

June 15, 2021

P:\Projects\Beazer\Grenada\EPA offsite soil Invest\RTC EPA 4-15-21 comments on off-site data.docx

U.S. Environmental Protection Agency, Region 4 61 Forsyth Street, SW Atlanta, GA 30303

Attn: David Egetter, Chief

RCRA Corrective Action Section

Land, Chemicals and Redevelopment Division

RE: Response to EPA's April 15, 2021 Comments on the

January 27, 2021 Data Submittal Regarding

2020 Additional Off-Site Sampling Koppers Drive and Bailey Road

Grenada, Mississippi

Dear Mr. Egetter:

On behalf of Beazer East, Inc. (Beazer) and Koppers Inc. (Koppers), this letter provides responses to comments in the United States Environmental Protection Agency's (EPA) email dated April 15, 2021, regarding the data collected from implementation of the EPA approved 2020 Work Plan for Additional Off-Site Sampling, Koppers Drive and Bailey Road, Grenada, Mississippi (2020 Work Plan) that was submitted electronically to the EPA on January 27 and February 3, 2021. Please note that the comparison tables referenced in the EPA's comments (below) have been renumbered in the attached Sampling Report, 2020 Additional Off-Site Sampling, Koppers Drive and Bailey Road, Grenada, Mississippi.

The EPA's April 15, 2021 comments have been reproduced below in italic font, each comment is followed by the applicable response.

Comment 1. Tables 1, 2B, 3, 4B, 5, 6B – Noncancer-Based RSLs

The notes should state that these values are based on a Hazard Quotient (HQ) of 1. EPA generic RSLs can be based on HQ of 0.1 or 1 (EPA 2020).

As requested, the notes associated with tables that present noncancer-based RSLs have been revised.

Comment 2. Data Tables

Many of the data tables have some values that are preceded by a 'less than' sign (e.g., "< 6.5"). Does this indicate a non-detect? If so, is the value listed the detection limit or $\frac{1}{2}$ the detection limit? Please include explanation.

Tables presenting data have been revised to include a note that identifies the following:

< 65 = Result is less than the identified (65) reporting limit for that sample..

U.S. Environmental Protection Agency, Region 4 RCRA Corrective Action Section David Egetter June 15, 2021 Page 2

Comment 3. Tables 2A, 2b, 4 - TEFs for Dioxins/Furans

In addition to citing van den Berg et al., 2006 for the TEFs, the notes should also cite the 2010 EPA document that recommends these values (see reference below).

As requested, the notes associated with TEFs have been revised in the applicable tables.

Comment 4. Table 6A, Comparison of Drainage Way PAH concentrations to Cancer-Based Levels for Residential Exposure to Soil

Sample DW206SS reports a level of BaP-TE of 34,381 ug/kg which is appropriately designated as exceeding the upper end of the risk range for residential exposure to soil (11,000 ug/kg). No comparison to modified risk-based level has been done for this elevated level as was done for the drainage way TCDD-TEQ concentrations that exceeded the TEQ of 51 pg/g. Koppers/Beazer needs to calculate and submit the modified risk-based levels for BaP-TE concentrations using exposure frequencies of 105 days per year and 12 days per year, respectively.

As requested, a comparison of sample results to modified BaP-TE cancer risk-based levels has been added to what is now Table 12 of the Sampling Report. The modified BaP-TE cancer risk-based levels assuming an exposure frequency of 105 days per year range from 367 to 36,667 ug/kg. The modified BaP-TE cancer risk-based levels assuming an exposure frequency of 12 days per year range from 3,208 to 320,800 ug/kg. The modified screening levels correspond to EPA's risk range of 1x10⁻⁶ to 1x10⁻⁴. The BaP-TE result at sample DW206SS (34,381 ug/kg) is within the range of both of these modified cancer risk-based screening levels.

Comment 5. Table 6B, Comparison of Drainage Way BaP-TE concentrations to Noncancer-Based Level for Residential Exposure to Soil

Sample DW206SS reports a level of Benzo(a)pyrene of 20,000 ug/kg which is appropriately designated as exceeding the comparison level based on residential exposure to soil (18,000 ug/kg). No comparison to modified risk-based level has been done for this elevated level as was done for the drainage way TCDD-TEQ concentrations that exceeded the TEQ of 51 pg/g. Koppers/Beazer needs to calculate and submit the modified risk-based levels for BaP-TE concentrations using exposure frequencies of 105 days per year and 12 days per year, respectively.

As requested, a comparison of sample results to modified BaP-TE non-cancer levels has been added to what is now Table 13 of the Sampling Report. The modified BaP non-cancer levels assuming exposure frequencies of 105 days per year and 12 days per year are 60,000 and 525,000 ug/kg, respectively. The modified screening levels correspond to a Hazard Index of 1. The BaP result at sample DW206SS (20,000 ug/kg) is below these modified non-cancer risk-based screening levels.

U.S. Environmental Protection Agency, Region 4 RCRA Corrective Action Section David Egetter June 15, 2021 Page 3

Finally, as requested by EPA, this letter also transmits the *Sampling Report*, 2020 Additional Off-Site Sampling, Koppers Drive and Bailey Road, Grenada, Mississippi. The analytical results of the 2020 sampling event indicate no unacceptable risks to residents along Koppers Drive and Bailey Road to PAHs and dioxins/furans detected in the residential parcel and drainage way samples. Based on our conversation of May 6, 2021, it is our understanding that no further action will be required.

If you have any questions regarding the information contained in this letter, please contact Mike Bollinger at (412) 208-8864, Linda Paul at (412) 227-2434, or me at (916) 853-4526.

Sincerely,

Tetra Tech, Inc.

Jennifer A. Abrahams, P.G.

Associate

Senior Hydrogeologist

Attachment

ec: Harbhajan Singh, EPA

Kevin Koporec, EPA Mike Bollinger, Beazer Linda Paul, Koppers

Paul Anderson, Arcadis/Chelmsford

Danielle Pfeiffer, Arcadis Krista Caron, MDEQ/Jackson

ATTACHMENT

SAMPLING REPORT 2020 ADDITIONAL OFF-SITE SAMPLING KOPPERS DRIVE AND BAILEY ROAD GRENADA, MISSISSIPPI

SAMPLING REPORT 2020 ADDITIONAL OFF-SITE SAMPLING KOPPERS DRIVE AND BAILEY ROAD

GRENADA, MISSISSIPPI

Prepared for:

Beazer East, Inc. 600 River Avenue Suite 200 Pittsburgh, PA 15212

and

Koppers Inc. 436 Seventh Avenue Pittsburgh, PA 15219

June 15, 2021

TABLE OF CONTENTS

1.0	INTF	RODUCTION	1
2.0	BAC	CKGROUND	2
3.0	SAM	IPLING ACTIVITIES	3
	3.1	FIELD ACTIVITIES	
		3.1.1 2020 Work Plan Sample Locations	3
		3.1.2 Residential Parcel Soil Samples	
		3.1.3 Drainage Way Samples	5
		3.1.4 Sample Identification Nomenclature	
	3.2	LABORATORY ANALYSES	
	3.3	QA/QC SAMPLES	6
	3.4	CHANGES OR CHALLENGES DURING SAMPLING	
4.0	ANA	ALYTICAL RESULTS	8
5.0		MAN HEALTH SCREENING EVALUATION	
	5.1	SCREENING BENCHMARKS	9
	5.2	COMPARISON TO BENCHMARKS	9
		5.2.1 Bailey Road Samples	10
		5.2.2 Koppers Drive Samples	10
6.0	CON	ICLUSIONS	
7.0	REF	ERENCES	13

TABLES

Table 1A	PAH Soil Results, Koppers Drive
Table 1B	PAH Soil Results, Bailey Road
Table 2A	Dioxin/Furan Soil Results, Koppers Drive
Table 2B	Dioxin/Furan Soil Results, Bailey Road
Table 3	PAH Equipment Blank Results
Table 4	Dioxin/Furan Equipment Blank Results
Table 5	Bailey Road Residential Parcel and Drainage Way TCDD-TEQ Data Comparison
Table 6	Bailey Road Residential Parcel and Drainage Way BaP-TE Data Comparison
Table 7	Bailey Road Residential Parcel and Drainage Way PAH Data Comparison
Table 8	Koppers Drive Residential Parcel TCDD-TEQ Data Comparison
Table 9	Koppers Drive Residential Parcel BaP-TE Data Comparison
Table 10	Koppers Drive Residential Parcel PAH Data Comparison
Table 11	Koppers Drive Drainage Way TCDD-TEQ Data Comparison
Table 12	Koppers Drive Drainage Way BaP-TE Data Comparison
Table 13	Koppers Drive Drainage Way PAH Data Comparison

FIGURES

Figure I	General Site Location
Figure 2	2020 Additional Off-site Sampling Locations
Figure 3	2020 Additional Off-site Sampling Results

APPENDICES

Appendix A	Field Sampling Notebook
Appendix B	Photographic Sampling Log
Appendix C	2020 Analytical Laboratory Data
Appendix D	2020 Data Validation Reports

1.0 INTRODUCTION

On behalf of Beazer East, Inc. (Beazer) and Koppers Inc. (Koppers), this report presents and interprets the results of soil sampling completed in residential areas west of the Koppers property in Grenada, Mississippi (Site). This sampling was performed in accordance with the 2020 Work Plan for Additional Off-site Sampling, Koppers Drive and Bailey Road, Grenada, Mississippi (2020 Work Plan) (Tetra Tech, 2020), approved by the United States Environmental Protection Agency Region 4 (EPA) on March 5, 2020. As documented to the EPA in on-going email correspondence, the schedule to implement the 2020 Work Plan was delayed until the end of September 2020, due to health and safety concerns associated with the COVID 19 pandemic.

This report includes: a brief background to the soil sampling presented in Section 2; the sampling activities described in Section 3; the analytical results presented in Section 4; the human health screening evaluation in Section 5; the conclusions summarized in Section 6; and, the references listed in Section 7.

2.0 BACKGROUND

Soil samples were collected along Koppers Drive and Bailey Road in Grenada, Mississippi, approximately two miles south-southeast of the commercial portion of Grenada, Mississippi, immediately east of U.S. Highway 51, as shown in Figure 1. These roads are located hydraulically and hydrologically upgradient and immediately west of the Site. The 171-acre Site is the location of a former wood treating facility that operated from 1904 through 2012. Remediation and post-closure activities at the Site are being conducted under the Hazardous and Solid Waste Amendments (HSWA) portion of the Resource Conservation and Recovery Act (RCRA) Permit, EPA No. MSD 007 027 543 issued by the EPA. The Site is approximately 1.2 miles long trending northwest to southeast and 0.3 miles wide. The Illinois Central Railroad runs along the western Site boundary. Fields and woodlands form the eastern boundary along the southern and central portions of the Site with residential areas at the northern end of the Site.

3.0 SAMPLING ACTIVITIES

This section describes the sampling activities performed during implementation of the 2020 Work Plan. This section discusses the field activities, laboratory analyses, field quality assurance/quality control (QA/QC) samples, and identifies changes from the 2020 Work Plan (with EPA approval).

3.1 Field Activities

The soil sampling activities were implemented in the Koppers Drive and Bailey Road, Grenada, Mississippi vicinity from September 28 through October 4, 2020, with direct oversight from EPA during the first five days of sampling. EPA obtained signed access agreements in 2019 that allowed sampling on each private property identified in the 2020 Work Plan. Because health and safety concerns associated with the COVID 19 pandemic delayed implementing the 2020 Work Plan, the EPA obtained verbal consent from all the owners, renters and responsible parties in September 2020 to confirm access, with the exception of the owner of 77 Koppers Drive. Therefore, at the direction of the EPA, no sampling was performed at the 77 Koppers Drive location.

The soil sampling activities conducted during this field event were performed in accordance with the standard operating procedures (SOPs) identified in the 2020 Work Plan. The sampling activities included: establishing a decontamination station on the Site; maintaining a detailed field notebook to document sampling information; photographing each sample location; documenting the global positioning system (GPS) coordinates for every sample location; collecting the sample; and, packing and shipping the samples under chain-of-custody documentation to the analytical laboratory. An electronic copy of the field sampling notebook is provided in Appendix A and an electronic copy of the photographic sampling log is provided in Appendix B. One drum of spent decontamination water was generated during this field mobilization; the water was characterized, transported and disposed off-site in accordance with local, state, and federal regulations.

The 2020 Work Plan identified specific sampling locations and types of soil samples to be collected as shown in Figure 2.

This subsection provides information regarding the 2020 Work Plan sample locations, the two types of soil samples collected: residential parcel soil samples and drainage way soil samples, and, the sample identification nomenclature.

3.1.1 2020 Work Plan Sample Locations

A total of thirty-six sampling locations were identified in the 2020 Work Plan. Twenty-six locations were identified to be sampled as residential parcel soil samples (described in Section 3.1.2) and ten locations were identified to be sampled as drainage way samples (described in Section 3.1.3).

3.1.2 Residential Parcel Soil Samples

The residential parcel soil samples (five-point composites) were collected from 0- to 6-inches below surface from 5 distinct locations in each designated parcel. The residential parcel was divided into four quadrants of approximately equal area. One soil sample was collected from each of the four quadrants as calculated below. The fifth sample was collected from the entire designated area/parcel following the random number method described below.

The soil sample location in a quadrant was chosen by multiplying a random number between zero and one by the length of the quadrant and multiplying a different random number by the width of the quadrant. The sampling point was measured from the outer boundary of the quadrant, measurements starting at the following locations:

- The southwest corner of designated parcels located on the north side of Koppers Drive
- The northwest corner of designated parcels located on the south side of Koppers Drive
- The northern corner of designated parcels located on Bailey Road

The 2020 Work Plan SOP for Shallow Soil Sampling identified using the intersection of all four quadrants as the starting point for measuring each soil sample location; however, often the residential home was located in this vicinity. Therefore, the starting location defined above was identified in the field to be more reliable. The soil sample location in a quadrant was measured as described above. Measuring for the fifth sample in each residential parcel started at the locations specified above by applying separate randomly generated numbers to the length and width of the entire parcel.

Clean, decontaminated equipment was used to collect the first of the five distinct samples at each residential parcel. This same equipment was used to collect the remaining four samples for that residential parcel without decontaminating the equipment. The five distinct soil samples collected from each five-point composite area were field homogenized together and one sample was submitted to the laboratory for analysis. The intent of the field homogenization was to thoroughly mix or homogenize soil by 'quartering' to ensure that the sample was representative of the soil media. Foreign objects, such as nails or gravel were removed from the stainless-steel bowl prior to homogenization. The homogenization procedure followed the protocol identified in Appendix A of the 2020 Work Plan.

Residential parcel 12 (#225 Koppers Drive) was bisected and treated as two (2) distinct parcels; a five-point composite sample was collected from each of the two parcels. Parcel 12 was divided perpendicular to Koppers Drive; the division bisected the length of Parcel 12 along Koppers Drive as identified on Figure 2.

Five-point composite samples were collected at six (6) residential parcels along Bailey Road. A portion of each of the six (6) Bailey Road composite samples were field composited into one representative Bailey Road composite sample that was submitted for fast turnaround analysis. The six (6) individual Bailey Road five-point composite residential parcel samples were

sent to the laboratory and held for potential analysis, pending review of the results of the representative Bailey Road composite sample.

3.1.3 Drainage Way Samples

The drainage way soil locations were intended to provide soil samples from areas subject to storm water flow and/or conveyance. Accordingly, the drainage way soil samples were collected at or near the lowest point within the drainage ditch or swale identified for sampling. The drainage way soil samples were not collected in flowing or standing water. Drainage way soil samples were collected from 0- to 6-inches below surface. Sub-samples were collected from 0- to 6-inches below surface at each sampling location from five non-overlapping locations spaced approximately 18-inches apart within a six-foot length oriented parallel to the flow in the drainage way. The five sub-samples were field homogenized together and one sample was submitted for analysis. Clean, decontaminated equipment was used to collect the first of the five sub-samples from 0- to 6-inches below surface at each location. This same equipment was used to collect the remaining four sub-samples from 0- to 6-inches below surface at that location without decontaminating the equipment.

3.1.4 Sample Identification Nomenclature

Site-specific sample identification numbers were assigned to each primary and QC sample prior to sample collection. Each soil sample location was identified in the field log book and on the sketched site map for that location, using a unique alpha-numeric code following the identification scheme described below. These identification numbers can be used to interpret sample locations presented on the tables and figures in this report.

The site-specific sample identification numbers for the residential parcel soil samples (five-point composite) consisted of the following:

- Location code: 'KD' for Koppers Drive and 'BR' for Bailey Road.
- Address code: three digit street address, taken from Figure 2 (e.g., 10 Koppers Drive would be 'KD010'). The representative Bailey Road composite sample, composited from all 6 individual Bailey Road five-point composites, was identified by the number 500 (e.g. BR500).
- Sample matrix code: SS for soil sample (e.g., 'KD216SS')...
- Sample Type: primary samples did not require any additional letters for the sample type designation, matrix spike and matrix spike duplicate samples were designated with MS/MSD, and equipment blanks were designated with EB.
- Duplicate Samples: were submitted to the laboratory "blind" and thus retained all the same codes as the primary sample, with the exception of the address code. Duplicate samples were assigned numeric order codes greater than 870. The site-specific location of the duplicate samples was documented in the field log book.

The site-specific sample identification numbers for the drainage way soil samples consisted of the following:

- Location code: 'DW' for drainage way soil sample.
- Numeric order code: the drainage way soil samples were identified in consecutive order using a three digit number starting with 201 to 210 (e.g., first sample collected was 'DW201').
- Sample matrix code: SS for soil sample (e.g., 'DW201SS').

3.2 Laboratory Analyses

All of the samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) and polychlorinated dibenzo-p-dioxins/polychlorinated dibenzo furans (dioxins/furans). As identified in the 2020 Work Plan, the samples were analyzed for seventeen priority pollutant PAH parameters using EPA Method 8270 and for seventeen dioxin/furan congeners using EPA Method 8290. Eurofins TestAmerica in Pittsburgh, Pennsylvania performed the analyses. Approximately of 95% of the analytical data were submitted for Stage 2B validation and 5% for Stage 4. The laboratory analytical data were verified and validated in accordance with procedures described in Appendix B of the 2020 Work Plan; *National Functional Guidelines for High Resolution Superfund Methods Data Review*, (EPA, 2016); *National Functional Guidelines for Superfund Organic Methods Data Review*, (EPA, 2017); and laboratory methods.

3.3 QA/QC Samples

The QA/QC samples collected for analysis during this investigation included equipment blanks, duplicate samples and matrix spike and matrix spike duplicate (MS/MSD) samples. The QA/QC samples were analyzed for the same parameters as the investigative samples. Equipment blanks were collected once per day by pouring laboratory-supplied, reagent-grade water over properly decontaminated sample equipment and collecting it in one liter amber bottles for analysis. A total of 7 equipment blank samples were collected. One field duplicate soil sample was collected for every 20 soil samples collected. Two duplicate residential parcel soil samples (five-point composites) were collected. The residential parcel soil duplicates (five-point composites) consisted of two complete sets of samples collected at each of the five locations; the primary and duplicate sample were homogenized together. From each location, the homogenized soil was used to fill two sets of sample containers (per analysis).

One set of MS/MSD soil samples were collected for every 20 soil samples collected for PAH and dioxin/furan analysis. Two MS/MSD sets of samples were collected during the residential parcel soil sampling. The residential parcel soil MS/MSD samples consisted of two complete sets of samples collected at each of the five locations; the primary sample and the MS/MSD samples were homogenized together. From each location, the homogenized soil was used to fill three sets of sample containers (one each for the sample, the MS, and the MSD).

3.4 Changes or Challenges During Sampling

Changes were required for two sampling locations identified in the 2020 Work Plan and a challenge was experienced in the field while implementing the 2020 Work Plan. Two specific changes to the sampling locations in the 2020 Work Plan were implemented, with concurrence from EPA. Drainage way sample DW206 was initially located along #77 Koppers Drive;

however, the field team identified there was no drainage way located along this parcel (EPA parcel #6). The field team identified a drainage way was present along the #123 Koppers Drive parcel (EPA parcel #8). Tetra Tech notified the EPA by email dated October 2, 2021 of the proposed location change; the EPA concurred by email the same day. As mentioned in Section 3.1, the EPA was unable to obtain verbal confirmation for sampling consent from the owner of #77 Koppers Drive; accordingly, this residential parcel was not sampled during the implementation of the 2020 Work Plan.

