 210:9 summarizes 156:21 **summary** 22:10 31:8 72:19 76:4 102:12 179:8 187:7 210:23 summer 47:14 111:17 121:15 **summit** 157:16 157:17 superior 57:7 superiority 57:7 supplemented 113:2 supplied 144:8 supplier 228:18 **Supply** 53:6 supplying 214:18 **support** 10:18 10:20 14:22 63:14 75:20 130:20 145:21 146:4 supported 41:18 supportive 8:7 supports 26:10 **suppose** 153:14 supposed 21:6 **sure** 9:1 30:9 39:14 58:17 103:5 137:9 138:14 138:17 139:12 147:13 148:10 149:8 152:23 170:4 205:5 208:21

	i	
218:14 228:2	201:8 232:8	185:6 186:3
<pre>surface 97:23</pre>	232:11	talking 11:11
117:21 157:5	systems 63:7	14:9 15:20
166:3 166:5	67:12	17:8 24:25
207.14 210.6		28.3 34.5
207.11 210.0 211.18 212.12		13.12 18.1 83.15
		122.12 140.5
212:14	table 220:15	132:13 140:5
surfaces 100:11	tabulated 186:17	209:17 220:5
100:12 100:16	tabulates 208:13	talks 28:18
surgery 198:15	tail 160:6 160:9	58:12 65:9
204:22	tails 95.13	106:19 180:12
surprise 116:20	56115 55.15	188:16 205:5
150:18 155:5	taking 6:24	213:16
195:17	112:14 137:6	
surprised 72.14	147:25 179:18	tall 80:10 95:1
70.16 76.0	214:1 235:24	123:9 123:12
12:15 15:2	+=1k 10.1 15.24	123:25 124:18
surprising 71:14	16.E 10.10 20.10	169:4 226:3
Surprisingly		226:15
229.8	30:25 33:25	taller 179.3
229.0	3/:11 3/:18	187.12 187.21
surrogate 198:5	43:10 44:22 49:9	107.12 107.21
surrounding 44:19	56:7 57:25 60:17	tanks 207:4
100:11	70:11 70:12	team 55:21 58:3
	83:15 91:5	168:7
swapping 162:2	91:8 96:24	
switch 24:13	106:23 107:2	Tech 10:5
24:15 64:23	117:13 118:8	technical 10:4
121:14 131:8	126:24 150:12	10:18 10:21
193:5 209:17	156:3 162:22	10:23 13:16
	163:16 174:21	14:22 53:19
switched 105:7	180:19 180:21	59.19 60.11
101:24	181:6 185:16	65:17 97:8
switches 225:20	181:6 185:16 193:6 205:22	65:17 97:8 198:17 203:21
switches 225:20 Switching 230:25	181:6 185:16 193:6 205:22 talked 12:5 12:21	65:17 97:8 198:17 203:21 technically
switches 225:20 Switching 230:25	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8	65:17 97:8 198:17 203:21 technically 148:25 232:18
switches 225:20 Switching 230:25 SWWYTAF 44:17	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19
switches 225:20 Switching 230:25 SWWYTAF 44:17 symmetric 154:8	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20 65:8 65:13 82:24	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19
switches 225:20 Switching 230:25 SWWYTAF 44:17 symmetric 154:8 155:7	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20 65:8 65:13 82:24 91:12 118:2	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19 technique 221:12
<pre>switches 225:20 Switching 230:25 SWWYTAF 44:17 symmetric 154:8 155:7 symmetries 155:3</pre>	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20 65:8 65:13 82:24 91:12 118:2 118:16 121:7	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19 technique 221:12 techniques 139:17
<pre>switches 225:20 Switching 230:25 SWWYTAF 44:17 symmetric 154:8 155:7 symmetries 155:3 symposium 20:17</pre>	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20 65:8 65:13 82:24 91:12 118:2 118:16 121:7 124:10 124:13	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19 technique 221:12 techniques 139:17 technology 47:7
<pre>switches 225:20 Switching 230:25 SWWYTAF 44:17 symmetric 154:8 155:7 symmetries 155:3 symposium 20:17 Synfuels 92:1</pre>	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20 65:8 65:13 82:24 91:12 118:2 118:16 121:7 124:10 124:13 126:7 126:11	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19 technique 221:12 techniques 139:17 technology 47:7 56:17 98:6
<pre>switches 225:20 Switching 230:25 SWWYTAF 44:17 symmetric 154:8 155:7 symmetries 155:3 symposium 20:17 Synfuels 92:1 swater 12:6</pre>	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20 65:8 65:13 82:24 91:12 118:2 118:16 121:7 124:10 124:13 126:7 126:11 130:22 135:15 162:14 176 24	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19 technique 221:12 techniques 139:17 technology 47:7 56:17 98:6 102:10 147:3
<pre>switches 225:20 Switching 230:25 SWWYTAF 44:17 symmetric 154:8 155:7 symmetries 155:3 symposium 20:17 Synfuels 92:1 system 12:6</pre>	181:6 185:16 193:6 205:22 talked 12:5 12:21 17:17 63:8 64:8 64:20 65:8 65:13 82:24 91:12 118:2 118:16 121:7 124:10 124:13 126:7 126:11 130:22 135:15 163:14 176:24	65:17 97:8 198:17 203:21 technically 148:25 232:18 232:19 technique 221:12 techniques 139:17 technology 47:7 56:17 98:6 102:10 147:3 temperature