A sampling challenge experienced during the field mobilization included one residential parcel owner requesting to select the sample location for one of the five samples collected on the parcel. Selecting a sample location would violate the random, unbiased sampling protocol defined in the 2020 Work Plan. Tetra Tech discussed this request with the EPA, and the sampling team was directed to proceed implementing the approved 2020 Work Plan.

4.0 ANALYTICAL RESULTS

This section presents the analytical results for all samples collected during the September and October 2020 field sampling event. As mentioned in Section 3.2, approximately 95% of the dataset were subject to Stage 2B validation and 5% to Stage 4 validation. The validated data are presented in both tabular and graphical formats. The PAH soil results are presented in Tables 1A and 1B and the dioxin/furan soil results are presented in Tables 2A and 2B. The equipment blank results for PAHs and dioxins/furans are included in Tables 3 and 4, respectively. The analytical laboratory data are provided in electronic format in Appendix C and the data validation report is provided in electronic format in Appendix D.

The PAH data presented in Tables 1A, 1B, and 3 include the benzo(a)pyrene toxic equivalent (BaP-TE), which was calculated using the toxic equivalency factors (TEFs) and methodology presented in the EPA guidance document *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons*, July 1993 (EPA, 1993). Potentially carcinogenic PAHs are assumed by EPA to have analogous modes of action (similar effects) (EPA, 1993). TEFs have been developed to relate the potency of individual PAHs assumed by EPA to be potentially carcinogenic to the potency of benzo(a)pyrene (BaP). The concentration of each individual potentially carcinogenic PAH at a particular sampling location was multiplied by its respective TEF to estimate the BaP-TE associated with that particular PAH. The BaP-TE associated with each individual potentially carcinogenic PAH at that location was then summed to derive the BaP-TE concentration for that sampling location (Tables 1A, 1B and 3). If one of the potentially carcinogenic PAHs was not detected at a particular location, half of the detection limit for that potentially carcinogenic PAH was used as the concentration in the estimation of BaP-TE for that sample.

The dioxin/furan data presented in Tables 2A, 2B, and 4 include the 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent (TCDD-TEQ), which was calculated using TEFs developed by van den Berg, et al., 2006 and recommended by the EPA in *Recommended Toxic Equivalency Factors* (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds (EPA, 2010). EPA assumes that chlorinated dioxin and furan congeners have analogous modes of action (similar effects) and has adopted TEFs developed by van den Berg et al. (2006) to estimate the TCDD-TEQ concentration present at a particular sampling location (Tables 2A, 2B, and 4). As with PAHs, the dioxin and furan TEFs relate the potential potency of the different dioxin and furan congeners assumed by EPA to be potentially toxic to the potency of 2,3,7,8- tetrachlorodibenzo(p)dioxin (2,3,7,8-TCDD) (van den Berg et al., 2006). Individual dioxin and furan congener concentrations in each sample were multiplied by their respective TEFs and then the resulting products were summed to estimate the total TCDD-TEQ for each sample. If one of the congeners was not detected in any particular sample, half of the detection limit for that congener was used as the concentration in the calculation of TCDD-TEQ for that sample.

The soil analytical results reported in Tables 1A, 1B, 2A, and 2B are presented in graphical format in Figure 3. The evaluation and interpretation of the data are presented in Section 5.0.

5.0 HUMAN HEALTH SCREENING EVALUATION

5.1 Screening Benchmarks

The TCDD-TEQ concentrations in samples from residential parcels along Bailey Road and Koppers Drive were compared to the EPA Noncancer Residential Regional Screening Level (RSL; EPA, 2021) of 51 picograms per gram (pg/g). BaP-TE concentrations in samples from residential parcels were compared to the EPA Cancer Residential RSL range for benzo(a)pyrene (EPA, 2021) of 110 micrograms per gram (µg/kg) to 11,000 µg/kg, which corresponds to EPA's allowable risk range of one in one million ($1x10^{-6}$) to one in ten thousand ($1x10^{-4}$) (EPA, 1991). Individual PAH concentrations in samples from the residential parcels were compared to available EPA Noncancer Residential RSLs (EPA, 2021). Results from drainage way samples along Bailey Road were also compared to these EPA Residential RSLs for TCDD-TEQ, BaP-TE, and individual PAHs.

Drainage way concentrations along Koppers Drive were compared to Modified Residential RSLs that are more representative of potential exposures at drainage way sampling locations. Specifically, the modification to the EPA Residential RSLs includes the use of a more representative but still conservative exposure frequency for all drainage way samples.

The EPA Residential RSLs assumes a resident is exposed to soils 350 days per year. While this may represent an upper bound potential exposure to constituents in surface soils in a residential yard, the drainage way sample locations are likely to have a much lower exposure frequency (EF). Drainage ways are generally located at the edge of the front yard adjacent to the road and comprise a small fraction (less than 10%) of a property. Consequently, residents are likely to have limited exposure to drainage way soils. To account for the expected reduced exposure frequency, the default residential soil assumption of an EF of 350 days per year used in the EPA Residential RSLs was reduced to 12 days per year for comparison with drainage way samples to calculate Modified Residential RSLs.

Additionally, the EPA Residential RSLs were modified to screen drainage way samples along Koppers Drive using a maximum allowable EF (105 days per year) derived based on the highest detected TCDD-TEQ concentrations at drainage way sample DW205SS (170 pg/g) along Koppers Drive. The resulting Modified Residential RSLs for drainage way samples with the EF adjustment of 105 days per year are presented in Tables 11, 12, and 13 for TCDD-TEQ, BaP-TE, and individual PAHs, respectively.

5.2 Comparison to Benchmarks

The following sections summarize the comparison of analytical results for residential parcels and drainage ways to the screening levels defined in Section 5.1. As presented below, the results indicate no unacceptable risks to residents along Koppers Drive and Bailey Road to dioxins/furans and PAHs in the residential parcels and drainage way samples.

5.2.1 Bailey Road Samples

Results of all residential parcel and drainage way samples for TCDD-TEQ are below the EPA Noncancer Residential RSL (Table 5) of 51 pg/g and as referenced in the notes to Table 5 are within the EPA Cancer Residential RSLs corresponding to the acceptable risk range of 1 x 10^{-4} to 1 x 10^{-6} .

Results of all residential parcel and drainage way sample BaP-TE results are below or within the EPA Cancer Residential RSLs corresponding to the acceptable risk range of 1 x 10^{-4} to 1 x 10^{-6} (110 mg/kg to 11,000 mg/kg; Table 6). The results of all residential parcel and drainage way samples for individual PAHs are below their respective EPA Noncancer Residential RSLs (Table 7).

5.2.2 Koppers Drive Samples

Results of all residential parcel samples for TCDD-TEQ are below the EPA Noncancer Residential RSL (Table 8) of 51 pg/g and as referenced in the notes to Table 8 are also below or within the EPA Cancer Residential RSLs corresponding to the acceptable risk range of 1 x 10^{-4} to 1 x 10^{-6} .

Results of all residential parcel samples for BaP-TE are below or within EPA Cancer Residential RSLs corresponding to the acceptable risk range of 1×10^{-4} to 1×10^{-6} (Table 9). The results of all residential parcel samples for individual PAHs are below their respective EPA Noncancer Residential RSL (Table 10).

As indicated above, drainage way concentrations were compared to Modified Residential RSLs that are more representative of potential exposures at drainage way sampling locations. Specifically, the modification to the EPA Residential RSLs includes the use of a more representative but still conservative exposure frequency of 12 days per year for all drainage way samples. Results of all drainage way samples for TCDD-TEQ are below the Modified Noncancer Residential RSL (1,148 pg/g) when an exposure frequency of 12 days per year is assumed which is representative of potential exposures to soils in a drainage way next to a road (Table 11). As referenced in the notes to Table 11, all drainage way samples are within the EPA Residential RSL range corresponding to the acceptable risk range of 1 x 10⁻⁴ to 1 x 10⁻⁶ without modifications to the exposure frequency. In addition, as shown in Table 11, exposures to TCDD-TEQ concentrations within the drainage ways in Koppers Drive are acceptable when the exposure frequency is as often as 105 days per year. Exposures as often as 105 days per year are not likely in drainage ways that are generally located adjacent to the road and comprise a small fraction (less than 10%) of a property.

Using the default exposure assumptions, all BaP-TE results are within the EPA Cancer Residential RSLs for BaP corresponding to the acceptable risk range of 1 x 10⁻⁴ to 1 x 10⁻⁶ (Table 12) with exception of one location (DW206SS) that appears to be a clear outlier. The results of all drainage way samples for individual PAHs are below the EPA Noncancer Residential RSL (Table 13) with exception of the same location (DW206SS) that appears to be a clear outlier. BaP-TE and individual PAH results of all drainage way samples are below or

within the Modified Cancer and Noncancer Residential RSLs when an exposure frequency of 12 days per year is assumed which is representative of potential exposures to soils in a drainage way next to a road (Table 12 and Table 13). In addition, as shown in Tables 12 and 13, BaP-TE and individual PAH results of all drainage way samples are below or within the Modified Cancer and Noncancer Residential RSLs when the exposure frequency is as often as 105 days per year.

6.0 CONCLUSIONS

This report documents that the sampling activities were performed in accordance with the requirements of the EPA-approved 2020 Work Plan and approved field changes. The report presents and interprets the analytical results for soils sampled along Koppers Drive and Bailey Road in Grenada, Mississippi. The 2020 sampling event included soils collected from 36 locations in residential parcels and drainage ways located hydraulically and hydrologically upgradient and immediately west of the Site. The analytical results of the 2020 sampling event indicate no unacceptable risks to residents along Koppers Drive and Bailey Road to dioxins/furans and PAHs detected in the residential parcel and drainage way samples.

7.0 REFERENCES

EPA, 1991. *Memorandum: Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions*, Office of Solid Waste and Emergency Response Directive 9355.0-30, April 1991.

EPA, 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons, EPA 600-R-93-089, July 1993.

EPA, 2010. Recommended Toxic Equivalency Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. EPA-100-R-10-005. December 2010.

EPA, 2016. National Functional Guidelines for High Resolution Superfund Methods Data Review. EPA-542-B-16-001. April 2016.

EPA. 2017. *National Functional Guidelines for Superfund Organic Methods Data Review*. EPA-540-R-2017-002. January 2017.

EPA, 2020. Approval of 2020 Work Plan for Additional Off-site Sampling, Koppers Drive and Bailey Road, Grenada, Mississippi, dated March 5, 2020. Letter from Ms. Meredith Anderson, Chief, RCRA Programs and Cleanup Branch, EPA to Mr. Michael Bollinger, Environmental Manager, Beazer East, Inc. March 2020.

EPA, 2021. Regional Screening Levels, May 2021. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables, May 2021.

Tetra Tech, 2020. 2020 Work Plan for Additional Off-Site Sampling, Koppers Drive and Bailey Road, Grenada, Mississippi. Prepared for Beazer East, Inc. and Koppers, Inc. February 2020.

Van den Berg, M; Birnbaum, LS; Denison, M; DeVito, M; Farland, W; Feeley, M; Fiedler, H; Hakansson, H; Hanberg, A; Haws, L; Rose, M; Safe, S; Schrenk, D; Tohyama, C; Tritscher, A; Tuomisto, J; Tysklind, M; Walker, N; Peterson, RE, 2006. *The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicol Sci* 93:223-241.

TABLES

Table 1A
PAH Soil Results
Koppers Drive
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	ВаР-ТЕ	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)- anthracene	Benzo(a)pyrene	Benzo(b)- fluoranthene
DW201SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/2/2020	μg/Kg	1,521	37 J	450	630	1,000	880	1,800
DW202SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	3,798	< 420	1,100	1,300	2,200	2,100	4,200
DW203SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	552	< 88	140	180	330	290	630
DW204SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	2,441	< 270	550	830	1,600	1,400	2,700
DW205SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	3,914	< 390	1,000	1,400	2,700	2,200	4,700
DW206SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	34,381	1,300 J	8,400	13,000	18,000	20,000	39,000
DW207SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	3,680	< 410	910	1,300	2,200	2,100	4,300
DW208SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	1,937	< 330	610	760	1,100	1,000	2,200
KD010SS	10 Koppers Dr.	0 - 6	Yard	9/30/2020	μg/Kg	1,805	34 J	490	650	920	1,100	2,100
KD010SS	10 Koppers Dr.	0 - 6	Duplicate	9/30/2020	μg/Kg	1,698	43 J	480	640	1,200	990	2,200
KD029SS	29 Koppers Dr.	0 - 6	Yard	9/30/2020	μg/Kg	232	< 84	61 J	81 J	120	98	210
KD045SS	45 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	470	< 84	110	130	180	210	490
KD080SS	80 Koppers Dr.	0 - 6	Yard	9/30/2020	μg/Kg	522	< 260	110 J	170 J	270	180 J	370
KD106SS	106 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	615	< 84	120	230	670	340	740
KD123SS	123 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	270	< 86	51 J	74 J	150	130	190
KD132SS	132 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	135	< 84	20 J	28 J	79 J	65 J	140
KD149SS	149 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	249	< 82	65 J	77 J	120	110	200
KD216SS	216 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	124	< 83	< 83	< 83	75 J	55 J	130
KD225ESS	225 Koppers Dr. (Eastern Section)	0 - 6	Field	10/1/2020	μg/Kg	987	< 88	270	420	670	540	1,300
KD225WSS	225 Koppers Dr. (Western Section)	0 - 6	Yard	10/1/2020	μg/Kg	1,116	< 170	300	290	650	620	1,100
KD248SS	248 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	834	< 86	120	160	610	510	970
KD251SS	251 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	91	< 78	< 78	< 78	< 78	< 78	48 J
KD275SS	275 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	207	< 85	36 J	44 J	110	83 J	150
KD280SS	280 Koppers Dr.	0 - 6	Yard	9/28/2020	μg/Kg	277	< 240	< 240	< 240	< 240	< 240	< 240
KD297SS	297 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	94	< 82	< 82	< 82	< 82	< 82	32 J
KD302SS	302 Koppers Dr.	0 - 6	Yard	9/28/2020	μg/Kg	103	< 85	< 85	< 85	51 J	< 85	83 J
KD321SS	321 Koppers Dr.	0 - 6	Yard	10/3/2020	μg/Kg	174	< 84	36 J	40 J	120	93	190
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	0 - 6	Wooded Lot	9/29/2020	μg/Kg	187	< 87	44 J	72 J	120	100	210

Notes

μg/Kg = micrograms per kilogram

Page 1 of 3

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

in. bgs = inches below ground surface

< 85 = Result is less than the identified (85) reporting limit for that sample

Table 1A
PAH Soil Results
Koppers Drive
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	Benzo(g,h,i)- perylene	Benzo(k)- fluoranthene	Chrysene	Dibenz(a,h)- anthracene	Fluoranthene	Fluo	orene
DW201SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/2/2020	μg/Kg	690	730	1,400	280	1,800	4	14 J
DW202SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	1,700	1,500	2,900	870	3,500	10	00 J
DW203SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	230	210	440	140	460	< 8	38
DW204SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	940	1,300	2,100	500	2,400	< 2	70
DW205SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	1,700	2,100	3,400	780	4,100	9	95 J
DW206SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	14,000	16,000	21,000	7,000	32,000	1,1	100 J
DW207SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	1,400	1,700	3,000	760	4,000	10	00 J
DW208SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	850	890	1,500	510	1,900	< 3	30
KD010SS	10 Koppers Dr.	0 - 6	Yard	9/30/2020	μg/Kg	830	720	1,200	310	1,400	5	56 J
KD010SS	10 Koppers Dr.	0 - 6	Duplicate	9/30/2020	μg/Kg	760	740	1,500	280	2,000	4	14 J
KD029SS	29 Koppers Dr.	0 - 6	Yard	9/30/2020	μg/Kg	87	78 J	180	92	200	< 8	34
KD045SS	45 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	430	190	210	160	210	1	16 J
KD080SS	80 Koppers Dr.	0 - 6	Yard	9/30/2020	μg/Kg	190 J	140 J	310	260	430	< 2	60
KD106SS	106 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	300	350	770	100	1,200	< 8	34
KD123SS	123 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	100	86	150	96	170	< 8	36
KD132SS	132 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	78 J	37 J	120	< 84	110	< 8	34
KD149SS	149 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	100	84	160	96	200	< 8	32
KD216SS	216 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	67 J	53 J	96	< 83	130	< 8	33
KD225ESS	225 Koppers Dr. (Eastern Section)	0 - 6	Field	10/1/2020	μg/Kg	460	420	850	200	940	2	24 J
KD225WSS	225 Koppers Dr. (Western Section)	0 - 6	Yard	10/1/2020	μg/Kg	460	410	760	270	770	< 1	70
KD248SS	248 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	360	230	690	130	790	< 8	36
KD251SS	251 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	29 J	< 78	< 78	< 78	51 J	< 7	78
KD275SS	275 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	66 J	62 J	130	91	150	< 8	35
KD280SS	280 Koppers Dr.	0 - 6	Yard	9/28/2020	μg/Kg	< 240	< 240	< 240	< 240	< 240	< 2	40
KD297SS	297 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	< 82	< 82	< 82	< 82	34 J	< 8	32
KD302SS	302 Koppers Dr.	0 - 6	Yard	9/28/2020	μg/Kg	36 J	< 85	59 J	< 85	79 J	< 8	35
KD321SS	321 Koppers Dr.	0 - 6	Yard	10/3/2020	μg/Kg	72 J	76 J	150	< 84	170	< 8	34
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	0 - 6	Wooded Lot	9/29/2020	μg/Kg	110	74 J	180	< 87	200	< 8	37

Notes

μg/Kg = micrograms per kilogram

Page 2 of 3

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

in. bgs = inches below ground surface

< 85 = Result is less than the identified (85) reporting limit for that sample

Table 1A
PAH Soil Results
Koppers Drive
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	Indeno(1, cd)pyre	-	Naphthal	ene	Phen	anthr	ene	Pyre	ne
DW201SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/2/2020	μg/Kg	720		510			860		1,70	0
DW202SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	1,700		770		1	,700		3,60	0
DW203SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	230		81	J		200		490)
DW204SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	960		520		1	,100		2,40	0
DW205SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	1,700		840		1	,800		4,10	0
DW206SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	15,000		5,900		13	3,000		30,00	00
DW207SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	1,500		1,100		1	,700		3,80	0
DW208SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	870		680	1	,000		2,10	0	
KD010SS	10 Koppers Dr.	0 - 6	Yard	9/30/2020	μg/Kg	850		490			710		1,80	0
KD010SS	10 Koppers Dr.	0 - 6	Duplicate	9/30/2020	μg/Kg	790		480			660		2,60	0
KD029SS	29 Koppers Dr.	0 - 6 Yard 9/30/2020 µg/Kg 82 J		51	J		100		260)				
KD045SS	45 Koppers Dr. 0 - 6 Yard 10/1/2020 μg/Kg 310		59	J		100		240)					
KD080SS	80 Koppers Dr.	0 - 6	Yard	9/30/2020 µg/Kg 160 J		100	J		210	J	450)		
KD106SS	106 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	300		150			440		960)
KD123SS	123 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	88		49	J		58	J	200)
KD132SS	132 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	52	J	45	J		76	J	150)
KD149SS	149 Koppers Dr.	0 - 6	Yard	10/1/2020	μg/Kg	98		74	J		120		210)
KD216SS	216 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	64	J	32	J		66	J	110)
KD225ESS	225 Koppers Dr. (Eastern Section)	0 - 6	Field	10/1/2020	μg/Kg	450		170			410		990)
KD225WSS	225 Koppers Dr. (Western Section)	0 - 6	Yard	10/1/2020	μg/Kg	460		140	J	;	380		920)
KD248SS	248 Koppers Dr.	0 - 6	Yard	9/29/2020	μg/Kg	330		110			230		810)
KD251SS	251 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	< 78		< 78		<	78		51	J
KD275SS	275 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	60	J	64	J		89		150)
KD280SS	280 Koppers Dr. 0 - 6 Yard 9/28/2020		μg/Kg	< 240		< 240		< :	240		< 240)		
KD297SS	297 Koppers Dr.	0 - 6	Yard	10/2/2020	μg/Kg	< 82		28	J		27	J	40	J
KD302SS	302 Koppers Dr.	0 - 6	Yard	9/28/2020	μg/Kg			31	J		70	J	71	J
KD321SS	321 Koppers Dr.	0 - 6	Yard	10/3/2020	μg/Kg	68	J	46	J		79	J	180)
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	0 - 6	Wooded Lot	9/29/2020	μg/Kg	99		70	J		110		200)