172:19 173:9113:19 182:17tests 32:14187:22 211:9186:4 191:11223:11 227:7191:18 191:20192:17 194:24192:17 194:24197:17 115:6197:4 197:24template 213:12238:16temporal 136:18terrain 66:14ten 7:25 23:1288:4 88:423:24 25:1989:25 92:1425:23 26:7 26:2499:25 92:1446:11 61:6 67:2193:15 93:23 94:677:2 82:493:15 93:23 94:682:14 83:7 85:2091:31 91:23 94:6
187:22 211:9 223:11 227:7186:4 191:11 191:18 191:20 192:17 194:24 192:17 194:24 192:17 194:24 195:25 196:7 197:4 197:24 238:1634:2 37:7 40:25 44:15 49:10 50:3 51:17 55:7 55:21 55:7 55:21 56:5 56:19 67:2 81:7template 213:12 tempo 156:8terrain 66:14 84:23 85:2 87:12 89:24 89:25 89:25 92:14 92:17 92:19 93:3 93:5 93:9Texas 163:8 214:6 214:17ten 7:25 23:12 25:23 26:7 26:24 46:11 61:6 67:21 77:2 82:4 82:14 83:7 85:2088:4 191:11 191:18 191:20 192:17 194:24 197:4 197:24 238:16Texas 163:8 214:6 214:17ten 7:25 23:12 25:23 26:7 26:24 46:11 61:6 67:21 77:2 82:4 82:14 83:7 85:2089:25 92:14 93:15 93:23 94:6Texas 163:8 214:6 214:17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
temperatures192:17 194:2449:10 50:3 51:1747:17 115:6195:25 196:755:7 55:21template 213:12197:4 197:2456:5 56:19tempo 156:8terrain 66:1467:2 81:7ten 7:25 23:1289:24 89:2599:17 11:6 13:8 214:623:24 25:1989:25 92:1491:5 93:23 94:625:23 26:7 26:2493:15 93:23 94:657:17 57:18 59:1
47:17 115:6195:25 196:755:7 55:21template 213:12197:4 197:2456:5 56:19tempo 156:8terrain 66:1484:23 85:2 87:12tem 7:25 23:1288:4 88:489:24 89:2523:24 25:1989:25 92:149:5 9:7 9:8 9:1725:23 26:7 26:2489:25 92:149:5 9:7 9:8 9:1746:11 61:6 67:2193:15 93:23 94:633:15 93:23 94:677:2 82:493:15 93:23 94:657:17 57:18 59:1
477.17113.0template213:12tempo156:8temporal136:18ten7:2523:2423:1223:2425:1925:2326:726:1161:677:282:482:1483:785:20
template 213:12238:1656:3 56:19tempo 156:8terrain 66:1467:2 81:7temporal 136:1884:23 85:2 87:12214:17ten 7:25 23:1289:24 89:2591:25 92:1423:24 25:1989:25 92:1491:5 91:7 91:8 91:725:23 26:7 26:2491:5 93:19 93:393:5 93:977:2 82:493:15 93:23 94:657:17 57:18 59:1
tempo 156:8terrain 66:14Texas 163:8 214:6temporal 136:1884:23 85:2 87:12214:17ten 7:25 23:1288:4 88:489:24 89:2523:24 25:1989:25 92:149:5 9:7 9:8 9:1725:23 26:7 26:2492:17 92:19 93:393:5 93:946:11 61:6 67:2193:15 93:23 94:652:1 52:16 57:1277:2 82:493:15 93:23 94:657:17 57:18 59:1
temporal 136:1884:23 85:2 87:12 88:4 88:4214:17ten 7:25 23:12 23:24 25:19 25:23 26:7 26:24 46:11 61:6 67:21 77:2 82:4 82:14 83:7 85:2084:23 85:2 87:12 89:24 89:25 92:14 92:17 92:19 93:3 93:15 93:23 94:6103:0 214:0 214:17thank 6:14 6:18 9:5 9:7 9:8 9:17 11:6 15:13 43:8 51:24 52:1 52:16 57:12 57:17 57:18 59:1
ten 7:25 23:1288:4 88:4thank 6:14 6:1823:24 25:1989:24 89:2525:23 26:7 26:2499:25 92:1446:11 61:6 67:2192:17 92:19 93:377:2 82:493:15 93:23 94:682:14 83:7 85:2091:5 93:23 94:6
23:2425:1925:2326:726:1167:2177:282:483:785:2089:2489:2589:2592:1492:1792:1993:1593:2394:657:1757:1757:1859:10
25:21 20:19 89:25 92:14 9:5 9:7 9:8 9:17 25:23 26:7 26:24 92:17 92:19 93:3 11:6 15:13 46:11 61:6 67:21 93:5 93:9 43:8 51:24 77:2 82:4 93:15 93:23 94:6 52:1 52:16 57:12 82:14 83:7 85:20 93:0 00 05 05 000 57:17 57:18 59:11
23:23:20:7:20:24 92:17:92:19:93:3 11:6:15:13 46:11:61:6:67:21 93:5:93:9 43:8:51:24 77:2:82:4 93:15:93:23:94:6 52:1:52:16:57:12 82:14:83:7:85:20 93:23:94:6 57:17:57:18:59:1
10:11 01:0 07:21 93:5 93:9 43:8 51:24 77:2 82:4 93:15 93:23 94:6 52:1 52:16 57:12 82:14 83:7 85:20 51:24 57:17 57:18 59:1
93:15 93:23 94:6 52:1 52:16 57:12 82:14 83:7 85:20 57:17 57:18 59:11
85.20 86.15 94:20 94:23 95:2 57.17 57.10 55.1
95:9 95:10 95:17 67:16 67:17
95:25 96:8 96:10 67:20 70:9 76:16
96:20 99:12 76:17 77:1 96:25
99:13 99:15 97:3 102:21
167:14 223:13 102:22 106:15
224:20 112:1 112:19
tend 61:4 113:7 117:11
158:15 158:17 126:24 127:11
160:3 160:5 test 51:17 55:6 132:5 132:6
160:9 56:14 77:13 139:20 148:7
tendency 144:14 84:24 91:14 148:8 155:25
161:17 91:15 95:1 156:1 162:9
96:3 96:23 99:25 172:3 174:6 tends 47:14 54:17 115 116 100 5 100 <t< th=""></t<>
72.12 105.3
116:10 202:25 180:9 180:14
160.12 160.13
160:12 160:13 204:3 206:12 198:10 204:21
160:12 160:13 204:3 206:12 198:10 204:21 tenfold 4:10 206:23 207:8 205:7 209:15
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12222:11225:13
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12tested 20:2235:14 237:16
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12tested 20:2235:14 237:16164:22 164:2364:6 130:17222.11
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12tested 20:2235:14 237:16164:22 164:2364:6 130:17237:25 238:1164:24 164:25139:1 141:6238:11
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12222:11222:13 235:13164:22 164:2364:6 130:17237:25 238:1164:24 164:25139:1 141:6238:11165:1 165:17200:19thanking 127:14
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18163:8 164:14tested 20:2235:14 237:16164:22 164:2364:6 130:17237:25 238:1164:24 164:25139:1 141:6200:19165:17 165:20testing 17:21thanking 127:14
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12202:11222:13 235:13163:8 164:14tested 20:2235:14 237:16164:22 164:2364:6 130:17238:11164:24 164:25139:1 141:6238:11165:17 165:17200:19thanking 127:14termination 20:1355:16 63:10117:12 148:13
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12208:11 211:14222:13 235:13164:22 164:2364:6 130:17237:25 238:1164:24 164:2564:6 130:17238:11165:17 165:17200:19thanking 127:14termination 20:1355:16 63:10117:12 148:13terms 30:1375:10 83:8 83:17213:15 222:20
160:12 160:13204:3 206:12198:10 204:21tenfold 4:10206:23 207:8205:7 209:15Tennessee 25:5208:11 211:14213:14 213:18156:5 162:12208:11 211:14222:13 235:13163:8 164:14222:11222:13 235:13164:22 164:2364:6 130:17237:25 238:1164:24 164:25139:1 141:6238:11165:17 165:20testing 17:21thanking 127:14termination 20:1355:16 63:10117:12 148:13terms 30:1375:10 83:8 83:17213:15 222:2041:9 41:13 47:1885:6 102:7 199:1that's 5:6 5:25