Notes:

Page 3 of 3

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

in. bgs = inches below ground surface

μg/Kg = micrograms per kilogram

< 85 = Result is less than the identified (85) reporting limit for that sample

Table 1B PAH Soil Results
Bailey Road
Additional Off-Site Sampling - September/October 2020 Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	BaP-TE	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)- anthracene	Benzo(a)pyrene	Benzo(b)- fluoranthene
BR233SS	233 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	1,347	< 1,200	470 J	< 1,200	< 1,200	540 J	800 J
BR289SS	289 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	294	< 79	58 J	48 J	140	150	260
BR315SS	315 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	241	< 81	49 J	46 J	90	110	220
BR351SS	351 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	97	< 83	< 83	< 83	< 83	< 83	56 J
BR373SS	373 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	224	< 84	40 J	35 J	96	98	190
BR500SS	Bailey Rd. Composite	0 - 6	Yard	10/4/2020	μg/Kg	383	< 330	< 330	< 330	< 330 UJ	< 330	180 J
BR500SS	Bailey Rd. Composite	0 - 6	Duplicate	10/4/2020	μg/Kg	1,646	< 410	420	310 J	1,100 J	840	1,400 J
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	0 - 6	Undeveloped Lot	10/4/2020	μg/Kg	91	< 80	< 80	< 80	< 80	< 80	25 J
DW209SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	105	< 91	< 91	< 91	< 91	< 91	41 J
DW210SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	111	< 96	< 96	< 96	< 96	< 96	< 96

Page 1 of 3 BEAZER/GRENADA/EPA 2018 off-site investigation/Table 1B - PAH Data - Bailey Rd.xlsx

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

UJ = Analyte was non-detect with an approximate reporting limit.

in. bgs = inches below ground surface
 μg/Kg = micrograms per kilogram
 < 79 = Result is less than the identified (79) reporting limit for that sample

Table 1B PAH Soil Results
Bailey Road
Additional Off-Site Sampling - September/October 2020 Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	Benzo(g,h,i)- perylene	Benzo(k)- fluoranthene	Chrysene	Dibenz(a,h)- anthracene	Fluoranthene	Fluorene
BR233SS	233 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	450 J	< 1,200	< 1,200	< 1,200	770 J	< 1,200
BR289SS	289 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	90	120	170	93	150	< 79
BR315SS	315 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	93	95	150	91	130	< 81
BR351SS	351 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	21 J	25 J	51 J	< 83	93	< 83
BR373SS	373 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	79 J	91	150	89	140	< 84
BR500SS	Bailey Rd. Composite	0 - 6	Yard	10/4/2020	μg/Kg	< 330	< 330	< 330 UJ	< 330	98 J	< 330
BR500SS	Bailey Rd. Composite	0 - 6	Duplicate	10/4/2020	μg/Kg	560	730	1,700 J	490	1,600 J	< 410
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	0 - 6	Undeveloped Lot	10/4/2020	μg/Kg	< 80	< 80	< 80	< 80	< 80	< 80
DW209SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	< 91	< 91	< 91	< 91	37 J	< 91
DW210SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	< 96	< 96	< 96	< 96	< 96	< 96

Page 2 of 3 BEAZER/GRENADA/EPA 2018 off-site investigation/Table 1B - PAH Data - Bailey Rd.xlsx

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

UJ = Analyte was non-detect with an approximate reporting limit.

in. bgs = inches below ground surface
 μg/Kg = micrograms per kilogram
 < 79 = Result is less than the identified (79) reporting limit for that sample

Table 1B PAH Soil Results
Bailey Road
Additional Off-Site Sampling - September/October 2020 Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	Indeno cd)py		N	aphthal	ene	Phe	enanthi	rene	Pyre	ene
BR233SS	233 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	< 1,20	0	<	1,200			630	J	770) J
BR289SS	289 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	93		<	79			27	J	240)
BR315SS	315 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	81		<	81			35	J	190)
BR351SS	351 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	< 83		<	83			40	J	94	
BR373SS	373 Bailey Rd.	0 - 6	Yard	10/4/2020	μg/Kg	74	J		21	J		42	J	170)
BR500SS	Bailey Rd. Composite	0 - 6	Yard	10/4/2020	μg/Kg	< 330)	<	330		<	330		130) J
BR500SS	Bailey Rd. Composite	0 - 6	Duplicate	10/4/2020	μg/Kg	570)	<	410			510		1,70	00 J
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	0 - 6	Undeveloped Lot	10/4/2020	μg/Kg	< 80		<	80		<	80		21	J
DW209SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	< 91		<	91		<	91		38	J
DW210SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	μg/Kg	< 96		<	96		<	96		< 96	

Page 3 of 3 BEAZER/GRENADA/EPA 2018 off-site investigation/Table 1B - PAH Data - Bailey Rd.xlsx

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

UJ = Analyte was non-detect with an approximate reporting limit.

in. bgs = inches below ground surface
 μg/Kg = micrograms per kilogram
 < 79 = Result is less than the identified (79) reporting limit for that sample

Table 2A
Dioxin/Furan Soil Results
Koppers Drive
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	TCDD-TEQ	2378-TCDD	12378-PeCDD	123478-HxCDD	123678-HxCDD	123789-HxCDD	1234678-HpCDD	OCDD
DW201SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/2/2020	pg/g	54	< 1.4	5.1 EMPC	20	62	30	2,100	22,000 J
DW202SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	145	1.8	19	74	150	140 J	5,100 J	54,000 J
DW203SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	35	0.29 EMPC	3.6 J	13	35	22	1,300	17,000 J
DW204SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	120	0.70 EMPC	13	45	150	77	4,700 J	51,000 J
DW205SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	170	0.95 EMPC	15	68	210	120	6,700 J	76,000 J
DW206SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	49	1.0 J	6.0	18	48	27	1,900	21,000 J
DW207SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	155	0.83 EMPC	13	61	160	97	6,500 J	72,000 J
DW208SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	156	0.89 EMPC	15	59	170	95	6,400 J	72,000 J
KD010SS	10 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g	19	< 1.2	2.8 J	7.6	20 J	14	660 J	6,900 J
KD010SS	10 Koppers Dr.	0 - 6	Duplicate	9/30/2020	pg/g	35	< 1.1	5.5 J	14	37 J	25	1,200 J	14,000 J
KD029SS	29 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g	33	0.40 EMPC	4.1 J	13	37	19	1,100	11,000 J
KD045SS	45 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g	21	0.20 EMPC	2.2 J	7.2	23	12	790	7,900 J
KD080SS	80 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g	7	< 1.2	< 5.9	1.5 J	3.6 J	2.9 J	110	2,000
KD106SS	106 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	14	< 1.3	1.7 J	4.4 J	14	6.8	410	4,500
KD123SS	123 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g	22	0.25 EMPC	2.4 J	9.1	27	12	860	6,500 J
KD132SS	132 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	9	< 1.3	1.0 J	2.9 J	7.3	5.7 J	240	3,100
KD149SS	149 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g	32	0.36 EMPC	3.0 J	11	39	14	1,300	11,000 J
KD216SS	216 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	6	< 1.2	0.68 J	1.8 J	3.8 J	3.4 J	120	2,700
KD225ESS	225 Koppers Dr. (Eastern Section)	0 - 6	Field	10/1/2020	pg/g	17	0.34 EMPC	2.2 J	6.9	18	9.6	590	7,700 J
KD225WSS	225 Koppers Dr. (Western Section)	0 - 6	Yard	10/1/2020	pg/g	34	1.1 J	4.4 J	11	38	18	870	8,400 J
KD248SS	248 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	17	< 1.3	1.5 J	5.2 J	19	8.3	580	8,500 J
KD251SS	251 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g	8	< 1.1	0.77 EMPC	3.1 EMPC	7.7 EMPC	5.7	260	3,700
KD275SS	275 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g	12	< 1.3	< 6.5	4.3 J	8.9	6.2 J	260	3,400
KD280SS	280 Koppers Dr.	0 - 6	Yard	9/28/2020	pg/g	4	< 1.2	0.64 J	1.7 J	4.1 J	3.1 J	110	1,300
KD297SS	297 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g	8	0.41 EMPC	1.2 J	3.0 J	6.2 J	5.5 J	240	3,700
KD302SS	302 Koppers Dr.	0 - 6	Yard	9/28/2020	pg/g	4	< 1.3	0.62 EMPC	1.7 J	3.3 J	2.9 J	88	1,500
KD321SS	321 Koppers Dr.	0 - 6	Yard	10/3/2020	pg/g	8	0.29 EMPC	1.1 J	3.4 J	6.6	5.8 J	240	4,000
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	0 - 6	Wooded Lot	9/29/2020	pg/g	16	< 1.4	1.9 J	5.2 J	19	6.6 J	580	6,200 J

Notes:

EMPC = Estimated maximum possible concentration.

in. bgs = inches below ground surface

pg/g = picograms per gram

< 1.2 = Result is less than the identified (1.2) reporting limit for that sample

BEAZER/GRENADA/EPA 2018 off-site investigation/Table 2A - Dioxin_Furan Data - Koppers Dr.xlsx
Page 1 of 3

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

Table 2A
Dioxin/Furan Soil Results
Koppers Drive
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units		2378-T0	CDF		12378-P	eCDF	:	23478-P	eCDF	1234	478-H	xCDF	1236	78-Hx	CDF	234678	HxCDF	1	123789-1	HxCDF
DW201SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/2/2020	pg/g		0.70	J		1.6	EMPC		2.6	J	,	13		12	2		7.4		<	7.0	
DW202SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g		0.58	J		2.1	J	<	6.1		2	21	EMPC	23	3		23		<	8.5	
DW203SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g		0.65	J		0.72	EMPC		1.1	J	·	10		< 6.	3		4.5	J	<	6.3	
DW204SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g		0.72	J		2.7	J		3.5	J	2	26		18	3		13		<	6.3	
DW205SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g		1.3			3.8	J		4.8	J	2	28		22	2	EMPC	17	EMPC	<	7.2	
DW206SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g		1.0	J		1.2	EMPC		1.8	J	·	11		7.	6		5.4	J	<	6.0	
DW207SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g		1.3			4.1	J		5.0	J	**	34		19)		17		<	6.2	
DW208SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g		2.6			4.5	J		5.3	J	12	21		23	3		18		<	6.1	
KD010SS	10 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g		0.59	J		0.75	EMPC		0.94	J	4	.5	J	3.	5 ,	J	3.1	J	<	5.8	
KD010SS	10 Koppers Dr.	0 - 6	Duplicate	9/30/2020	pg/g		1.2			1.3	EMPC		1.2	EMPC	7	'.1		4.	в ,	J	5.4	J	<	5.7	
KD029SS	29 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g		1.4			3.3	J		3.1	J	,	10		10)		7.0		<	6.4	
KD045SS	45 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g		0.69	J		1.1	J		1.4	J	5	5.1	J	3.	4 、	J	3.0	J	<	6.0	
KD080SS	80 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g		1.1	J		0.51	J		0.69	J	2	2.0	J	0.9	7 .	J	1.1	J	<	5.9	
KD106SS	106 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g		1.5			1.5	EMPC		3.0	J	6	5.5		4.	1 、	J	4.3	J	<	6.3	
KD123SS	123 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g		0.79	J		0.80	J		0.71	EMPC	4	.2	J	4.	1 .	J	2.9	J	<	6.4	
KD132SS	132 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g		0.90	J		0.44	EMPC	<	6.3		2	2.1	J	1.	3 ,	J	1.3	J		0.45	J
KD149SS	149 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g		0.86	J		1.3	J		1.7	J	4	.6	J	4.	2,	J	4.6	J	<	6.5	
KD216SS	216 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	<	1.2			0.37	EMPC	<	5.9		1	.5	J	1.	2,	J	0.95	J	<	5.9	
KD225ESS	225 Koppers Dr. (Eastern Section)	0 - 6	Field	10/1/2020	pg/g		1.0	J		0.94	J		1.2	J	4	.3	J	2.	7,	J	2.3	J	<	6.6	
KD225WSS	225 Koppers Dr. (Western Section)	0 - 6	Yard	10/1/2020	pg/g		0.63	J		1.5	J		2.2	J	8	3.1		6.	1 .	J	7.1		<	6.7	
KD248SS	248 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	<	1.3			0.71	J		0.56	EMPC	3	3.7	J	2.	5,	J	1.8	J	<	6.3	
KD251SS	251 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g		0.65	EMPC		0.47	EMPC		0.40	EMPC	2	2.0	EMPC	< 5.	7		1.1	J	<	5.7	
KD275SS	275 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g		0.94	J	<	6.5		<	6.5		< 6	5.5		< 6.	5		2.1	J	<	6.5	
KD280SS	280 Koppers Dr.	0 - 6	Yard	9/28/2020	pg/g	<	1.2		<	6.0			0.42	J	1	.2	J	0.7	'9 I	EMPC	0.79	J		0.24	EMPC
KD297SS	297 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g		0.75	J		0.55	EMPC		0.79	J	2	2.3	J	1.	5,	J	1.2	J	<	6.3	
KD302SS	302 Koppers Dr.	0 - 6	Yard	9/28/2020	pg/g		0.65	J		0.45	J		0.49	J	1	.1	J	3.0	5 .	J	0.67	J		0.29	J
KD321SS	321 Koppers Dr.	0 - 6	Yard	10/3/2020	pg/g		0.80	J		0.63	J		0.56	J	1	.5	EMPC	1.		J	1.4	J	<	6.1	
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	0 - 6	Wooded Lot	9/29/2020	pg/g		0.61	EMPC		0.84	J		0.85	J	3	3.1	J	2.	3 .	J	2.3	J	<	6.8	

Notes

EMPC = Estimated maximum possible concentration.

in. bgs = inches below ground surface

pg/g = picograms per gram

< 1.2 = Result is less than the identified (1.2) reporting limit for that sample

BEAZER/GRENADA/EPA 2018 off-site investigation/Table 2A - Dioxin_Furan Data - Koppers Dr.xlsx

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

Table 2A

Dioxin/Furan Soil Results

Koppers Drive Additional Off-Site Sampling - September/October 2020

Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	1234678-HpCDF	1234789-HpCDF	OCDF
DW201SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/2/2020	pg/g	390	35	1,800
DW202SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	990	81	4,300
DW203SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	260	21	1,100
DW204SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	780	57	3,100
DW205SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	1,300	97	5,800 J
DW206SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	350	20	1,700
DW207SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	1,100	88	6,200 J
DW208SS	Koppers Dr. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	1,100	74	6,000 J
KD010SS	10 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g	120 J	7.6	490 J
KD010SS	10 Koppers Dr.	0 - 6	Duplicate	9/30/2020	pg/g	210 J	13	840 J
KD029SS	29 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g	230	21	870
KD045SS	45 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g	140	7.7	570
KD080SS	80 Koppers Dr.	0 - 6	Yard	9/30/2020	pg/g	19	1.2 J	67
KD106SS	106 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	84	5.2 J	270
KD123SS	123 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g	190	9.2	620
KD132SS	132 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	40	2.3 J	160
KD149SS	149 Koppers Dr.	0 - 6	Yard	10/1/2020	pg/g	290	11	1,100
KD216SS	216 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	25	1.4 J	85
KD225ESS	225 Koppers Dr. (Eastern Section)	0 - 6	Field	10/1/2020	pg/g	100	5.9 J	410
KD225WSS	225 Koppers Dr. (Western Section)	0 - 6	Yard	10/1/2020	pg/g	670	9.1	650
KD248SS	248 Koppers Dr.	0 - 6	Yard	9/29/2020	pg/g	150	8.2	600
KD251SS	251 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g	45	3.0 J	180
KD275SS	275 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g	47 EMPC	2.7 J	140
KD280SS	280 Koppers Dr.	0 - 6	Yard	9/28/2020	pg/g	24	1.4 J	66
KD297SS	297 Koppers Dr.	0 - 6	Yard	10/2/2020	pg/g	39	2.3 J	130
KD302SS	302 Koppers Dr.	0 - 6	Yard	9/28/2020	pg/g	15	1.1 J	49
KD321SS	321 Koppers Dr.	0 - 6	Yard	10/3/2020	pg/g	40	2.1 J	120
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	0 - 6	Wooded Lot	9/29/2020	pg/g	120	4.5 J	520

Notes:

EMPC = Estimated maximum possible concentration.

in. bgs = inches below ground surface

pg/g = picograms per gram

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

< 1.2 = Result is less than the identified (1.2) reporting limit for that sample

BEAZER/GRENADA/EPA 2018 off-site investigation/Table 2A - Dioxin_Furan Data - Koppers Dr.xlsx Page 3 of 3

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

Table 2B

Dioxin/Furan Soil Results

Bailey Road

Additional Off-Site Sampling - September/October 2020

Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	TCDD-TEQ	2378-TCDD	12378-PeCDD	123478-HxCDD	123678-HxCDD	23678-HxCDD 123789-HxCDD		OCDD
BR233SS	233 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	19	< 1.2	2.3 J	6.3	19	11	580	7,900 J
BR289SS	289 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	17	< 1.2	2.2 J	5.3 EMPC	16	8.8	420	8,700 J
BR315SS	315 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	18	< 1.2	2.0 J	4.4 J	11	8.4	320	4,400
BR351SS	351 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	11	< 1.2	1.3 J	3.1 J	9.8	7.4	230	2,000
BR373SS	373 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	8	< 1.3	0.95 J	2.3 J	6.5	5.0 J	190	1,800
BR500SS	Bailey Rd. Composite	0 - 6	Yard	10/4/2020	pg/g	18	< 1.3	< 6.3	5.4 J	15	8.3	390	5,200 J
BR500SS	Bailey Rd. Composite	0 - 6	Duplicate	10/4/2020	pg/g	21	< 1.3	< 6.3	5.6 J	18	10	570	6,300 J
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	0 - 6	Undeveloped Lot	10/4/2020	pg/g	9	< 1.2	< 6.1	1.7 J	3.8 J	3.4 J	130	2,900
DW209SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	12	0.29 EMPC	1.8 J	5.2 J	12	6.0 J	360	4,600
DW210SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	5	< 1.5	0.57 EMPC	1.8 J	3.1 J	3.0 J	91	1,900

Notes:

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

EMPC = Estimated maximum possible concentration.

in. bgs = inches below ground surface

pg/g = picograms per gram

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

< 1.2 = Result is less than the identified (1.2) reporting limit for that sample

BEAZER/GRENADA/EPA 2018 off-site investigation/Table 2B - Dioxin_Furan Data - Bailey Rd.xlsx

Table 2B

Dioxin/Furan Soil Results

Bailey Road

Additional Off-Site Sampling - September/October 2020

Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	2378-TCDF	12378-PeCDF	23478-PeCDF	123478-HxCDF	123678-HxCDF	234678-HxCDF	123789-HxCDF
BR233SS	233 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	1.8	< 6.1	< 6.1	5.5 J	4.2 J	3.4 J	< 6.1
BR289SS	289 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	2.5	2.1 EMPC	3.4 EMPC	5.1 J	5.6 J	5.4 J	0.75 J
BR315SS	315 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	2.5 EMPC	4.2 J	9.1	12	10	16	< 6.2
BR351SS	351 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	1.1 J	1.8 J	4.2 J	7.6	5.2 J	7.6	< 5.8
BR373SS	373 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	0.93 J	0.76 EMPC	1.3 J	4.5 J	2.1 J	2.1 J	< 6.3
BR500SS	Bailey Rd. Composite	0 - 6	Yard	10/4/2020	pg/g	1.6	3.0 J	4.6 J	10	5.9 J	9.4	< 6.3
BR500SS	Bailey Rd. Composite	0 - 6	Duplicate	10/4/2020	pg/g	1.7	< 6.3	4.8 J	11	6.9	9.8	< 6.3
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	0 - 6	Undeveloped Lot	10/4/2020	pg/g	< 1.2	< 6.1	< 6.1	1.3 J	0.82 J	0.74 EMPC	< 6.1
DW209SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	0.80 J	1.0 J	0.99 J	3.0 J	2.5 J	2.1 J	< 6.5
DW210SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	0.45 J	0.72 J	0.81 EMPC	3.3 J	1.3 J	1.5 J	< 7.4

Notes:

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

EMPC = Estimated maximum possible concentration.

in. bgs = inches below ground surface

pg/g = picograms per gram

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

< 1.2 = Result is less than the identified (1.2) reporting limit for that sample

BEAZER/GRENADA/EPA 2018 off-site investigation/Table 2B - Dioxin_Furan Data - Bailey Rd.xlsx

Table 2B

Dioxin/Furan Soil Results

Bailey Road

Additional Off-Site Sampling - September/October 2020

Grenada, Mississippi

Sample Identification	Sample Location	Sample Depth (in. bgs)	Sample Description	Sample Date	Units	1234678-HpCDF	1234789-HpCDF	OCDF
BR233SS	233 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	110	6.3	490
BR289SS	289 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	97	4.9 J	330
BR315SS	315 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	160	5.9 J	240
BR351SS	351 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	58	< 5.8	120
BR373SS	373 Bailey Rd.	0 - 6	Yard	10/4/2020	pg/g	45	2.3 J	140
BR500SS	Bailey Rd. Composite	0 - 6	Yard	10/4/2020	pg/g	100	5.3 J	270
BR500SS	Bailey Rd. Composite	0 - 6	Duplicate	10/4/2020	pg/g	120	5.2 J	280
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	0 - 6	Undeveloped Lot	10/4/2020	pg/g	21	< 6.1	94
DW209SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	65	3.4 J	210
DW210SS	Bailey Rd. Drainage Way	0 - 6	Drainage Way	10/3/2020	pg/g	21	1.3 J	65

Notes:

J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

EMPC = Estimated maximum possible concentration.

in. bgs = inches below ground surface

pg/g = picograms per gram

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

< 1.2 = Result is less than the identified (1.2) reporting limit for that sample

BEAZER/GRENADA/EPA 2018 off-site investigation/Table 2B - Dioxin_Furan Data - Bailey Rd.xlsx

Additional Off	able 3 AH Equipment Blank Results Editional Off-Site Soil Sampling - September/October 2020 Penada, Mississippi																																			
Sample ID	Sample Type	Date	Units	ВаР-ТЕ		ACENAPHTHENE		ACENAPHTHYLENE		ANTHRACENE		BENZ(A)ANTHRACENE		BENZO(A)PYRENE		BENZO(B)FLUORANTHENE		BENZO(G,H,I)PERYLENE		BENZO(K)FLUORANTHENE		CHRYSENE		DIBENZ(A,H)ANTHRACENE		FLUORANTHENE		FLUORENE		INDENO(1,2,3-CD)PYRENE		NAPHTHALENE		PHENANTHRENE		PYRENE
092820-EB	Equipment Blank	9/28/20	μg/L	NA	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2	<	0.2
092920-EB	Equipment Blank	9/29/20	μg/L	NA	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8		1.8
093020-EB	Equipment Blank	9/30/20	μg/L	NA	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8	<	1.8
100120-EB	Equipment Blank	10/1/20	μg/L	NA	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1	<	2.1
100220-EB	Equipment Blank	10/2/20	μg/L	NA	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9	<	1.9

1.8

1.8

1.8

1.8

1.8

1.8

1.8

2

1.8

1.8

1.8

1.8

Notes:

100320-EB

100420-EB

 μ g/L = microgram per Liter

Equipment

Blank Equipment

Blank

NA = The Benzo(a)pyrene Toxic Equivalent calculation is not applicable as all the PAH parameters are less than their respective reporting limits.

< 1.8

1.8

1.8

1.8

1.8

< 0.2 = Result is less than the identified (0.2) reporting limit for that sample

10/3/20

10/4/20

μg/L

μg/L

NA

NA

Page 1 of 1

Table 4
Dioxin/Furan Equipment Blank Results
Additional Off-Site Soil Sampling - September/October 2020
Grenada, Mississippi

	Sample							123678-				
Sample ID	Туре	Date	Units	TCDD-TEQ	2378-TCDD	12378-PeCDD	123478-HxCDD	HxCDD	123789-HxCDD	1234678-HpCDD	OCDD	2378-TCDF
	Equipment											
092820-EB	Blank	9/28/2020	ng/L	0.018	0.0008 EMPC	0.0007 EMPC	0.0018 J	< 0.051	< 0.051	< 0.051	0.011 J	< 0.01
	Equipment											
092920-EB	Blank	9/29/2020	ng/L	0.058	< 0.01	< 0.051	< 0.051	< 0.051	< 0.051	< 0.051	< 0.1	< 0.01
	Equipment											
093020-EB	Blank	9/30/2020	ng/L	0.059	< 0.0097	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	< 0.097	< 0.097
	Equipment											
100120-EB	Blank	10/1/2020	ng/L	0.052	< 0.0096	< 0.048	0.001 EMPC	< 0.048	< 0.048	< 0.048	< 0.096	< 0.0096
	Equipment											
100220-EB	Blank	10/2/2020	ng/L	0.051	0.0009 EMPC	< 0.05	0.0018 J	< 0.05	< 0.05	< 0.05	< 0.099	< 0.0099
	Equipment											
100320-EB	Blank	10/3/2020	ng/L	0.056	< 0.0097	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	< 0.097	< 0.0097
100420-EB	Equipment Blank	10/4/2020	ng/L	0.056	< 0.0097	< 0.049	< 0.049	< 0.049	< 0.049	< 0.049	< 0.097	< 0.0097

Notes

J = Estimated Result. Result is less than the reporting limit.

EMPC = Estimated maximum possible concentration.

ng/L = nanogram per liter; equivalent to parts per

trillion (ppt)

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

< 0.1 = Result is less than the identified (0.1) reporting limit for that sample.

Page 1 of 2

Table 4
Dioxin/Furan Equipment Blank Results
Additional Off-Site Soil Sampling - September/Octobe
Grenada, Mississippi

	Sample														
Sample ID	Туре	Date	Units	12378-PeCI	DF	23478-PeCDF	123478-HxCDF	123678-HxCDF	234678-HxCl	DF	123789-HxCDF	1234678-HpCDF	1234789-HpCDF	OCDF	
	Equipment														
092820-EB	Blank	9/28/2020	ng/L	0.001	J	< 0.051	0.0012 J	0.001 EMPC	0.0011	J	< 0.051	< 0.051	0.0015 J	0.0038	EMPC
	Equipment														
092920-EB	Blank	9/29/2020	ng/L	< 0.051		< 0.051	< 0.051	< 0.051	< 0.051	UJ	< 0.051	< 0.051	< 0.051	< 0.1	
	Equipment														
093020-EB	Blank	9/30/2020	ng/L	< 0.048		< 0.048	< 0.048	< 0.048	< 0.048	UJ	< 0.048	< 0.048	< 0.048	0.00062	EMPC
	Equipment														
100120-EB	Blank	10/1/2020	ng/L	< 0.048		< 0.048	< 0.048	< 0.048	< 0.048	UJ	< 0.048	< 0.048	< 0.048	< 0.096	
	Equipment														
100220-EB	Blank	10/2/2020	ng/L	< 0.05		< 0.05	< 0.05	< 0.05	< 0.05	UJ	< 0.05	< 0.05	< 0.05	0.00068	EMPC
	Equipment														
100320-EB	Blank	10/3/2020	ng/L	< 0.049		< 0.049	< 0.049	< 0.049	< 0.049		< 0.049	< 0.049	< 0.049	< 0.097	
100420-EB	Equipment Blank	10/4/2020	ng/L	< 0.049		< 0.049	< 0.049	< 0.049	< 0.049		< 0.049	< 0.049	< 0.049	< 0.097	

Notes

J = Estimated Result. Result is less than the reporting limit.

EMPC = Estimated maximum possible concentration.

ng/L = nanogram per liter; equivalent to parts per

trillion (ppt)

TCDD-TEQ = Tetrachlorodibenzo(p)dioxin Toxic Equivalent calculated using Toxic Equivalency Factors developed by van den Berg, et al., 2006 and recommended by EPA, 2010. When a congener was not detected, 1/2 the detection limit was used for the TCDD-TEQ calculation. When value is an EMPC, the EMPC value was used in the calculation.

< 0.1 = Result is less than the identified (0.1) reporting limit for that sample.

Page 2 of 2

Table 5
Bailey Road Residential Parcel and Drainage Way TCDD-TEQ Data Comparison
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Description	TCDD-TEQ (pg/g)	EPA Noncancer Residential Regional Screening Level
				51 pg/g
BR233SS	233 Bailey Rd.	Residential Parcel	19	Below
BR289SS	289 Bailey Rd.	Residential Parcel	17	Below
BR315SS	315 Bailey Rd.	Residential Parcel	18	Below
BR351SS	351 Bailey Rd.	Residential Parcel	11	Below
BR373SS	373 Bailey Rd.	Residential Parcel	8	Below
BR500SS and Duplicate	Bailey Rd. Composite and Duplicate	Residential Parcel and Duplicate	19	Below
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	Undeveloped Lot	9	Below
DW209SS	Bailey Rd. Drainage Way	Drainage Way	12	Below
DW210SS	Bailey Rd. Drainage Way	Drainage Way	5	Below

Notes:

pg/g = picograms per gram.

TCDD-TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (Van den Berg, et al. 2006; EPA 2010), calculated using 1/2 the detection limit for non-detects.

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

EPA Noncancer Residential Regional Screening Levels are based on a Hazard Quotient (HQ) of 1 (EPA, 2021). EPA Cancer Residential Regional Screening Levels corresponding to the EPA acceptable risk range of 1x10-4 to 1x10-6 are not shown. All Bailey Road residential parcel and drainage way TCDD-TEQ samples are within the EPA Cancer Residential Regional Screening Levels.

For samples with field duplicates, results are presented as the mean of the sample and its duplicate.

Green highlighting indicates result is below the specified screening level.

Table 6

Bailey Road Residential Parcel and Drainage Way BaP-TE Data Comparison

Additional Off-Site Sampling - September/October 2020

Grenada, Mississippi

Sample Identification	Sample Location	Sample Description	BaP-TE (ug/kg)	EPA Cancer Residential Regional Screening Levels
				110 to 11,000 ug/kg
BR233SS	233 Bailey Rd.	Residential Parcel	1,347	Within
BR289SS	289 Bailey Rd.	Residential Parcel	294	Within
BR315SS	315 Bailey Rd.	Residential Parcel	241	Within
BR351SS	351 Bailey Rd.	Residential Parcel	97	Below
BR373SS	373 Bailey Rd.	Residential Parcel	224	Within
BR500SS and Duplicate	Bailey Rd. Composite and Duplicate	Residential Parcel and Duplicate	1,014	Within
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	Undeveloped Lot	91	Below
DW209SS	Bailey Rd. Drainage Way	Drainage Way	105	Below
DW210SS	Bailey Rd. Drainage Way	Drainage Way	111	Within

Notes:

μg/Kg = micrograms per kilogram.

BaP-TE = benzo(a)pyrene toxic equivalents (EPA/600/R-93/089, July 1993), calculated using 1/2 the detection limit for non-detects.

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

EPA Cancer Residential Regional Screening Levels correspond to the EPA acceptable risk range of 1x10-4 to 1x10-6.

For samples with field duplicates, results are presented as the mean of the sample and its duplicate.

Refer to Table 7 for a summary of individual polyclyclic aromatic hydrocarbons (PAHs) compared to EPA Noncancer Residential Regional Screening Levels.

Green highlighting indicates result is below the specified screening level.

Table 7
Bailey Road Residential Parcel and Drainage Way PAH Data Comparison
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Description	Ac	enaphthene		Anthracene	!	Benzo(a)¡	yrene		Fluoranthe	ene		Fluorene		Naphthale	ne		Pyrene	
EPA Noncancer Residential Region	onal Screening Levels		3	3,600,000		1,800,000		18,00	0		2,400,000	0		2,400,000		130,000		1,8	800,000	
BR233SS	233 Bailey Rd.	Residential Parcel	<	1,200	<	1,200		540	J		770	J	<	1,200	<	1,200			770	J
BR289SS	289 Bailey Rd.	Residential Parcel	<	79		48	J	150			150		<	79	<	79			240	
BR315SS	315 Bailey Rd.	Residential Parcel	<	81		46	J	110			130		<	81	<	81			190	
BR351SS	351 Bailey Rd.	Residential Parcel	<	83	<	83		< 83			93		<	83	<	83			94	
BR373SS	373 Bailey Rd.	Residential Parcel	<	84		35	J	98			140		<	84		21	J		170	
BR500SS	Bailey Rd. Composite	Residential Parcel	<	330	<	330		< 330			98	J	<	330	<	330			130	J
BR500SS	Bailey Rd. Composite	Duplicate	<	410		310	J	840			1,600	J	<	410	<	410			1,700	J
BREPA21SS	Bailey Rd. Empty Lot (EPA ID #21)	Undeveloped Lot	<	80	<	80		< 80		<	: 80		<	80	<	80			21	J
	Bailey Rd. Drainage Way	Drainage Way	<	91	<	91		< 91			37	J	<	91	<	91			38	J
DW210SS	Bailey Rd. Drainage Way	Drainage Way	<	96	<	96		< 96		<	96		<	96	<	96		<	96	

All results are reported in micrograms per kilogram (µg/Kg)

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

EPA Noncancer Residential Regional Screening Levels are based on a Hazard Quotient (HQ) of 1 (EPA, 2021).

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentrations an approximate

< 1,200 = Result is less than the identified (1,200) reporting limit for that sample

Green highlighting indicates result is below the specified screening level.

Yellow highlighting indicates result is above the specified screening level.

The following PAHs are not shown, as there are no corresponding current EPA Noncancer Residential Regional Screening Levels: Acenaphthylene, Benz(a)-anthracene, Benzo(b)-fluoranthene, Benzo(g,h,i)-perylene, Benzo(k)-fluoranthene, Chrysene, Dibenz(a,h)-anthracene, Indeno(1,2,3-cd)pyrene, and Phenanthrene.

Table 8 Koppers Drive Residential Parcel TCDD-TEQ Data Comparison Additional Off-Site Sampling - September/October 2020 Grenada, Mississippi

Sample Identification	Location	Sample Description	TCDD-TEQ (pg/g)	EPA Noncancer Residential Regional Screening Level
				51 pg/g
KD010SS and Duplicate	10 Koppers Dr. and Duplicate	Residential Parcel and Duplicate	27	Below
KD029SS	29 Koppers Dr.	Residential Parcel	33	Below
KD045SS	45 Koppers Dr.	Residential Parcel	21	Below
KD080SS	80 Koppers Dr.	Residential Parcel	7	Below
KD106SS	106 Koppers Dr.	Residential Parcel	14	Below
KD123SS	123 Koppers Dr.	Residential Parcel	22	Below
KD132SS	132 Koppers Dr.	Residential Parcel	9	Below
KD149SS	149 Koppers Dr.	Residential Parcel	32	Below
KD216SS	216 Koppers Dr.	Residential Parcel	6	Below
KD225ESS	225 Koppers Dr. (Eastern Section)	Field	17	Below
KD225WSS	225 Koppers Dr. (Western Section)	Residential Parcel	34	Below
KD248SS	248 Koppers Dr.	Residential Parcel	17	Below
KD251SS	251 Koppers Dr.	Residential Parcel	8	Below
KD275SS	275 Koppers Dr.	Residential Parcel	12	Below
KD280SS	280 Koppers Dr.	Residential Parcel	4	Below
KD297SS	297 Koppers Dr.	Residential Parcel	8	Below
KD302SS	302 Koppers Dr.	Residential Parcel	4	Below
KD321SS	321 Koppers Dr.	Residential Parcel	8	Below
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	Wooded Lot	16	Below

Notes:

pg/g = picograms per gram.

TCDD-TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (Van den Berg, et al. 2006; EPA 2010), calculated using 1/2 the detection limit for non-detects.

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

EPA Noncancer Residential Regional Screening Levels are based on a Hazard Quotient (HQ) of 1 (EPA, 2021). EPA Cancer Residential Regional Screening Levels corresponding to the EPA acceptable risk range of 1x10-4 to 1x10-6 are not shown. All Kopper Drive residential parcel and drainageway TCDD-TEQ samples are below or within the EPA Cancer Residential Regional Screening Levels.

For samples with field duplicates, results are presented as the mean of the sample and its duplicate.

 $Green\ highlighting\ indicates\ result\ is\ below\ the\ specified\ screening\ level.$

Table 9
Koppers Drive Residential Parcel BaP-TE Data Comparison
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Location	Sample Description	BaP-TE (ug/kg)	EPA Cancer Residential Regional Screening Levels
				110 to 11,000 ug/kg
KD010SS and Duplicate	10 Koppers Dr. and Duplicate	Residential Parcel and Duplicate	1752	Within
KD029SS	29 Koppers Dr.	Residential Parcel	232	Within
KD045SS	45 Koppers Dr.	Residential Parcel	470	Within
KD080SS	80 Koppers Dr.	Residential Parcel	522	Within
KD106SS	106 Koppers Dr.	Residential Parcel	615	Within
KD123SS	123 Koppers Dr.	Residential Parcel	270	Within
KD132SS	132 Koppers Dr.	Residential Parcel	135	Within
KD149SS	149 Koppers Dr.	Residential Parcel	249	Within
KD216SS	216 Koppers Dr.	Residential Parcel	124	Within
KD225ESS	225 Koppers Dr. (Eastern Section)	Field	987	Within
KD225WSS	225 Koppers Dr. (Western Section)	Residential Parcel	1,116	Within
KD248SS	248 Koppers Dr.	Residential Parcel	834	Within
KD251SS	251 Koppers Dr.	Residential Parcel	91	Below
KD275SS	275 Koppers Dr.	Residential Parcel	207	Within
KD280SS	280 Koppers Dr.	Residential Parcel	277	Within
KD297SS	297 Koppers Dr.	Residential Parcel	94	Below
KD302SS	302 Koppers Dr.	Residential Parcel	103	Below
KD321SS	321 Koppers Dr.	Residential Parcel	174	Within
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	Wooded Lot	187	Within

μg/kg = micrograms per kilogram.

BaP-TE = benzo(a)pyrene toxic equivalents (EPA/600/R-93/089, July 1993), calculated using 1/2 the detection limit for non-detects.

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

EPA Cancer Residential Regional Screening Levels correspond to the acceptable EPA risk range of 1x10-4 to 1x10-6.

For samples with field duplicates, results are presented as the mean of the sample and its duplicate.

Refer to Table 10 for a summary of individual polyclyclic aromatic hydrocarbons (PAHs) compared to EPA Noncancer Residential Regional Screening Levels

Green highlighting indicates result is below the specified screening level.