7:22 8:2 11:9	224:4 225:24	160:6 160:16
16:9 17:3 17:4	226:10 227:4	161:9 164:17
18:13 19:3	235:17 237:8	164:23 165:10
19:6 20:8	themselves 5.11	165:14 165:23
21:24 21:25		166:1 166:25
22:17 22:19 23:6	theoretic 21:6	167:2 168:1
28:4 31:7	theoretical 20:18	168:2 168:8
31:12 33:1	22:1 27:11	168:12 169:20
38:8 38:19 38:22	153:18	170:22 171:4
39:12 40:20 41:7	thereafter 175:17	171:5 171:9
43:8 44:11 44:13		171:12 171:14
47:25 48:9	thereby 144:20	171:15 171:16
49:6 49:19	therefore 13:18	171:18 171:19
50:5 51:23 59:13	74:17 78:5 142:9	182:20 201:24
62:2 62:3 62:7	230:19 231:18	205:23 207:9
65:5 65:25 67:14	231:25	208:12 208:21
69:9 69:11 69:19	there'll 117:23	209:7 211:7
71:8 71:8		214:9 214:12
71:15 71:15 75:9	there's 5:19 15:9	215:5 219:2
75:12 83:9 86:20	24:15 38:11 43:1	223:23 227:24
88:12 88:14 91:4	44:8 4/:9	they'd 7:3 214:7
92:19 93:14	48:22 49:16	they're 10.25
95:19 96:23	49:17 50:14	13.1 16.14
100:14 102:8	59.16 60.16	$28 \cdot 1$ $45 \cdot 19$ $51 \cdot 11$
111:25 116:8	50.10 50.10	51.11 51.12
122:18 123:15	$61 \cdot 18$ $62 \cdot 1$ $61 \cdot 14$	51.13 62.17
125:13 125:15	66.9 66.13	72:22 76:9
126:2 126:24	67.2 67.10 68.13	106:18 107:21
128:19 132:24	$69 \cdot 7 71 \cdot 17 74 \cdot 11$	115:21 120:19
135:15 135:18	79:3 82:5	121:1 122:8
144.22 140.0	87:22 87:22	152:8 172:9
144.25 $149.9151.14$ 152.12	87:22 88:15	186:21 196:6
154.25 155.7	93:18 93:19	206:10 207:21
166.10 167.8	96:16 100:17	208:7 226:4
167.17 167.20	103:12 111:8	226:16 226:17
169.20 170.22	111:8 115:15	226:20 236:6
174:4 180:8	116:12 116:14	they've 47·20
184:16 185:18	120:22 121:1	58.18 71.2
186:2 186:22	121:8 125:20	211.12
190:7 192:10	128:8 129:21	
192:10 197:11	134:6 134:13	
210:17 214:15	134:17 135:7	48:18 /9:14
216:25 219:23	136:20 139:15	119:1 123:9
221:10 221:18	157:22 158:10	210:22 220:24
222:10 223:14	159:6 159:15	thirds 99:21

thirteen 37:24	175:3	156:17 163:9
125:2	throw 170:15	220:4 228:17
thirty 34:11	173:3	231:23 234:11
36:19 78:18	throwing 90:1	236:5
78:18 78:23	tie 127:7	Tom 210:12
78:24 78:25 86:2 86:8 87:3 88:1	tied 125:24	tomorrow 162:17
90:2 90:6	tion 67.9 75.1	162:19
95:17 96:23	75:5 75:6 75:19	Toni 222:21
98:23	tight 81.10	tons 134:14
thirty-five	82:1 82:13 83:4	134:15 134:17
85:4 105:9	tightens 140.9	tool 39:19
thirtyish 4:17	timeframe 170.10	51:22 57:4
thirty-six	cimeirame 178:12	57:5 191:15
33:17 33:17 34:1	time-intensive	tools 8:3 8:8
35:7 36:1	102:19	141.6 143.12
thoroughly	timeline 175:6	143:21 147:20
58:19 66:16	1/5:11	147:23 155:18
229:24	timely 42:13	192:20 197:25
thoughts 148:21	145:1	230:12 233:24
236:1	Tinto 148:15	234:2 234:4
thousand 165:22	150:12 150:18 150:23 153:22	234.7
thousands 50:18	155:13 155:20	top 25:16 25:18
thread 59:23	155:24	100:14 115:20
Threat 209:20	tip 164:23	115:23 116:1
three-hour 38:1	TKE 210:7	171:6 171:19
three-vear 215.20	212:11 212:22	184:11 208:5
218:7 219:21	212:23 213:2	208:6 225:16
221:1	213:7	topic 66:2 185:18
threshold 19:17	today 4:11 4:12	topics 11:17
121:5 121:9	4:25 5:4 5:14	11:24 12:1 12:20
122:6 122:24	5:17 6:20 9:3	6U:12 175:3 190:21 230:25
124:3 125:4	9:5 10:25 11:4 11.8 12.8	100.21 200.20
126:18 216:9	12:17 15:16 17:8	topograpny 158:17
thresholds 60:20	37:12 51:23 52:6	tops 158:17
threshold's	58:12 68:1	topside 100:21
121:10	68:3 68:23	tortuous 93:16
thrilled 8:22	106:25 124:10 125:14 127:16	total 48:20
throat 198:15	140:22 148:6	129:11 136:1
throughout 158:14	149:13 156:6	136:4 158:7

206:18 209:3	trade 52:8	86:6 86:10
227:10	<pre>trading 27:1</pre>	87:1 90:5 90:6 219:11 219:18
totaled 71:22	traditionally	travola 220.12
totally 160:18	13:14	
163:6	<pre>trailing 38:22</pre>	TRC 43:16 55:10
touch 74:19 142:1	train 45:1	214:1 217:16
181:5 184:6 190·21	trained 39:2	treat 98.10 99.11
touchod 22.0	trajectories	99:14 102:14
	83:20 86:6	188:19
tougn 227:13	trajectory	treating 99:9
tour 125:9	33:10 131:4	188:7 197:11
tournament 162:17	transcribed 5:7	treatment 185:2
toward 81:2 88:21	transcript 238:15	188:12 200:4
144:21 146:1	transcripts 236.9	200:6 200:10
157:9 157:13 160:4 171:7	236:10 238:7	200:10 200:15
100.4 171.7	transfer 97:23	treatments 201:13
190.4	100:9 100:16	treats 98:24
towor 01.22	transit 221:12	146:10
103:25 166:5	transition 9.9	trees 149:5
169:2 169:16		trend 182:10
170:10 170:20		193:19 195:9
170:21 171:2	Transmission	195:20
171:19 172:20	52:17 53:6	trends 182:19
172:23 $173:10174.14$ 174.16	transparent	184:17 190:24
197:19 198:6	144:11 255:10	194:11 194:14
town 165:25 193:8	transport 13:5	194:18 194:19
193:17 193:17	88:9 185:2 197:5	195:10 195:21
196:9 237:8	201:25 204:12	Trespassing
trace 36:12 206:9	206:8 219:11	223:21
traced 95:20	221:15	Triad 162:14
tracer 28:22 29:4	transported 36:18	trial 206:19
36:17 37:23	transporting	trials 206:14
79:18 80:3	201:11 201:16	206:15 209:10
103:18 129:4	203:21	tri-cities 165:25
tracers 62:23	trapezoid 154:20	tried 22:2
track 52:13 85:23	trapped 105:20	31:19 45:6
tracking 44:9	183:23	84:4 84:14 84:16
	travel 24:9 85:20	110:11 114:1