Table 10

Koppers Drive Residential Parcel PAH Data Comparison
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Sample Location	Sample Description	Acenaphthene	Anthracene	e	Benzo(a)py	rene	Fluoranthene		Fluorene	Na	phthaleı	ne	Pyr	ene
EPA Noncancer			3,600,000	1,800,000		18,000		2,400,000	-	2,400,000	1	.30,000		1,800	.000
	onal Screening Levels		, ,			·		, ,						,	
KD010SS	10 Koppers Dr.	Residential Parcel	34 J	650		1,100		1,400		56 J		490		1,8	00
KD010SS	10 Koppers Dr.	Duplicate	43 J	640		990		2,000		44 J		480		2,6	00
KD029SS	29 Koppers Dr.	Residential Parcel	< 84	81	J	98		200	<	84		51	J	26	0
KD045SS	45 Koppers Dr.	Residential Parcel	< 84	130		210		210		16 J		59	J	24	.0
KD080SS	80 Koppers Dr.	Residential Parcel	< 260	170	J	180	J	430	<	260		100	J	45	0
KD106SS	106 Koppers Dr.	Residential Parcel	< 84	230		340		1,200	<	84		150		96	0
KD123SS	123 Koppers Dr.	Residential Parcel	< 86	74	J	130		170	<	86		49	J	20	0
KD132SS	132 Koppers Dr.	Residential Parcel	< 84	28	J	65	J	110	<	84		45	J	15	0
KD149SS	149 Koppers Dr.	Residential Parcel	< 82	77	J	110		200	<	82		74	J	21	.0
KD216SS	216 Koppers Dr.	Residential Parcel	< 83	< 83		55	J	130	<	83		32	J	11	.0
KD225ESS	225 Koppers Dr. (Eastern Section)	Field	< 88	420		540		940		24 J		170		99	0
KD225WSS	225 Koppers Dr. (Western Section)	Residential Parcel	< 170	290		620		770	<	170		140	J	92	.0
KD248SS	248 Koppers Dr.	Residential Parcel	< 86	160		510		790	<	86		110		81	.0
KD251SS	251 Koppers Dr.	Residential Parcel	< 78	< 78		< 78		51 J	<	78	<	78		5:	1 J
KD275SS	275 Koppers Dr.	Residential Parcel	< 85	44	J	83	J	150	<	85		64	J	15	0
KD280SS	280 Koppers Dr.	Residential Parcel	< 240	< 240		< 240		< 240	<	240	<	240		< 24	.0
KD297SS	297 Koppers Dr.	Residential Parcel	< 82	< 82		< 82		34 J	<	82		28	J	40) J
KD302SS	302 Koppers Dr.	Residential Parcel	< 85	< 85		< 85		79 J	<	85		31	J	7:	1 J
KD321SS	321 Koppers Dr.	Residential Parcel	< 84	40	J	93		170	<	84		46	J	18	0
KDEPA9SS	Koppers Dr. Empty Lot (EPA ID #9)	Wooded Lot	< 87	72	J	100		200	<	87		70	J	20	0

All results are reported in micrograms per kilogram (µg/Kg).

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

EPA Noncancer Residential Regional Screening Levels are based on a Hazard Quotient (HQ) of 1 (EPA, 2021).

J = Result is less than the reporting limit but greater than or equal to the method detection limit and the concentrations an approximate value.

< 84 = Result is less than the identified (84) reporting limit for that sample

Green highlighting indicates result is below the specified screening level.

Yellow highlighting indicates result is above the specified screening level.

The following PAHs are not shown, as there are no corresponding current EPA Noncancer Residential Regional Screening Levels: Acenaphthylene, Benz(a)-anthracene, Benzo(b)-fluoranthene, Benzo(g,h,i)-perylene, Benzo(k)-fluoranthene, Chrysene, Dibenz(a,h)-anthracene, Indeno(1,2,3-cd)pyrene, and Phenanthrene.

Table 11 Koppers Drive Drainage Way TCDD-TEQ Data Comparison Additional Off-Site Sampling - September/October 2020 Grenada, Mississippi

			Modified Non-Cancer	Modified Non-Cancer
Sample Identification	Location	TCDD-TEQ (pg/g)	Residential Regional Screening Level	Residential Regional Screening Level
	Location	TCDD-TLQ (pg/g)	with representative EF	with maximum allowable EF
			(12 days/year)	(105 days/year)
			1,488 pg/g	170 pg/g
DW201SS	Koppers Dr. Drainage Way	54	Below	Below
DW202SS	Koppers Dr. Drainage Way	145	Below	Below
DW203SS	Koppers Dr. Drainage Way	35	Below	Below
DW204SS	Koppers Dr. Drainage Way	120	Below	Below
DW205SS	Koppers Dr. Drainage Way	170	Below	Equal
DW206SS	Koppers Dr. Drainage Way	49	Below	Below
DW207SS	Koppers Dr. Drainage Way	155	Below	Below
DW208SS	Koppers Dr. Drainage Way	156	Below	Below

Notes:

pg/g = picograms per gram.

TCDD-TEQ = 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (Van den Berg, et al. 2006; EPA 2010), calculated using 1/2 the detection limit for non-detects.

Modified Noncancer Residential Regional Screening Levels are a modification of EPA Noncancer Residential Regional Screening Levels based on a Hazard Quotient of 1 (EPA 2021) and consider a representative exposure frequency for drainage way soils of 12 days per year, as well as a maximum allowable exposure frequency of 105 days per year based on DW205SS sample results.

EPA Cancer Residential Regional Screening Levels corresponding to the EPA acceptable risk range of 1x10-4 to 1x10-6 are not shown. All Koppers Drive drainage way TCDD-TEQ samples are within the EPA Cancer Residential Regional Screening Levels without modifications to the exposure frequency.

Green highlighting indicates result is below the specified screening level.

Table 12
Koppers Drive Drainage Way BaP-TE Data Comparison
Additional Off-Site Sampling - September/October 2020
Grenada, Mississippi

Sample Identification	Location	Sample Description	BaP-TE (ug/kg)	EPA Cancer Residential Regional Screening Levels	Modified Cancer Residential Regional Screening Levels (105 days/year)	Modified Cancer Residential Regional Screening Levels (12 days/year)
				110 to 11,000 ug/kg	367 to 36,667 ug/kg	3,208 to 320,800 ug/kg
DW201SS	Koppers Dr. Drainage Way	Drainage Way	1,521	Within	Within	Below
DW202SS	Koppers Dr. Drainage Way	Drainage Way	3,798	Within	Within	Within
DW203SS	Koppers Dr. Drainage Way	Drainage Way	552	Within	Within	Below
DW204SS	Koppers Dr. Drainage Way	Drainage Way	2,441	Within	Within	Below
DW205SS	Koppers Dr. Drainage Way	Drainage Way	3,914	Within	Within	Within
DW206SS	Koppers Dr. Drainage Way	Drainage Way	34,381	Above	Within	Within
DW207SS	Koppers Dr. Drainage Way	Drainage Way	3,680	Within	Within	Within
DW208SS	Koppers Dr. Drainage Way	Drainage Way	1,937	Within	Within	Below

μg/kg = micrograms per kilogram.

BaP-TE = benzo(a)pyrene toxic equivalents (EPA/600/R-93/089, July 1993), calculated using 1/2 the detection limit for non-detects.

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

Modified Cancer Residential Regional Screening Levels are a modification of EPA (May 2021) Cancer Residential Regional Screening Levels and consider a representative exposure frequency for drainage way soils of 12 days per year, as well as the maximum allowable exposure frequency of 105 days per year based on DW205SS sample results for TCDD (Table 11).

EPA Cancer Residential Regional Screening Levels and Modified Cancer Residential Regional Screening Levels correspond to the EPA acceptable risk range of 1x10-4 to 1x10-6.

Green highlighting indicates result is below the specified screening level.

Yellow highlighting indicates results are above the specified screening level.

Refer to Table 13 for a summary of individual polyclyclic aromatic hydrocarbons (PAHs) compared to EPA Noncancer Residential Regional Screening Levels.

Table 13 Koppers Drive Drainage Way PAH Data Comparison Additional Off-Site Sampling - September/October 2020 Grenada, Mississippi

Sample Identification	Sample Location	Sample Description	Acenaphthene	Anthracene	Benzo(a)pyrene	Fluoranthene	Fluorene	Naphthalene	Pyrene
	Residential Regiona	EPA Noncancer I Screening Levels	3 600 000	1,800,000	18,000	2,400,000	2,400,000	130,000	1,800,000
	Mo Residential Regiona	odified Noncancer I Screening Levels (105 days/year)	12,000,000	6,000,000	60,000	8,000,000	8,000,000	433,333	6,000,000
	Mo Residential Regiona	odified Noncancer I Screening Levels (12 days/year)	105,000,000	52,500,000	525,000	70,000,000	70,000,000	3,791,667	52,500,000
DW201SS	Koppers Dr. Drainage Way	Drainage Way	37	630	880	1,800	44 J	510	1,700
DW202SS	Koppers Dr. Drainage Way	Drainage Way	< 420	1,300	2,100	3,500	100 J	770	3,600
DW203SS	Koppers Dr. Drainage Way	Drainage Way	< 88	180	290	460	< 88	81 J	490
DW204SS	Koppers Dr. Drainage Way	Drainage Way	< 270	830	1,400	2,400	< 270	520	2,400
DW205SS	Koppers Dr. Drainage Way	Drainage Way	< 390	1,400	2,200	4,100	95 J	840	4,100
DW206SS	Koppers Dr. Drainage Way	Drainage Way	1,300	13,000	20,000	32,000	1,100 J	5,900	30,000
DW207SS	Koppers Dr. Drainage Way	Drainage Way	< 410	1,300	2,100	4,000	100 J	1,100	3,800
DW208SS	Koppers Dr. Drainage Way	Drainage Way	< 330	760	1,000	1,900	< 330	680	2,100

Notes:

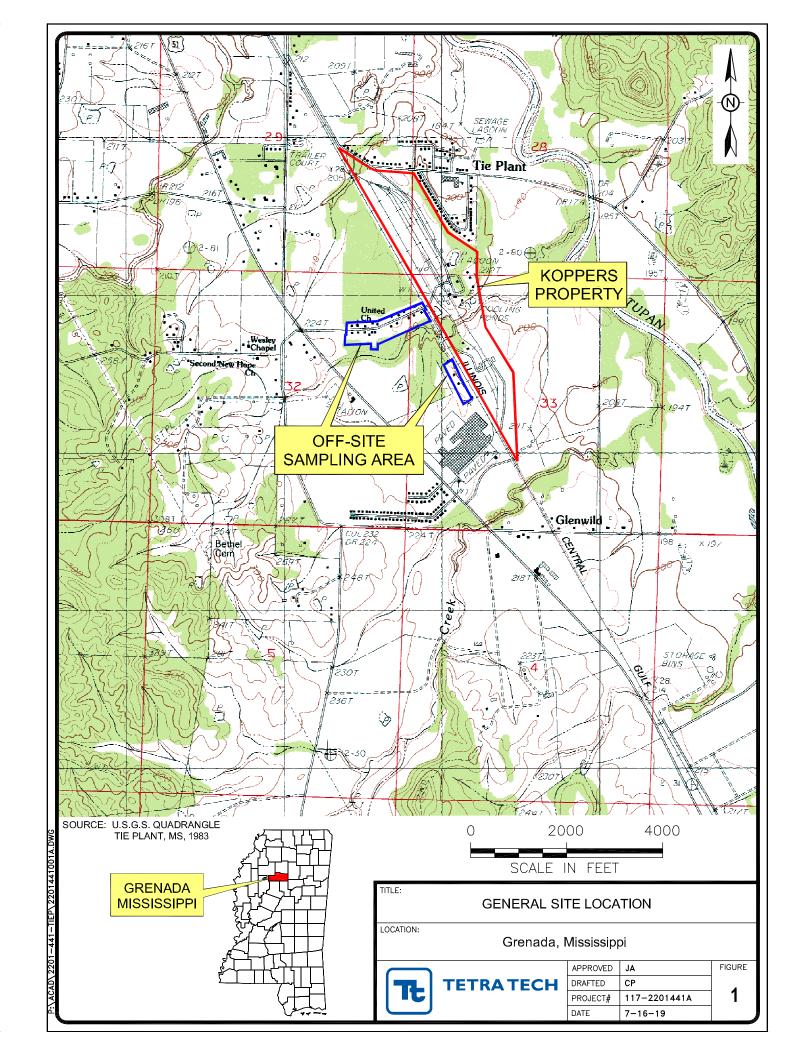
All results are reported in micrograms per kilogram ($\mu g/Kg$).

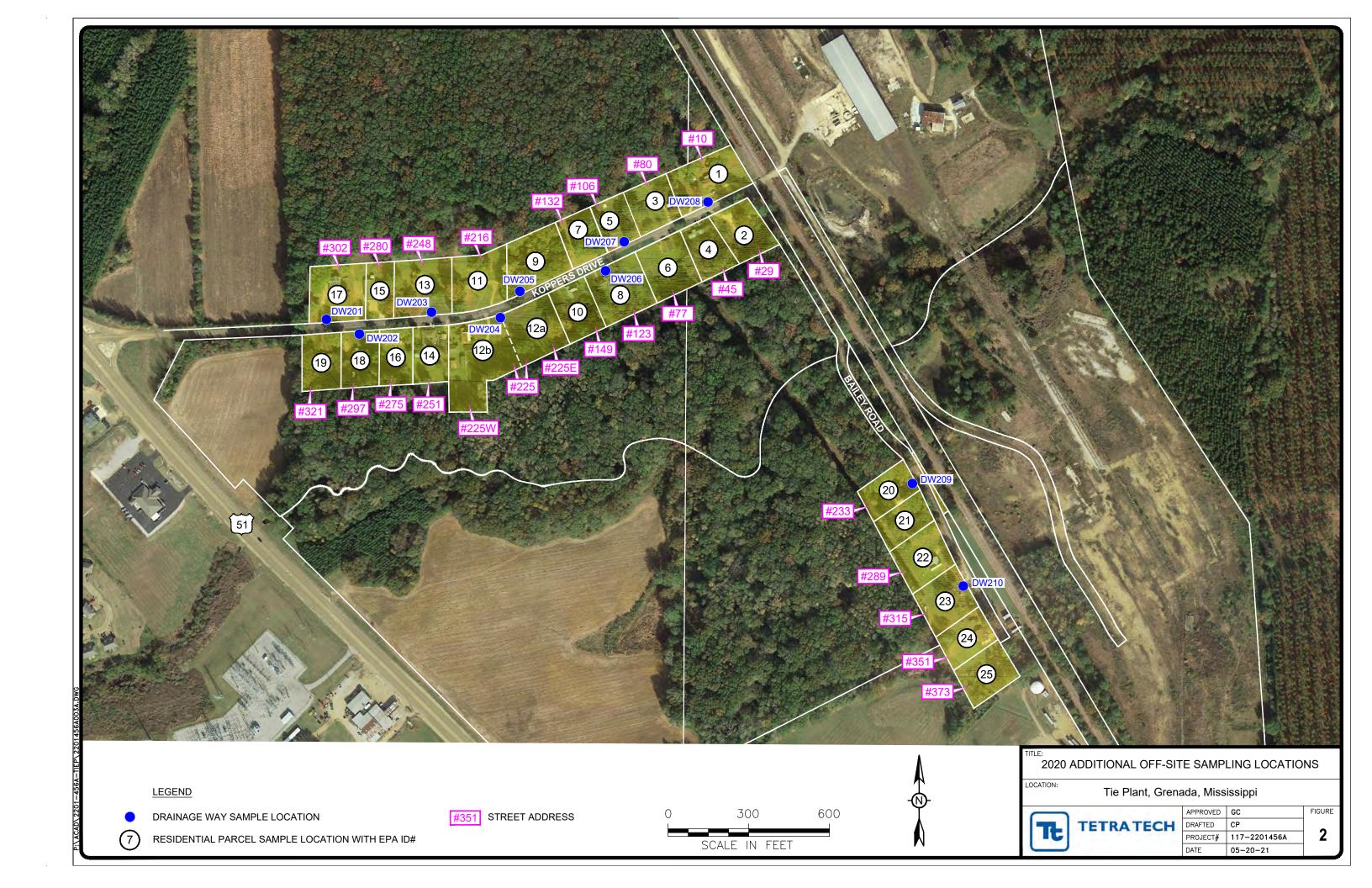
J = Result is less than the reporting limit but greater than or equal to the MDL and the concentrations an approximate value.

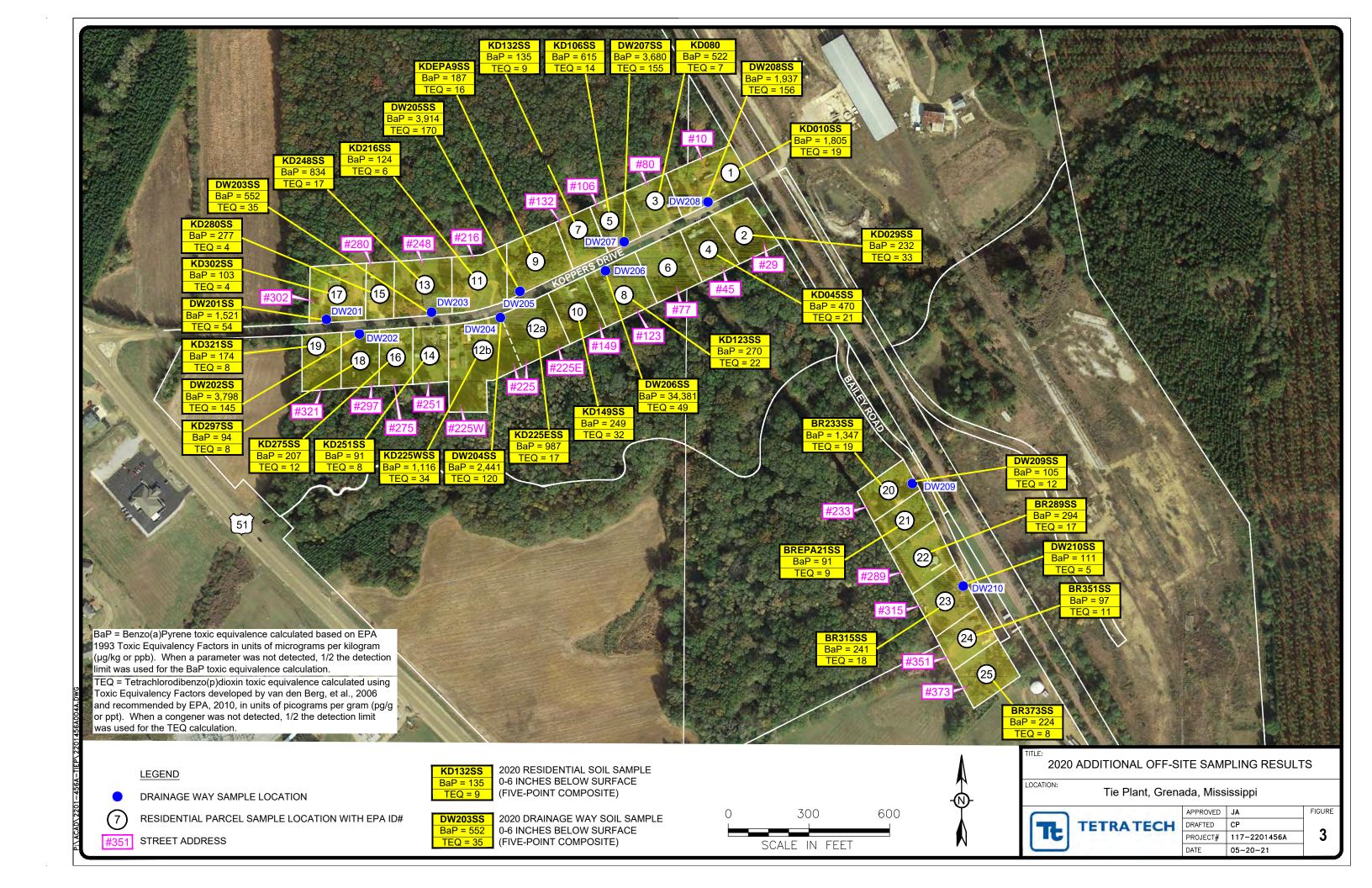
< 420 = Result is less than the identified (420) reporting limit for that sample.

EPA Residential Regional Screening Levels: EPA, May 2021: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables

Modified Noncancer Residential Regional Screening Levels are a modification of EPA (May 2021) Residential Noncancer Regional Screening Levels and consider a representative exposure frequency for drainage way soils of 12 days per year, as well as the maximum allowable exposure frequency of 105 days per year based on DW205SS sample results for TCDD (Table 11).