trigger 143:20	27:11 153:11	twenty-seven
Trinity 102:24	153:17 154:8	125:20
103:1 174:24	turbine 135:7	twice 168:10
222:21 228:5	turbulence 103:11	238:2
237:17	172:22 205:12	two-dimensional
Tri-State 52:17	205:13 210:7	27:12
trouble 125:18	turbulent 104:6	two-hour 216:6
212:12	104:7 104:22	216:18 219:19
trucks 152:6	212:23	two-step 101:17
152:7	turn 180:13	101:18 102:14
true 39:12	222 : 15	two-thirds 226:24
40:14 41:9	turned 55:24	Tuler 7.4 14.24
90:8 105:19	turns 50:1 111:10	15:4 125:19
149:24 149:24	205:16 236:23	236:5 237:19
truly 11:10	237:6	type 28:25
145:13	TVA 156:3	29:12 32:21
trust 90:4 174:3	tweaked 93:22	59:14 62:16
try 7:12 10:18	twelve 21.9	98:12 111:14
19:11 23:7 41:20	26:7 29:5	115:6 118:4
57:24 61:12	34:12 35:17	124:14 146:2
61:24 77:21 83:7	35:22 36:7 36:24	1/5:4 1/4:2
117:25 126:22	37:25 42:1 80:13	190.13 212.0
169:10 180:8	80:25 80:25	types 47:11 51:24
181:1 190:10	81:21	5/:21 98:1 99:12
216:4 216:9 224.12 225.8	<pre>twelvefold 27:7</pre>	108:16 151:19
228:3	twelve-hour 36:15	typical 71:16
trying 6.5	twonty 7.25 18.16	72:1 72:9
39·22 70·19	18·20 19·6	135.25 136.25
83:13 115:11	21:1 25:12 42:20	137:3 207:23
124:25 125:24	80:17 86:1	212:18
180:20 183:22	86:7 86:10 86:16	typically 10.1
188:5 188:19	87:2 88:1	100:25 116:7
216:10 216:22	88:22 89:13	211:4 212:20
222:1	89:15 89:21	237:3
Tuesday 12:4 12:8	89:21 90:2	
16:17 17:18 22:8	90:6 90:11 95:17	U
118:17 121:8	114:3 $114:3115\cdot4 122\cdot18$	U.S 4:1 5:13
232:4 237:10		53:17 65:7
23/:14	twenty-five //:8	UARG 139:25 140:3
tuned 15:13	twenty-four	140:7 140:23
tunnel 18:7 26:22	/4:2 115:10	142:4 143:17

144:10 147:3 147:4 147:18 148:5 **UARG's** 140:23 **ultimate** 217:21 ultimately 220:19 unavoidable 40:21 unbiased 140:11 229:23 234:25 uncertain 66:10 66:12 uncertainties 137:11 uncertainty 66:9 94:4 130:12 211:8 212:17 213:3 unchanged 40:25 **unclear** 143:18 uncontrolled 128:3 157:7 undercoke 101:2 underestimated 159:3 211:10 underfunded 233:18 undergone 153:8 underlying 141:4 under-predicted 208:17 underpredicting 130:1 133:14 136:13 underprediction 130:3 130:5 136:23 under-predictions 208:21 under-predicts

130:11 understaffed 233:18 understand 42:9 54:18 56:18 103:3 139:6 149:3 174:7 179:25 187:2 187:4 191:16 236:3 understanding 187:19 187:25 188:4 189:12 understood 31:21 undertaking 69:14 underway 56:19 69:11 underwent 201:15 201:17 unfortunately 6:15 7:23 52:4 115:24 234:16 **uniform** 109:18 109:19 201:23 unintended 118:19 **unique** 104:19 224:1 225:13 **unit** 38:17 215:19 **United** 135:14 163:7 228:19 **units** 202:4 universally 51:13 **University** 154:14 200:18 **Unix** 202:17 202:18 **unless** 66:16 155:6 163:15 **unlike** 183:11

unlikely 141:14 unnecessary 140:19 155:19 230:6 235:2 unobstructed 99:1 **unpaired** 135:21 135:21 136:6 137:4 **unproven** 230:5 unqualified 41:17 unrealistic 186:21 unrealistically 17:16 unreasonable 228:3 un-regulatory 190:17 **unsolved** 103:14 **unsplit** 34:22 unstable 79:25 80:9 82:22 208:23 **unusual** 96:4 185:4 190:3 unverified 15:22 **unwilling** 145:23 upcoming 102:10 125:16 200:25 201:6 203:1 204:17 **update** 178:4 178:7 198:13 199:2 updated 53:1 178:9 **updates** 150:25 227:14 233:21 **updraft** 105:24