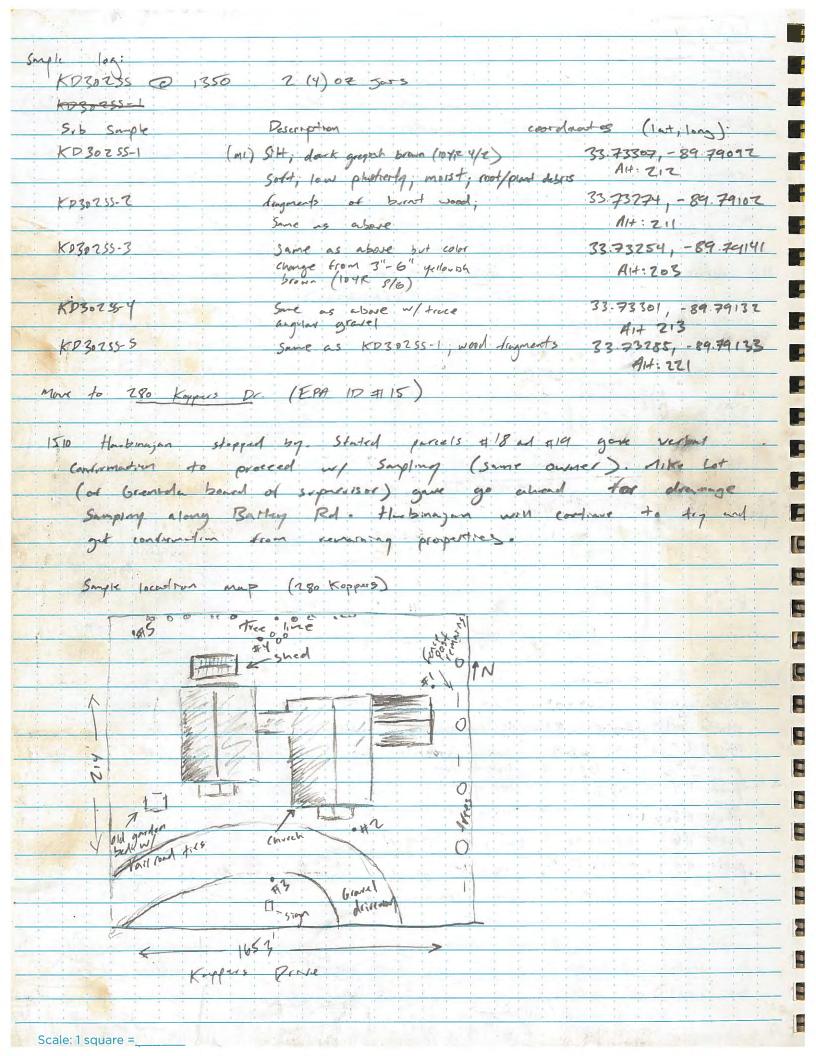

EPA Noncancer Residential Regional Screening Levels and Modified Noncancer Residential Screening Levels are based on a Hazard Quotient (HQ) of 1 (EPA, 2021).

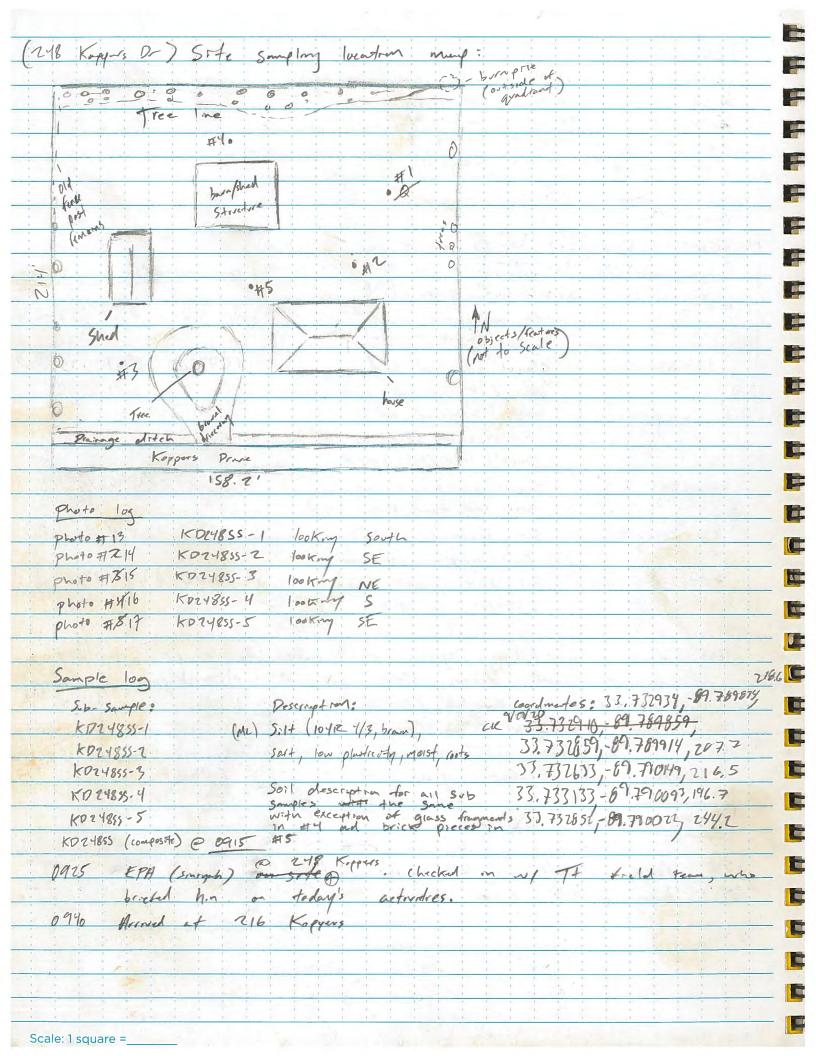

Green highlighting indicates result is below the EPA Noncancer Residential Regional Screening Level.

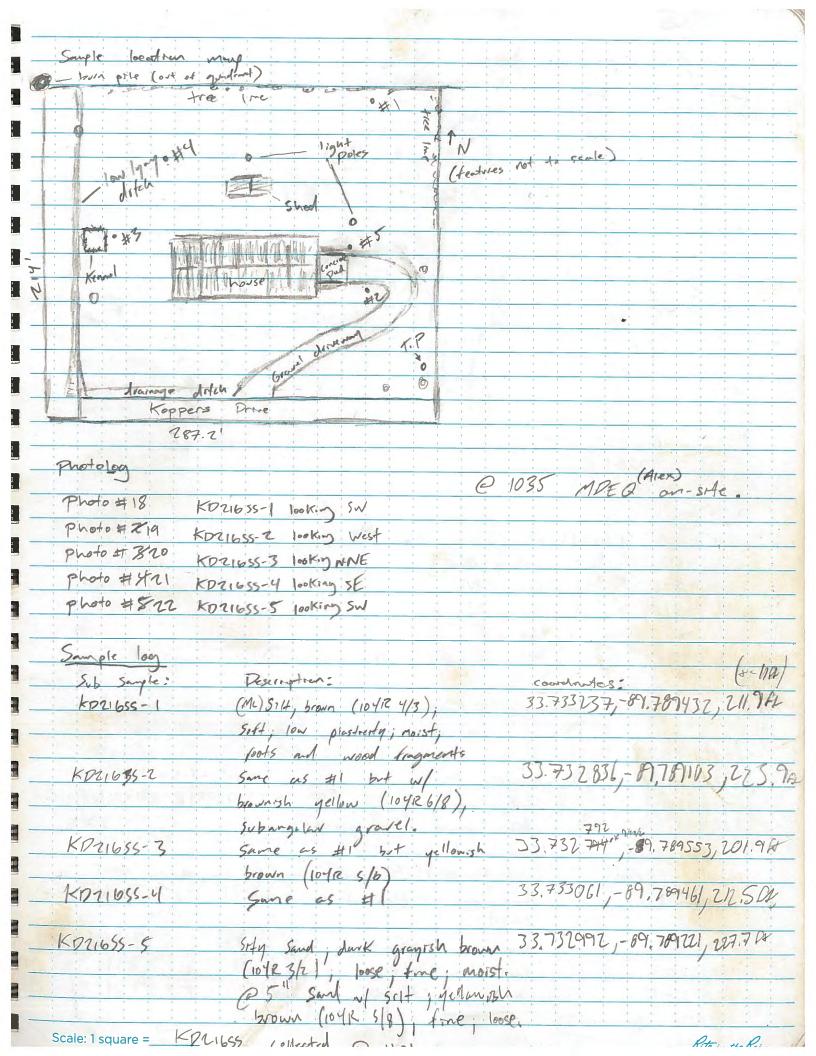

Yellow highlighting indicates result is above the EPA Noncancer Residential Regional Screening Level, but below the Modified Noncancer Residential Regional Screening Levels.

The following PAHs are not shown, as there are no corresponding current EPA Noncancer Residential Regional Screening Levels: Acenaphthylene, Benz(a)-anthracene, Benzo(b)-fluoranthene, Benzo(g,h,i)-perylene, Benzo(k)-fluoranthene, Chrysene, Dibenz(a,h)-anthracene, Indeno(1,2,3-cd)pyrene, and Phenanthrene.

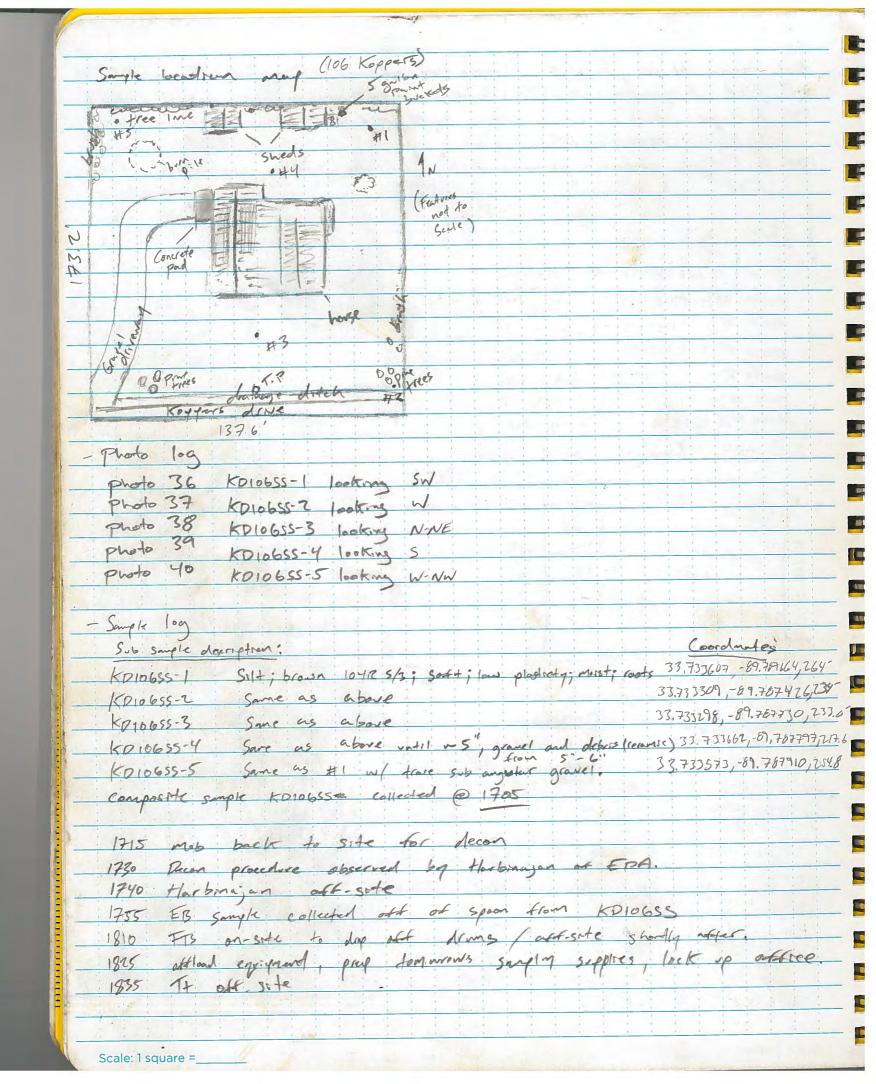
FIGURES

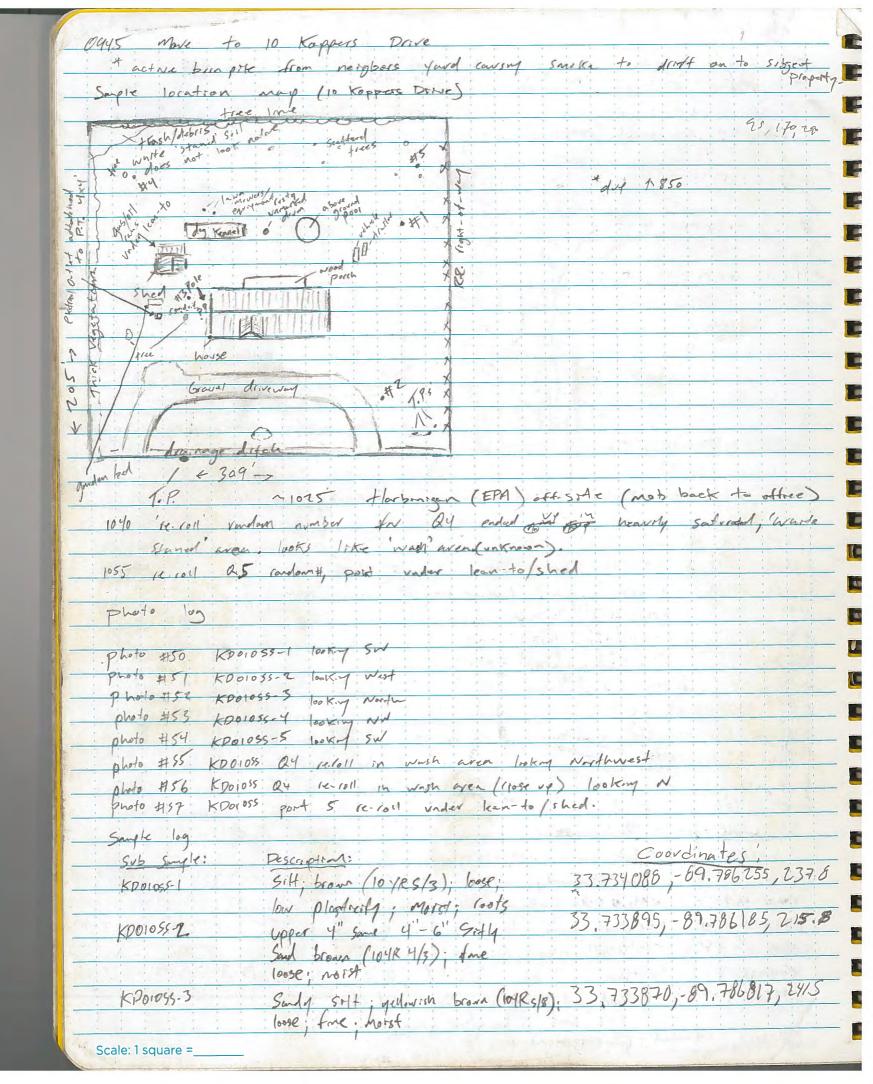



APPENDIX A


Field Sampling Notebook

wrone on site satisfies gate Keys and proceed to orice conduct taxing gastery meeting (T+: Garrett Kala! and Andrew Augus) valend enjugment & office. decon statom, ram/lightney stort, It +111 loghtny stops contrace unpacking for day. 0905 can righting stops contains praying train egryments to print coes of thediene spice for add supplies. 1140 andre @ 302 Koppies deve (North side at road; let house coming from wheat) (Ep- 10 # 17) (KD30755) Sample location on Koppers Drne. He will 1000 00000 Mek Continue withempting to make Consiste walk ~ 120 An photo log: 60 KD30255 photo # SE corner looking NW Auto # 2 K030255-1 looking SW Photo A3 KD30235-2 proto FTY K730255-3 looking NE KD 302 55-4 looking SW photo #5 born pile looking N photo #6 KP30255-4 photo #7 K030235-5 looking NE selected by generation random pumbers. Random number used distances ('x' and'y') into each qualrant. Distances measured from Scale: 1 square = Rite in the Rain


	Surg	12 tare 16	617	4
Photo log		1 1 1		
	ooking Sw			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	oking NW	1 1 1		
photo #10 K028055-3 la	ooking NE	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
proto #11 KD28055-4 10	ooking S			
	-KM IE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1		
Sample 100				
Kp30255 @ 1617 7 14	102) 5055			
			Coordmote	s (last, long, Elevation
KP28055-1 (A) SIH; brow				
		1	33.73306	6,-87.79049,23
about	plastre morst.	1 1	1 1 1 1	A Part of the Part
The state of the s	Ht , and sand;		33.73266	,-8 9. 79035,230
Very dure!	K group, sh			
brown ses	K grangish ord		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
bro-nost.	julow (10/86/8)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	loose/soft j mo		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P
	as above by		33.73257,	89.79054,205
more sa	nd than stit!		the state of the s	
	our (10-112 5/3)		33.73310,-	89.79066, 208
	lon plooler, semi-		t t t t	
	K grayish bro		33.73300,-	89.79077,228
), soft moist		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1650. Forsh backfrumg	halos mo	by back	1 Knows	4.154
for envenent dec	TOA	- Inned	III Kon	
1745 Collect Perise Hank Ch				
1745 Collect copy blank (6				
1815 land equipment into			along. Off	Site @ 1830.
Man grete locked	you exil	1 V V V V V V V V V V V V V V V V V V V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19/29/20		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
11/01/10			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
200 Amis ando C	11 111	[1]		
0730 Arrive on-site. Com	duct forligate	(Hadlaw	and borraft)	
6745 Acres @ 248 Kappur	2 Drive	1 1		- 1
	1 1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Scale: 1 square =		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		



angre @ 122 Kopper Prove	
Wash of the form	1
Sample location may	
I Wooded aven	
6 8 600	1 1 1 1 1
of pure 100 least force In	
Jeseph de bold and the state of	
Concrete + V 16130 Surve	
2 2 2 3 Part 2 00	
E MINE E MINE	
(Features not to sente)	
4.158	
HT.	
Kappurs Prive	
138.8	
Photo log	
drate # 1/23 KD137255-1 look.m/ W	
photo #24 " "-2 looking Nw	
onolo 4325 " "-3 looking NE	
photo HAZIO " "- 4 looking SE	
prodo #827 " "-5 looking E	
photo FERR " -1 looking E w/ gas/orl Containers in backer.	
1235 Alex (MDEQ) Att-Site (182 Koppen Cruent and)	
Snight log	* * * * * * * * * * * * * * * * * * *
Sib sough description coordinates	1200
KD13255-1 (Mi) Silt w/ minor clay of 33,733426;	E9.788204,208,8
trace gravel . (brown wire 4/4)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Soft: mosst; Shangular gowel,	
yellowish brown (10/R 5/2)	60-6721265
	5978721,205.0
Mari	0766001000
KD3245-3 Some as above 35.753 168, 0	9.788 086,270.1
KD13255-4 Same as whome 33,733418,-80	1. 100 516,214.0
+D13755-5 Same as above 53.735254,-	89,788186,28.3
Kp1374 @ 1253	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Scale: 1 square =	Land to the second