upon 119:19	153:6 202:25	217:7 217:20
140:13 141:22	U-square 212:24	217:23 217:23
upper 48:24	usual 205:17	218:9 220:1
49:2 113:1		220:4 220:10
157:10 164:22	75.10 95.7	221:4 221:5
207:15	209.22	values 21:8 49:23
upside 115:25		54:8 75:3
upwards 56:4	153:23 154:14	81:24 114:3 116:4 141:19
upwind 23:17	utilities 53:16	158:7 158:21
66:21 104:10		159:10 160:18
104:25 133:25	UCIIICY 52:18	160:24 161:11
138:25 154:12	53:10 140:4	187:9 188:10
166:16 167:4	215:11	188:20 188:22
169:7 170:23		189:14 194:16
218:7 219:21	V	195:19 195:22
219:23 220:21	valid 130:18	208:12 209:23
221:3 221:15	162:5 219:20	214:21 214:22
UR 60:23	220:8 220:9	214:22 216:25
urban 62.6	220:16 220:17	218:1 219:16
62.11 62.12	221:2 222:5	219:17 220:23
$62 \cdot 17 62 \cdot 21$	validated 126:14	221:3 221:14
103.6 103.7	validating 197:10	229:5
103.9 193.18	malidation 207.2	variability 47:17
197:11 211:6	Validation 207:3	74:14 132:25
225:25 226:2	valley 85:12	134:18 182:21
226:5 226:6	85:13 88:5	189:21 207:23
226:8	92:1 156:5	207:24 230:21
urge 145:14	165:17 165:18 166:19 166:24	<pre>variable 74:10</pre>
147:10	167:8 170:11	<pre>variables 209:22</pre>
urgent 139:15	207:9 207:17	<pre>variation 21:2</pre>
urges 147:3 147:4	valuable 172:9	104:9 104:14
147:18	value 26:24	variations 186:11
useful 49:19	31:6 49:4 81:6	188:11
74:13 90:15	116:3 158:20	varied 23:25
90:22 188:2	158:20 161:12	varies 186.1
200:19 221:24	163:24 164:12	
130r 14.7 78.19	168:1 172:15	variety 81:7 82:6
202.10 202.12	187:11 188:23	173:19 203:11
202.10 202.12	188:24 190:2	various 55:4
202.14 202.13	191:11 195:20	56:12 60:2
	196:13 196:14	63:9 68:14
users 90:22 153:5	214:13 215:2	71:3 71:9
	216:7 217:4	72:19 74:23

80:20 108:21	199:23 200:5	229 : 15
124:11 138:6	200:7 200:8	Virginia 165:11
155:4 172:10	200:9 200:19	194:6
vary 19:1 19:5	200:23 201:1	virtual 124.8
81:6 123:19	201:3 201:5	
varying 45:9 46:6	202:12 202:9	visibility
47:13 109:8	202.13 202.17	53·18 53·19 53·21 53·22 5/1
vast 230:17	212:14 212:17	54:5 54:18
velocities 115.7	versions 44.6	146:12
velocicies 115.7	156:16 199:11	voice 151.22
velocity 100:6	199:16 202:18	
223:8	202:18	volatile 101:4
Venkatram 61:12	versus 12.18 28.3	volume 98:2 102:1
103:2	33:23 49:15	102:4 108:22
vent 185:23	50:14 64:20	109:1 109:7
vents 97:17	84:24 84:25	109:15 111:23
108:10	88:16 89:11	volume-source
venue 15:9	91:13 93:5 137:4	108:3 109:9
	138:4 158:21	volumetric
venues 199:9	159:14 225:25	97:21 100:1
verbally 4:25	vertical 19:12	100:17 101:5
<pre>veritable 31:2</pre>	19:19 19:22	101:13
versa 50:22	21:12 24:10	voluntary 11:9
wersion $15 \cdot 21$	40:19 84:17 99:9	vortices 22:21
27.18 43.12	105:10 106:1	V-square 212:24
43:12 43:15	103.19 108.1 172.19 173.14	
43:21 43:21	211:9 211:11	W
43:23 44:3	212:3 212:6	Wainwright 135:9
44:4 44:12 49:16	via 200:7	wait 150:4
49:17 50:25		198:6 201:3
51:15 51:19 53:1	VIADITICY 14:0	waiting 131.15
53:8 54:9 55:8	viable 221:11	179:22
56·23 57·10 91·3	221:12	
106:12 112:21	vice 9:15 11:2	24.18 231.15
132:23 146:20	50:22	24.10 231.13
175:24 177:25	view 61:19 165:16	wakes 63:5
178:4 187:15	166:16 171:17	walk 223:15
187:16 191:22	204:19	Walters 228:12
198:20 198:21	violating 230:14	228:13 228:16
198:23 198:24	violation 16:8	228:16
199:1 199:12	violations 120.12	warrant 16:24
TAA:57 TAA:55	VIOLACIONS 120:13	