More to wooded lost	between	Koppen	19 D/	address	es 7	16 0	d:	132	(EPA	1
#9, and designished	KDE	PASS	for	sample:	1	1	1 1	1 1	4 1	,
	to he							can !	bong	
	al	bean	me	rserus	parce	1/1	varkon	As.		- 1
400 A. Marson remain	a house	ed in	th	andus.	Can	12	An. 1 4 4	ed u	a for	
400 A. Murgan ratio					329		June			-
	1 1 1	-1 1			1 1	4 1	1 1		1 1	- 1
Photo log	1 1 1				1 1	4 F	1 1		1 1	1
3				1 1 1	i i	1 4	1 1	/	1 1	1
Photo # KAEPA955	NW DYE	riren		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 t	1 1	1 1	1 1 1 1	1 1	
Photo #30 KDEPA9S.		looking	Wast	4 1 1 1 1 1	3 F	1 1	1 1		A	
			1 1	0 1 1	1 1		1 1	1 1		- 1
photo #31 KDEPASS	7 100 1	7)=		1 1	1 1		1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1
photo \$32 KDEPASS-	C 100K: L	1 NE		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1 1 1 1	1 1	4 - 1	- 1
photo #35 KDEPAASS-	-> 100 King	NE		1 1 4 1 1 4	1 1	5 - 1 c - t	1 1	4 1	k 1	1
photo #34 KDEPA9SS-	1: 100Kin	7 NE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1		1 1	1. t	
photo #35 KD EPA 955-	4. 100 Kg	SW			1 1	1 1		0 1) t	-
Sample location			1 9 E	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 3 9) 4 0	1 1 1	1 1	1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	A !	1		1 1 1	1	1 1	1	1 15 1	1 1	1
**		4			1 1	1 1	1 0		1 1	1
٦	215			1 1 1		1 1	1 1		1 - 1 1 1	E E
N forestant		N	5 1 1 5 1 1	k 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1 1	- 1 L	1 1	-
Mar	16	1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1 1	1 1	1 1 1 1	1
#3	1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 E	1 1 1 1			1 1	- 1
		- 1			mple:	@ 1	507	The state of	4 4	- 1
Koeses De		- 1		1 1	1 1	1 2	1 1	1,1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1
206.2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1		1
	1 1	i i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 4 1	1 1	1 1 1 1	1 1	t 1	1 k	1
Sub & Sample log	Pescript	ian		10/2-1/2) 00	rdinate	5	= 1 1		1 1	7 1
KDEP49-4	Silt : VA	of dork	granist	from 3	7:73	3771	1-6	7789	1056,2	I
KDEPAU-1	SOFA: 1	ow plast	61	0184, 3	3,73	5527	1-8	1.78	8699,1	9
KDEPAQ-7	AIL 'U	gante co	ortent		33.73	3169	-8	9,78	9545	20
KDEPA9-5	AS KD	EPA grace	sample	5 same	13.73	3413	1-80	7.788	31.1.112	6
KDEPA9-3		t 1		3	3.73	3026	- 95	788	3567,2	91
KUEPA9SS COLLE	eted e	150	9		1 1	100)		1019	1061,00	6
		1	1 1	1 1 1 1 1 1	1 t	1 1	1 1	f () () () () () () () () () () () () () ()	1
1550 move to	106	Kopper	SD	we	F 1	1 1	1 1	1		1
	1 1 1		2 1 7		1 1 1	1 1	1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1	1 1	1
		1 1 1	1 1	1 1 2	t t t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1			1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
	1	4 6 5	1 1	1 1 1	1 1	1 1	1 1	1 4		1
		1		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 , p 6 , p 5 , p 7 , p	1 1

	130/20	
07	so Armel -	made le-part mp / Samples
074		a-side, 12-fack ree/ Samples
	S Have	De la Kappers Dr. Me.
	Sample L	1 a (manage)
	Jamy 12 10	contrar (K008055) gussine can and oil contaners
1	y ree To	gussine can and oil conteners
64	4	distant le constitution de la co
6)		concrete Pad N (Features Not to Scale)
	x(PL	
B ALLA	8	17
nied)		Soft State of the
of the	A TEST	Tonkit O
- Outre	house	
		0/4/1 2600 3
	4 4 4 4 4	The state of the s
A R		
12		#5 53 0 X
3	TR Post	Add to the last of the world
7	- O Van	of dital 5 11-1011 1st random number for OI (in wooded area)
600		
. 680	NIEN	Leill, Parla whiting, Harbonejun (EpA) on-side.
	note log	
P	noto #41	KD080SS herry registration in Ol looking NE
	of HUZ	KOOROSS gravel driving on DZ looky NW
1976	oto #13:	KD080:55-1 lacking Soda
ph	010 444	KD08055-2 100 Km NE
plo	10 445	KDa8055-3 looking NW
iphol	to #46	K708055-4. looking 3E
pro	to #47	KD08055-5: 100 Km North
photo	# 48	KDO8055 andifreeze contames in Qy looking South
plot		To all the
		KD08055 Oil/ges contarners in Q4 (on top of concrete Paid looking St
S	ple: 10g:	
A STATE OF THE PARTY OF THE PAR	ib simple	Pese contractes
		Silt; brown (1048 4/3); loose; low prostretty, marst: repts 33.733811,-69.767226, 767
		7777014 10 00000
Madelline	D08055-2	Some as above but il supergrad good (yellowin) 33.733669,-69.787021 1752
K	06 8055 -3	color change to (10472 5/3), same as fil
		Smill glass fargments
	D08085-4	Some as #1 33.733776-89.787652 24.0
K	DO 8065-5	Small and gravel; yellowish red (54R 5/6) 33,733605-69,767130 7738
		fore sund; S. bangular gravel.
Scal	e: 1 square =	Rected @ 1930 Rete in the Rain

Scale: 1 square =____


Rite in the Rain

Sought Tog	
Koorass	collected @ 1723
S.15-Samples	Description: Coordnates.
KD02955-1	S: It (ML); dark brown (10/12 3/3) 33.733176,-89.786181, 206.
	loose, la colostrata moist pots
KD02985-2	Same is above except color 3).753538, 07, 106331, 43.1
	change to yellowish brown (104RS/H)
KDozass-3	Same as above, abundant contes 33.733514, -89.706074, 206.7
KD02935-4	Same as above 33.733427, -69.786056, 201.7
KD07955-5	Same as above ul trace aravel 73,783476,89,786351,236,4
1220 1	1 EA head built to factively for decon fings black
1750	end blank taken aft of arger bretted /spoon/ bowl used
For Environ	10 Kappers Drive. Sample @ 1750
	off- side
	office, to coto-side
1610 DER UP	
110/11/20	
110/11/201	
and the feel	a miste & Kopin's Hore Dick up rangement
0730 Jesu tech	misite @ Kappel's oldere. Pick up egrapment
for today	
	Ke at Parla) on site. It conduct toologiste satisfy along
Ofos EPA (MI	Ke at Pula) on site. It conduct tailoute satisfy along
	mus (KD04535)
Samply location	leary trash debits
7000	free line
12. 1	Photo lon
1 2 S	The state of the s
The state of the s	the photo # by KDO1655-1 looking SE
	WIE Entries aboto #65 kpoysss-3 looking South
	not photo # 67 KDOURSE-4 LOOKING North
12 E	I work save should # 68 KD04555-5 looking NE
32	W/ netric (onstruction (deck)
	In B.C.
2	Photo# 69 KDO4555-2 looking S
7 000	and the state of t
10	poly drins wood hold Debris (brick) present in
1	Tiel Tiel
1	oppure Drive
	17, 9

Sirb sample	Description log		coordinate	25
A				
KDOYSSS-1	Silt, and dock grayists	brom	33.733169,-	39.786760,207
	(10 /R 3/2); Soft, no	plastourty;		
	morst; coots; high a	1		
KD04555-2	1st (2) holes encountral		33.733489,-89	, +06712, 215.2
	location over a for			
	brown (10418 4/3) S.	oft, coex/be	rele	
	Fragments.			2012
KD04515-3	Solt brown (10/12 4/3) soft	33.733501,-6	786561, 212.6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	low planting, mass	+	22 - 2224 - 2	0 760'04' 50
K D04555-4	Same as above	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.733198,-8 33.733261,-80	1. 40556, 210.
CD04535-5	Same as above	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.753261, -8	1. +86 493, 2145
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T	
		1 1 1 1		
7923 Collec	ted sample KDO'	4555.		1 1 1 1 1 1
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
950 move +	6 123 Koppers Drue	1 1 1	T T T T T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1 1 1	1 -1 -1 -1 -1 -1	1 10 1 1 1
		and the second		
Sample landran	map:	الدا الم		
Suple location,	de	source of the state of the stat		
Suple location	de	the state of the s	et ture	
	Stre Pae To John	1	et	
	de	the state of the s	et	
	Stre Pare 128 - 11 Pole	deriels stee	et :	
	Ostre Par 1.9 /- HI	deriela street A Tentras not	et	
	Of the Pale 1.8 /- HI	derela stere	et	
Gross	Ostre Par 1.9 /- HI	deriela street A Tentras not	et	
Graffy field	Of the Pale 1.8 /- HI	deriela street A Tentras not	et e	
Graffy (in 10 ft)	Of the Pale 1.8 /- HI	deriela street A Tentras not	et	
Graffy field	Ostre Pae 1.2 /- HI	deriela street A Tentras not	et	
Graffy (in 10 ft)	as the pale of the pole	deriela street A Tentras not	et :	
Graffy (in 10 ft)	astre pae 12. Pole R Pole R D Mach S S S S S S S S S S S S S	deriela street A Tentras not	et pure	
Graffy (in 10 ft)	Ostre Pare T.P. J. HI	deriela street A Tentras not	et de la constant de	
Grassing field (m. 10 At)	off Pole	deriela street A Tentras not		
Graffy field for 10 state of 1	0.5 the 1200 17.9 - 11.1 12.0 12.0 12.0 12.0 12.0 12.0 12.0	deriela street A Tentras not	et purce	
Graffy field (10 ft) (Ostre 120e 17.9 [-H] Ostre 120e 17.9 [-H] Pole (P) Inch 5 5 Oppurs Dence	deriela street A Tentras not	et de la companya de	
Graffy field (m 10 ft) (m 10 f	Astre 1200 1.9 July 1	deriela street A Tentras not	et pre	
photo HT1 Kgi23	ASTRE PARE TO THE POLE REPRESENTE SS-2 ISOKING E	deriela street A Tentras not	et purce	
Graffy field (m 10 ft) (m 10 f	Opposes Drive 355-1 looking NW 55-2 looking W 155-3 testem W	deriela street A Tentras not		

Sample leg KD17355 collected O 1116 Jessenghe Pescerption Combanis (Int. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10						
Subsample Description KD12335-1 Sitt w/ Sord very back group T3.712487, P137270, 207.7 (10x18 St.1) Socks, can plustrately, Posts, Cools, haple property conduct KD12735-2 Sitt dark yellerish brown (10x18 1/4) 35.732297, 89.787895, 232.L' Spot flow plustrating brown (10x18 1/4) 35.732297, 89.787895, 232.L' KD12355-3 Some as where 33.732877, 89.787895, 198.5 KD12355-2 Some as where 33.732870, 69.787897, 197.3' KD12355-2 Some as where 33.732870, 69.787897, 197.3' KD12355-3 Some as where 52.7878970, 197.7' Fett of looks had back 30 affect for supplies a formal desire (political) Site Supplies Jacobs and some sould be supplied to the supplies and supplied to the supplies and	Sample log	Koizzss colli	ected @ 1111	6		
1018 51 South only South and shock good 73,77267 12018 51 South on all the testing 1018 51 South on all the testing 1018 51 South on all the testing 1018 51 South only one 1018 51 South one 1				C	oordnutes (1xt, 1	or jelev.)
(10-18 5/1) Societ: the photostory Press (10-18; heigh programs conduct KD2755-2 51H dark pellowish programs (14/2/14) 35.732791, 59.767695, 232 L/ Soft lear producting priest KD12355-3 Serie as above 33.732697, 69.767505, 198.6' KD12355-7 Some as above 33.732697, 69.767505, 198.6' KD12355-7 Some as above 33.732670, 69.767507, 20.7 ? 1115 Press of learn hand back to address for supplies. 1215 Daire 2 1149 Keypers Dood South Free Souther learning and Free Souther learning and Constants Free Souther learning and Free Souther learning and Free Souther learning and Free Souther learning and Free Souther learning and						
Foots 1974 Looking Mark Mar						
KD123552 Sitt deck geldenth bount (18/18/14) 33.73277, 87.78789, 272 L Soft less placerity; must, KD123553 Some as above 33.732877, 87.787877, 197.35 KD1235554 Some as above 33.732877, 87.787877, 197.35 KD1235557 Some as above 32.7322778, 87.787877, 197.35 KD1235557 Some as above 32.7322778, 87.787877, 197.35 KD1235557 Some as above 45 supplies as above 45 supplies as above 177.55 Frether of lumbs, had book the above for supplies as above 177.55 Frether of lumbs, had book the above for supplies as above 177.55 Frether of lumbs, had book the above for supplies as above 177.55 Frether of lumbs, had book the above for supplies as above 177.55 Frether of lumbs, had book the above of the supplies as above 177.55 Kotton of the above the above of the supplies as a supplies the place of the supplies as a supplies	1 1 1 1 1 1 1			but	f	
Some as above 33.73287, 87.787565, 1986 KD123557 Some as above 33.73287, 87.787565, 1986 KD123557 Some as above 32.732071, 87.787561, 172.3' KD123557 Some as above 32.732771, 87.787561, 172.3' KD123557 Some as above 32.732771, 87.787561, 172.3' ITS Accord book As address for septices. Softe Sometic leading map 5 and Find Sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 6 and find sometic leading map 7 and 1 an	KD12355-2	Stilt dark yellow	15h brain (10	4124/4 \ 33.7	32789, -89,7	97895, 232. 6
KD12355-3 KD12355-1 KD12355-1 Source as suborce 33.73287, 69.76749, 197.3' KD12355-3 Source as suborce 33.732671, 69.76749, 197.3' KD12355-3 Source as suborce 33.732778, 69.767592, 20.7-2' STATE of Location, back the address for Suppliess. 1245 Accorded Location and Deck the address for Suppliess. Sith Compile Location and Suck the address for Suppliess. Sith Compile Location and Suck the address for Suppliess. Western About constitution of Suppliess. Regard Consecuted the best of scattered in back grant Consecuted for Consecuted for Consecuted for Back grant Consecuted for Consecuted for Back grant Consecuted for Consecuted for Back grant Consecuted for Consecuted for Consecuted for Back grant Consecuted for Consecuted for Consecuted for Back grant Consecuted for Consecuted for Back grant Consecuted for Consecuted for Back grant Consecuted for Consecuted for Consecuted for Back grant Consecuted for Consecuted for Consecuted for Back grant Consecuted for Consecuted for Consecuted for Back grant Consecuted for Consecu						1
KO12355-7 Source as orbite 33.732071, 89.76747, 177.3' KO12355-7 Source as orbite 33.732778, 89.76747, 177.3' 1175 Fetter Fetter Strice Stri	KD12355-3			33.7	52897, -89, 7	97565,198.6
KD12355-2 Some as where 33.732778, -67.78755, 27.7 1775 Feter It would have do affect for supplies. 1745 Feter E 149 Keypers Deve Such Reduces (particles) Millians Reduces (particle		*	1 1 1			
1745 There & 1419 Kayers Druk Site Singles laggers Druk Singles Druk Spilling Sould Tennes (1887) Tennes (1887) Tennes (1887) Sould Tennes (1887) Tennes (1887) Tennes (1887) Sould So						1 1 1 11
Tested for the lands head back the address for spapers 1245 frace & 149 kayers power Site Site Seption The space of the						
Site Sumple lagration map Site Sumple lagration		ch had back to	office for	C. nalres		1 1 1
Site sample leading and state from the factor of the state of the stat				776		
Consider the first part of the			such	1 1 1 L L L L L L L L L L L L L L L L L		
Consider the first part of the	Greed EXX	Feren	1811 1			
draining feather part feathers (pathets, etc.) draining feathers (pathets, etc.) And conserved feathers seathered There against the conserved feathers of the conserved feathers of the conserved feathers for the conserved feat	ier \$		***	· landow		
Animage Scale Scale Scale Concerned An South Sport Scattered Mentines of both Scattered Mentines of both Scattered Mentines of part ones, electerists, Photo 109 Royras Direc Korras Direct Korras Direct	· Hal	offt	Parts E1	Mebris		
Scale Scale Scale Concepted Guite Concepted Guite Concepted The Concepted Guite Concepted The Concepted		e la		· · · · · · · · · · · · · · · · · · ·	efe.)	1 1 1
Sense gorte Concrete plan gorte Concrete plan gorte Concrete plan gorte Concrete plan to be to send of the control of the			DOLL IF W		dramage	
Tone girle Concepted The state of the state	**************************************			7 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#5 Wherever debers scattered The broad grant of the part of the			Fence 2 - co	saccede ,		
Mouse Refers Done Koffers Cofferd District Koffers Description Cofferd District Koffers Description Coordinates (12th, Inn.) clay) Koffers Description Coordinates (12th, Inn.) clay Koffers Description Koffers Description Coordinates (12th, Inn.) clay Coordinates (12th, Inn.) clay			3000	pasi	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Mouse Refers Done Koffers Cofferd District Koffers Description Cofferd District Koffers Description Coordinates (12th, Inn.) clay) Koffers Description Coordinates (12th, Inn.) clay Koffers Description Koffers Description Coordinates (12th, Inn.) clay Coordinates (12th, Inn.) clay	#5	3	17	+		1 1 1 1
horse 12 12 12 12 12 12 12 1		171111111111111111111111111111111111111	**			cathered
house Koffins Dime		22	4	1		or s, electionics.
Photo on KD14955 Photo on KD14955 Photo #75 KD149-1 looking NE ADHASS Collected @ 13-17 Photo #76 " "#7 looking wast Photo #778 " "-3 looking South Photo #778 " "-4 looking what Photo #779 " "-5 looking what Surplie log Subsample: Pescriptum Conditates [12], m, day KD11055- Sift, brown (104125/3); sift 33.732552, -69.70186, 216.5 low Plostody, noist 33.732552, -69.70186, 216.5 KD14945- 2 Some ks above except color change to dark trans(104125/4)	hause	7 9	1		ete.	
Photo log KD14955 Looking NE KD14955 Collected © 13172	1000	8	10		1 1 1	
Photo 109 Photo #75 KD149-1 looking NE SOH4955 Collected & 13612 Choto #76 " "#7 looking wast Photo #77 " "-3 looking South Photo #78 " "-4 looking wast Photo #79 " "-5 looking wast Sample log Supsample: Pesci pfin Coordinates [1c4, lin, clay) KD1955- Siff, brown (164R5/3); soft; 33.732552, -69.700166, 246.5 low Plasticty; Noist 33.732607, -89.700367, 193.5 KD1495-2 Some as above except color change to dock trans(101K3/6)		Koer-15 Dine		t t t t	1 1	
photo #75 KD149-1 looking NE DAMPSS Collected @ 13-12 photo #76 ""#2 looking west photo #778 ""-3 looking Sorth photo #778 ""-5 looking west Simple log Sinsample: Pescinfirm Coordinates [124, lon, clay) KD14955-1 Sift, brown (10412 5/3). Soft; Single log KD1495-1 Sift, brown (10412 5/3). Soft; Signature of Sift of				V	1 1 1 1	
photo #76 "#72 looking west photo #77 "-3 looking South photo #78 "-4 lanking E-SE photo #79 "-5 looking what Surple log Subsample: Pescriptum Coardinates (1c4, /m, day) KD1955-1 Siff, brown (16+12 5/3); sift; 33.732552; -69.700186, 216-5 low Plastroty; roist 33.732607, -89.700307 193-2 KD1965-2 Some as above execpt color change to dork traval (10+12 5/6)				KD14955	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
photo #77 "-3 looking Sorth photo #78 "-4 looking E-SE photo #79 "-5 looking what Simple log Simple log Simple log KD1955- Siff, brown (10-112-5/3); soft; 33.732552; -69.700156, 216-5 low Plastedy; roist 33.732552; -69.700156, 216-5 KD1495-2 Some as above except color change to dark trans(10-113-5/5)	The state of the s	KD149-1 looking A	/E	A) 04455	Collected 1	0 13.12
photo #78 "-4 lack of E-SE photo #79 "-5 looking what Supic log Supsample: Pesser of m (10-12 s/3); soft; (200 disabes [124, lm, clay) KD11955-1 Sift, brown (10-12 s/3); soft; (33.732552, -69.700166, 246-5) low Plasticty; roist KD14945-2 Some as above execut color change to dork trans(1078 s/4)	photo \$76	" #7 looking Was	†		6 J I I I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Surple 109 Subsample: Description (10-1/2 s/3): Soft: Coordinates (1ct, lm, clay) KD1-1955-1 Stft, brown (10-1/2 s/3): Soft: 33.732552, -69.700196,216-9 1000 Plasticty: Noist 33.732607, -89.700307, 178: KD14945-2 Some us above except color change to dark traval (10-1/2 s/s)			h.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (1) (1) (1) (1) (1) (1) (1) (1	1 1 1 1
Super log Super log Super log Coordinates [124, /m, clar) KD11955- Suff, brown (164125/3); suff; 33.732552, -89.768186,216-5 low Plastraty; noist 33.732607, -89.768307, 193.2 KD14945-2 Same us above execpt color chame to dork trans(104183/6)	photo #178	11-4 lacky E-S	E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	N. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Subsample: Pescripton (coordinates [124, lm, clay) KD1995- Sift, brown (16412 5/3); Suft; 33.732552; -69.780196,216-9 low Plastrety; Moist 33.732607, -89.788307, 183. KD14945-2 Some us above except color chame to dock translations.	photo #79	" 1-5 looking west	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Subsample: Pescripton (coordinates [124, lm, clay) KD1995- Sift, brown (16412 5/3); Suft; 33.732552; -69.780196,216-9 low Plastrety; Moist 33.732607, -89.788307, 183. KD14945-2 Some us above except color chame to dock translations.	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1 1 1 1
KD1-1955- Stff, brown (16-412 5/3), soft; 33.732552, -69.700186,216-9 low Plastraty; noist 33.732607, -89.700307, 783. KD14945-2 Some as above except color chame to dork translations.	Suple log		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
KD14945-2 some as above execut color change to dork trans/lot(3/2)	Sipsample:	Description !			I A STATE OF THE S	
KD14945-2 some as above execpt color change to dock travalloticate	KD11955-1	Soft, brown (164125	(3); Soft;			
KD14945-2 some as above execpt color change to dock travalloticate		low Plasticty; Moist			33.732607,	-89.761307,733
KD19655-2 6 1 AS 41 1	KD14985-2	some as above ,	execpt color cham	e to dork trans		
(D14955-9 Same as #1 m/ trace grave) 33. 732858, - 1. 188278, 1991	KD14955-3				33. 732858	-89.788278, MAD
Scale: 1 square =	Scale: 1 square =					