340

warranted 235:5	213:19 231:2	60:21 61:5 62:25
wash 79:20	236:3	63:2 66:19
waen!+ 30.0 50.10	we'll 5:16 5:24	68:8 69:9
71.4 215.2	6:12 15:8	69:21 70:3 70:11
217.15	15:10 34:6	70:18 71:20
217.13	43:3 52:13 57:15	75:18 76:7 76:10
Waste 9:15 117:10	59:1 59:1	/6:14 /6:23
118:11 119:7	76:21 77:6 82:19	83:13 86:13 87:2
watch 66:14	102:21 102:23	0/:0 0/:10
watching 8:25	156:2 174:18	88.18 88.18
water 11.5 11.7	174:20 174:21	88.19 88.19
44.5 44.7	174:22 192:23	88:23 88:23
43.13 40.10	204:13 213:16	89:10 89:13 91:1
447.1	223:6 235:18	93:23 94:20 96:8
WAYLAND 6:14	235:20 236:9	96:9 102:6
ways 31:3 31:5	230:12 237:23	109:10 112:11
45:4 63:9	230.14 230.10	115:9 115:12
63:21 121:16	well-beyond 29:16	116:7 117:14
136:7	well-controlled	120:6 121:12
wear 162:15	68:6 128:2	122:6 126:22
weather 66:7	130:14	127:9 128:12
121.20 157.5	well-defined	128:23 132:19
197:18	100:4	136:18 137:6
\mathbf{r}	well-	139:23 144:4
WEDINALS 110:10	established	149:6 151:12
website 55:10	49:11	163.6 163.11
106:11 113:2	woll-record	165.0 105.11 165.10 167.24
115:3 199:20		168:4 168:9
205:2	144.10	168:19 168:20
websites 203:25	well-	168:20 168:21
we'd 8:7 13:2	represented	169:1 169:3
32:25 33:1 71:19	108:11	169:5 169:6
216:13 227:13	Wenck 117:16	169:7 169:9
wedge 22:19	we're 4:11 5:14	169:10 169:11
Nodposday 220.22	5:14 6:5 7:17	169:13 170:4
	9:21 11:8 14:9	170:20 170:25
week 76:13 97:9	17:13 17:20 21:8	170:25 172:1
169:4 1/1:2	23:8 26:8	172:14 1/3:7
weeks 106:13	26:10 28:10	1/3:12 1/3:13 173.16 172.20
198:15	28:10 32:17	178.15 180.1
weight 176:12	35:19 42:11	182.13 184.18
weighting 32.13	42:25 45:15 52:8	187:4 205:4
	5/:24 $50:1/$	206:17 208:20
welcome 4:4	JO:1/ J9:2 60:19	

209:9 214:3	216:8 217:20	26:3 26:4
215:4 215:20	227:11 235:23	26:19 28:2
216:21 217:17	WGS-84 37.23	28:5 153:25
219:8 219:22		154:1 169:20
220:11 220:15	whatever 112:25	233:5
222:3 222:8	124:12 148:19	widely 49:12
222:9 223:15	1/3:3 205:14	51:12
237:22 237:24	230.10	wider 20.25 23.12
west 43:17	whenever 10:21	27.21 33.19
52:23 53:5 53:14	14:23 100:20	
53:17 53:20	207:20	widest 21:8
55:20 55:25	whereas 18:24	width 17:9 18:1
56:13 56:13	40:13 80:13	18:17 19:5
127:23 146:14	82:10 82:12	20:3 20:20
158:13 207:9	86:12 86:19	21:2 21:3
western 29:7 53:6	99:20 127:3	21:20 22:11
53:16	WHEREUPON 76:22	22:15 23:23
wet 45:11 153:7	235:22 238:21	25:11 27:6 81:10
176:22 192:2	whether 13:8	Wildlife 191:8
227:4	16:14 39:2	Willamette 85:13
we've 5:15 9:24	43:6 69:17	willing 76:9
9:25 26:6	75:6 75:22	145:18 148:1
27:10 51:18 64:7	109:24 131:17	233:18
66:22 70:13	149:16 156:8	wind 10.7 22.10
74:21 75:10	202:5 209:24	willd 18:7 22:19
76:18 77:9 80:23	211:6 224:16	22:20 25:1 25:14
82:18 82:20	226:6	24.22 20.19
91:12 101:22	whole 7:7 49:21	33.19 36.14
102:8 102:13	62:2 63:18	$36 \cdot 21 41 \cdot 3 41 \cdot 10$
106:25 108:17	67:9 86:11 87:23	41:11 41:11
110:17 118:15	94:9 109:19	59:16 60:8 60:18
123:22 125:17	114:17 114:19	61:7 61:17 61:19
125:18 126:7	132:1 133:19	63:25 64:2 64:12
127:5 127:8	181:14 203:13	66 : 8 67 : 9
131:15 135:6	209:10 215:10	77:16 77:17
135:15 138:3	225:16	77:18 77:22 80:6
143:1 144:15	wholeheartedly	80:7 80:19
149:1 150:12	233:11	81:5 82:24 85:15
151.17 152.3	who's 206:5	89:2 90:16 90:17
152:11 154:15	220:15	91:11 99:6
155:14 155:15	wide 10:10	99:9 103:10
163:25 168:18	15:23 16:1 17:16	103:25 104:1
175:8 178:21	17:23 18:9 18:16	104:1 104:1
201:9 206:20	22:25 23:3	104:3 104:0

105:13 105:14	windrose 166:11	21:25 25:4 27:25
105:22 106:9	194:12	30:22 42:5 42:25
109:4 110:22	winds 33.7 36.5	43:2 43:14 43:15
111:1 111:9	36.18 36.22 37.1	43:16 43:19
111:10 112:12	37.0 37.0 40.4	43:22 51:2 53:12
112:17 113:17	37:8 37:8 40:4	56:19 59:17 60:6
113:19 113:22	40:8 40:18 80:21	64:25 65:3 70:13
114:7 114:8	70.16 00.1	73:9 76:5 76:7
114:9 114:16		82:6 103:1 108:6
114:18 114:18	00:0 01:19 02:22	131:25 132:2
114:20 117:4	04:1 05:14	145:5 145:18
120:3 120:5	0/:0 00:4 00:/	145:24 147:20
120:21 120:21	00:16 04:12 06:0	147:22 151:3
121:4 121:5	90:16 94:12 96:9	156:5 156:16
122:5 122:18	103:20 108:24	159:17 162:23
122:23 123:2	110.25 110.10	163:9 164:17
124:1 125:12	110.23 119:10	185:10 190:10
130:16 130:21	120.7 120.16	191:9 192:1
143:2 144:15	120:7 120:10	206:4 213:17
145:22 148:21	120:23 122:7	213:24 214:4
150:19 151:6	122.23 123.4	215:7 215:23
152:14 153:11	123.3 124.3 124.21 126.22	216:9 216:23
153:17 154:8	157.16 207.19	217:16 219:7
161:25 162:1	207.20 211.1	222:4 227:16
166:12 169:24	207.20 211.1	227:21 233:19
170:6 173:8	222.7	worked 58.8
185:25 186:13	232.1	$109.24 \ 117.25$
186:19 186:24	winter 47:15	185:9 217:6
188:6 188:7	wintertime	
189:6 194:10	47:15 54:11	workgroup /0:/
194:22 196:14	wires 171:6	working 12:19
196:23 205:9	150 6	58:18 62:15
205:12 205:15	wise 150:6	90:13 107:12
207:24 208:1	wish 107:9 139:21	132:19 145:14
208:2 210:25	147:15 163:22	146:1 172:7
211:5 212:19	wishes 204:22	175:24 183:5
213:4 213:5		202:1 203:2
213:5 216:11	witnessed 228:24	217:13 218:21
216:14 216:17	wma.org 15:13	workload 176:4
219:9 221:16	wonder 154:19	works 28:9
223:10 $223:11$	Wood 127.10	61:13 65:2 219:6
223:11 232:9 232.17 232.16	127.11 127.13	
232:14 232:10		worksnop 234:18
	work 5:16 7:10	workshops 10:21
Windows 202:17	/:16 8:1 8:2	59:11
	12:13 20:16	

<pre>world 141:14 151:1 155:6 229:1</pre>	y'all 167:23 168:9 168:14 168:22 170:5	<pre>you've 21:16 53:12 97:17 97:19 99:2 128:19 135:11</pre>
worry 57:21	1/2.4 work 160.22	136:2 147:9
worse 21:18		152:4 171:2
46:7 83:25 166:24 167:8	yawı's 168:3	176:24
worse-case 223.25	Y-axis 129:18	y's 109:1
worst 22.22 41.10	year-by 220:17	YY 129:16
worst 25:25 41:18	yearly 147:6	
worth 38:16 73:25 84:11 169:17 174.20	year's 84:11 234:17	Z Zale 213:25
wrap 6:17 188:5	Yegnan 180:14 180:17 190:9	zero 35:1 50:22 78:24 120:23
191:4 197:13 198:9	yellow 73:4 91:25 160:20 181:23	zooming 92:3 166:13
WRF 44:5 211:23 211:25 212:7 212:16 212:17 212:21	<pre>yesterday 5:2 5:20 6:25 8:10 8:24 14:12 30:2 38:12 56:18</pre>	z's 109:2
write 187:17	60:8 63:9	
188:3	64:20 67:24 68:4	
write-up 61:22	68:11 68:21 70:6	
writing 187:7	124:11 125:19 199·23 200·11	
<pre>written 58:1 140:25 155:23 238:8</pre>	yesterday's 199:13 200:25	
wrong 34:22 37:24 50:20 50:20	yet 14:16 72:1 131:12	
133:21 151:24	yields 163:15	
163:23 219:3	you'll 36:6	
wrote 59:21	46:1 115:15	
W_{-2}	139:4 163:13	
Wesquare 212:24	166:11 215:12	
51:3 131:16	227:6 227:6 238:16	
X	yours 97:2 162:10	
X-axis 129:16	205:6	
	yourself 140:1	
Y	140.12 230.10	