KD14955 Samp1	e log Cont.	coardentes
KD14995-4	Same as #1 m/ abundant poor	
KD14955-5	Surp as 71	33,732789,-69.788055, 208.0
405 Move to KO.	225E	
a sweet and the state of the st	,	E' designites empty
		alesignas engly
tield to fu	ve Ee8	
131.5 -D	SAMPLE LOCA	TION MAP
4 9	· * a IN	
	100	
ett As		
11 610554		
2 field		
2	, n	
047	6	
Tree / 1 low lyng dra	tiel was 1 / 100	
Koppurs Rd		
frain pige (volor kupper in)	hadra	
grain pige (min	<u> </u>	
KD ?75E photo	Log	
photo #80 11"	- I facing NV	
ploto H81	-7 facing NW	
pust +182 !!	1-3 Lacy W	
p Loto #83 11	11-4 looking (facing) S	
photo #84 "	1'-5 looky w- sw	
C		
Sample log	CD225 ESS Collecte	
Seb Sample:	Desurupt run:	coordnutes:
中门	Silt; brown (104R S/3); soft;	33.732147,-69.788722,210.5
	low plasticity; Most, 100 + 5	
47	Some as ubove	33.732505, -89, 788809, 196.6
#3	Song is above	33.732658, -89,788759,2015
ĦY.	Some as above	33,732381, -89.788672, 205.4
#5	Some as above w/ trace in	exide 35.732487, -89.788747, 2048
	some as above we true for	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1524 arms @ 225	Kapper Drive (225W)	
- 123	ropper prove (cosw)	

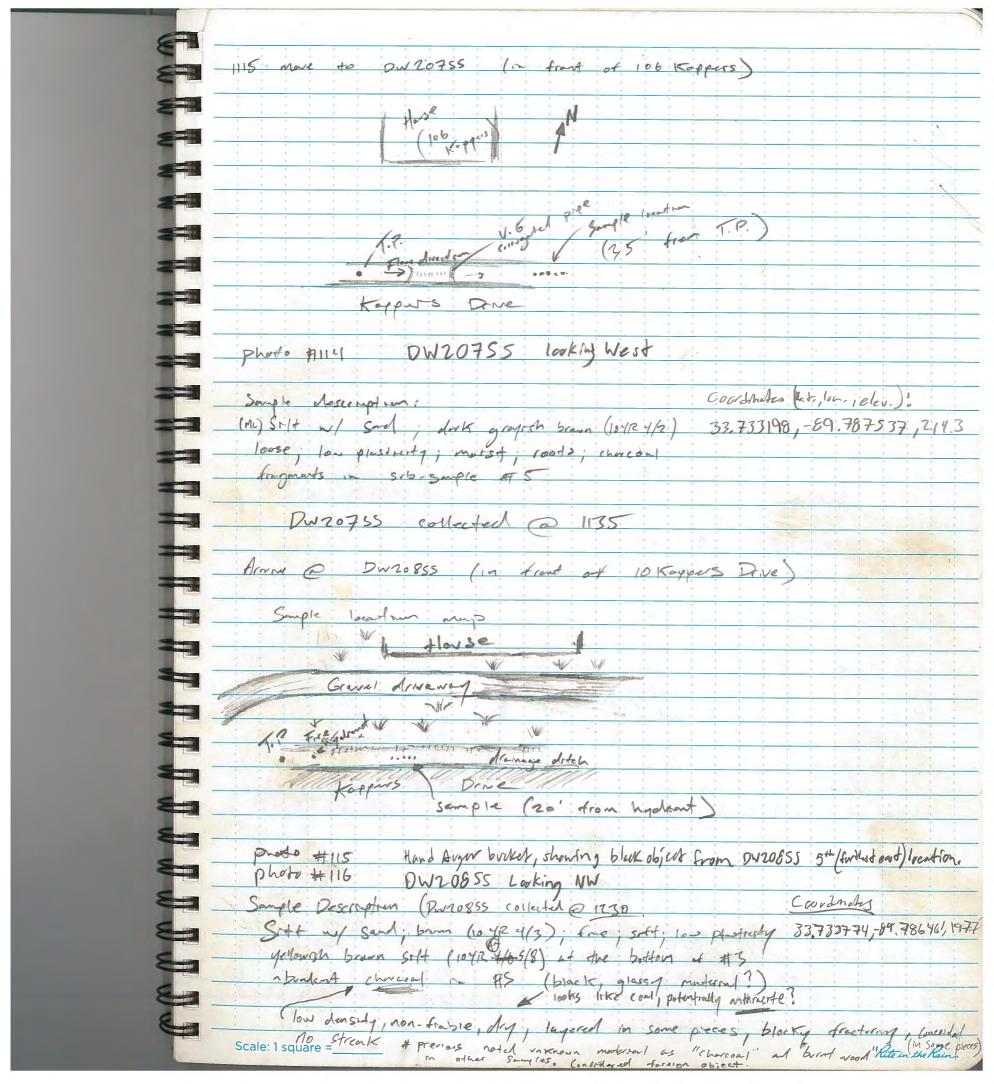
after site. It not buck to facility for decor off of spoon, bowl, and arger breket used 1735 Korrsws. ES Collected for KOZZSW. 17 off site 1800 10/2/20 0725 To on- site . Prek up/prop exigent for todays sampling 6745 Arme at DW 20155 (in front of 302 Koppers DENC) 10 postilores AN

30 sup postilores AN

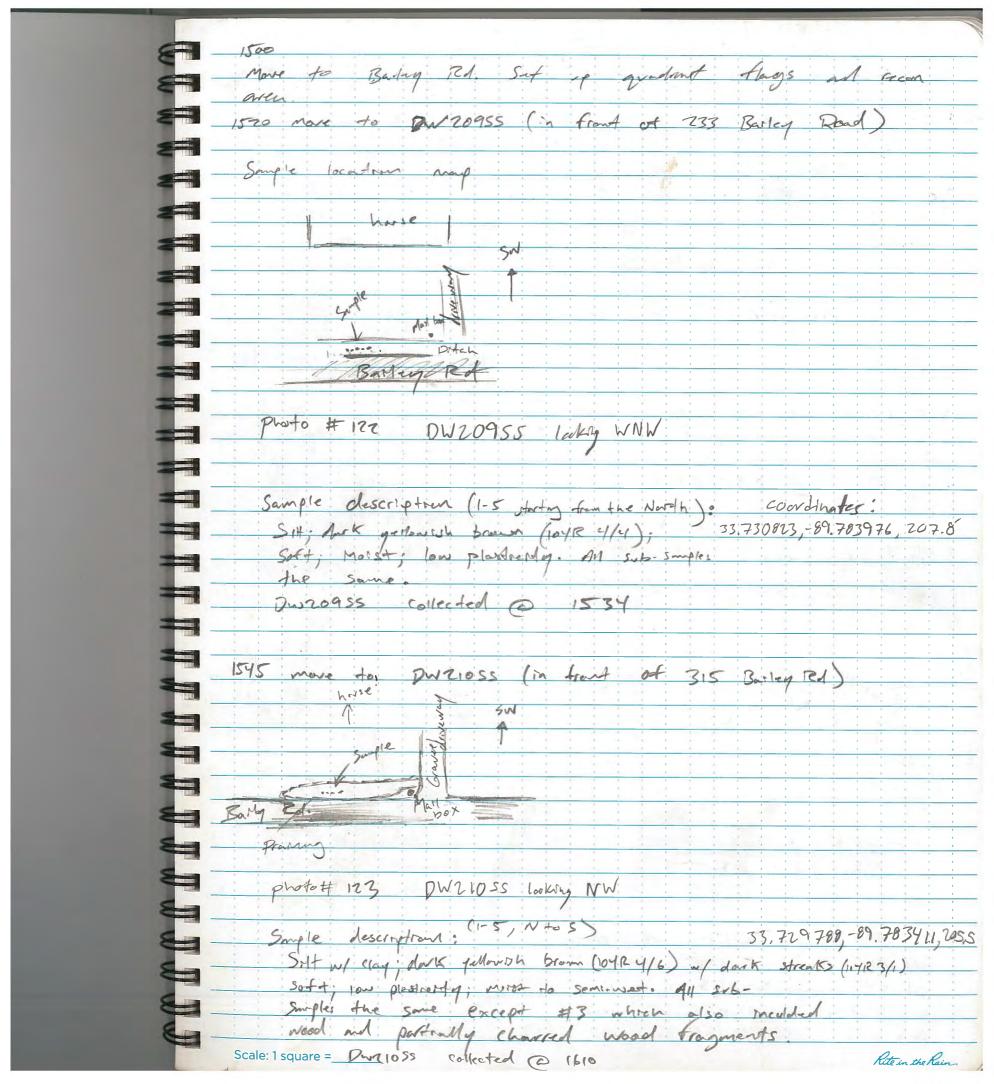
Dramage Orten 0800 EPA an-Site 10 proto #91 Parot DW20155 looking west photo # 92 BD proto #92 Dw20155 Somple long (5 points, west to East)

#1-5 Silt; brown 104R 4/3; Soft; low plasticity; moret to sen; - vit; 33.732538, -69,791157 abradant roots. All suls-samples. homogeneous. Sample @ 0840 0908 EPA (MIKA and Parlar) off-51the; mot back to Goodgia

159 150	Sample location map (KD25155)		1
Simple to the state of the stat	(138 -		+
Super	- man annual and the lake the		*
Surple los KD25155 looking NE photo # 95 KD25155 looking NE photo # 96 KD25155 looking NE photo # 97 KD25155 looking NE Surple los KD25155 looking NE photo # 97 KD25155 Cellected @ 1033 Sub- Surple los KD25155 looking Ne Surple los KD25155 cellected @ 1033 Sub- Surple los KD25155 looking Ne Sub- Sub- Sub- Sub- Sub- Sub- Sub- Sub-		N N	
Sumple los to 25155 1 looking NE photo # 98 KD25155 5 looking 5-35 Sumple los to 25155 5 looking 5-35 Sumple los to 25155 5 looking 15-35 Sumple los to 25155		Fentires not to scale	
Simple less to 25155 : leaking NE photo # 95	A See A	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1
Simple less to 25155 : leaking NE photo # 95	Pitch		1
Surple los KD25155: Looking NE Photo # 95 KD25155:1 Looking NE Photo # 96 KD25155:1 Looking NE Photo # 97 KD25155:5 Looking Seture Surple Loss Surple Loss KD25155:5 Looking Seture RD25155:1 Looking		-155 Copper a	
Surple los KD25155: Looking NE Photo # 95 KD25155:1 Looking NE Photo # 96 KD25155:1 Looking NE Photo # 97 KD25155:5 Looking Seture Surple Loss Surple Loss KD25155:5 Looking Seture RD25155:1 Looking			1
Surple los KD25155-1 looking Seture polo photo # 95 KD25155-1 looking NE photo # 95 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 97 KD25155-1 looking NE photo # 97 KD25155-5 looking S-SE Surple los KD25155-5 looking S-SE Surple los KD25155-5 looking S-SE Surple los KD25155-5 looking S-SE KD25155-1 looking S-SE K	1101711711711711711711711711711711711711		- 1
Surple los KD25155-1 looking Seture polo photo # 95 KD25155-1 looking NE photo # 95 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 97 KD25155-1 looking NE photo # 97 KD25155-5 looking S-SE Surple los KD25155-5 looking S-SE Surple los KD25155-5 looking S-SE Surple los KD25155-5 looking S-SE KD25155-1 looking S-SE K			1
Sample los KD25155-1 looking NE photo # 95 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 97 KD25155-1 looking NE photo # 98 KD25155-1 looking NE photo # 98 KD25155-1 looking NE photo # 97 KD25155-5 looking N	I describe to		
Sample los KD25155-1 looking NE photo # 95 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 97 KD25155-1 looking NE photo # 98 KD25155-1 looking NE photo # 97 KD25155-1 looking NE photo # 97 KD25155-5 looking NE ND25155-1 (M) Siff; gullmush boam (loyR 5/b); soth, 33.731874, 69.75999 , 217.7 KD25155-2 Sife a chore ND25155-3 (SP) Saml in grand; gullowish cut 33.73237-69.790114, 227.6 (S4/K 5/b); sine; sub-county loosel Sife and looking is sub-county loosel Sife and looking is sub-county loosel Sife and looking is sub-county loosel			- 1
Simple los KD25155: looking NE Ohoto # 95 KD25155: looking NE Ohoto # 96 KD25155: looking NE Ohoto # 97 KD25155: looking S-SE Simple los KD25155: looking NE Ohoto # 97 KD25155: sooking S-SE Simple: Coordinates: KD25155-1 (M) Still; igillowary brawn (loye 5/6); sott, 33.731874,-87.769999; 212.7' KD25155-2 Sime a choice 33.732377-67.790114, 227.4' KD25155-3 (8) Said in grown guilloursh (ed 33.732407,-89.789748,229.0) (S4X Stb); time; sib county loose	No. 1 All Maria Valley		-
Supple log KD25155-1 looking NE photo # 95 KD25155-1 looking SE photo # 96 KD25155-1 looking SE photo # 97 KD25155-1 looking NE Sub-supple: Supple log KD25155-1 looking NE photo # 97 KD25155-1 looking NE Supple log KD25155-1	S Jamace Harrison		
Surple log KD25155-1 looking NE photo # 95 KD25155-1 looking NE photo # 96 KD25155-1 looking NE photo # 97 KD25155-1 looking NE photo # 98 KD25155-3 looking NE photo # 97 KD25155-3 looking NE photo # 97 KD25155-3 looking NE photo # 97 KD25155-5 looking NE photo # 97 KD25155-1 looking NE Surple log KD25155-1 looking NE photo # 97 KD25155-1 looking NE Surple log KD25155-1 looking NE			1
Surple less KD25155 Collected @ 1033 Surple less KD25155 looking Sith photo # 97 KD25155 soloking Sith photo # 97 KD25155 soloking Sith photo # 97 KD25155 soloking Sith soloking Sith sith sith sith sith sith sith sith s	1 Planten Del	Here	1
251 Koopers Drive Kiffers Photo It 95 Photo It 95 Photo It 95 Photo It 96 Photo It 97 Photo It 96 Photo It 96 Photo It 96 Photo It 97 Photo It 96 Photo It 97 Pho		wood of an lass	-
## Photo lan photo # 95 KD25155-1 looking NE Ohoto # 95 KD25155-3 looking Seylin photo # 96 KD25155-3 looking Seylin photo # 97 KD25155-3 looking Seylin photo # 97 KD25155-5 looking S-SE Ohoto # 97 KD25155-5 looking S-SE Swple long ** ** ** ** ** ** ** ** ** ** ** ** **	Without formation 10 %	pelproto	1
Frate log photo # 95 photo # 95 photo # 95 photo # 95 photo # 96 kD25155-1 looking Set photo # 97 kD25155-1 looking NE photo # 97 kD25155-1 looking NE photo # 97 kD25155-5 looking S-SE Sub-sample: R715185-1 (M) Siff; gellowing bown (104R 5/6); soft, 33.731377, 69.76999 217.7 kD25155-2 some a bove 33.732377, 69.79014, 227.4 KD25155-3 (89) Said of grand: gellowing (6) KD25155-3 (89) Said of grand: gellowing (6) Sylvasillary Courts administed	· 1.		1.79
Flooto # 95 KD25155-1 looking NE photo # 95 KD25155-1 looking SE photo # 96 KD25155-3 looking Senting photo # 97 KD25155-3 looking NE photo # 97 KD25155-5 looking S-SE Suple log KD25155-5 looking S-SE KD25155-1 (M) Siff; gellowing bown (loyk 5/6); soft 33.731874, 69.769999 217.7 low photoering monst roots KD25155-2 Same a above 33.732377-69.790114, 227.4 KD25155-3 (SP) Saml n/ gravel; gellowing cell 33.732377-69.789748,229.0 (S4K 5/6); time; sub-count, loose	K. egers Dine		1
Somple log KD25155-1 looking NE photo # 95 KD25155-3 looking South photo # 96 KD25155-3 looking NE photo # 97 KD25155-1 looking NE photo # 97 KD25155-5 looking S-SE South # 97 KD25155-5 looking S-SE KD25185-1 (MD) StH; gellowing board (104R 5/6); south # 33.731377-69.769999 217.7 KD25185-1 South # 9000 Marketing Months Food # 33.732377-69.790114, 227.4 KD25155-2 South # 9000 Marketing # 33.732377-69.790114, 227.5 KD25155-3 (8) South # 9000 Marketing # 33.732377-69.789748,229.5 (54R 5/6); time; sub country of the south # 1905R Frequentland Country of the south # 1905R	Note:		- 1
photo #95 KD25155.3 looking South photo #96 KD25155.3 looking South photo #96 KD25155.1 looking NE photo #97 KD25155.5 looking S-SE Simple loop KD25155.5 looking S-SE Simple loop KD25155.5 looking S-SE Simple loop KD25155.5 looking S-SE KD25155.1 (ML) Silt; gellowish barn (104R 5/6); cott, 33.731874,-67.767999, 217.7 KD25155-2 Sime a choice 33.732377,-67.790114, 227.4 KD25155-2 Sime a choice 33.732377,-67.790114, 227.4 KD25155-3 ((p) South in grave gellowish coole Sile sile of sile of sile county and south	+		1
Somple los KD25;55.3 looking Sotte photo # 96 KD25;55.1 looking NE photo # 97 KD25;55.5 looking S-SE Somple los KD25;55.5 looking S-SE Sub-sample: Description: Coordinates: KD25;85-1 (N) Sitt; gellowish barn (104R 5/6); sott, 33.73;1074; -67.764999, 217.7 Low plattering most roots KD25;55-2 Some a spore 33.73;2377 -67.790114, 227.4 KD25;55-3 (SP) Sould of ground: gellowish red 33.73;2407, -89.789748,229.0 (54K 5/6); time; sub-round: loose			1
photo # 96 KD25155-5 looking S-SE Sample log KD25155-5 looking S-SE Sample log KD25155-5 looking S-SE Sub-sample: Description: coordinates: KD25185-1 (M) Sill; gellamor board (104R 5/6); solt; 33.731074,-89.789999, 217.7 Low planticity; moist root: KD25155-2 Same a above 33.732377,-69.790114, 227.4 KD25155-3 (87) Sand N/ grand: gellawith cell 33.732407,-89.789748,229.0 (54R 5/6); fine; sub-count: loose Sub-sample log KD25155-1 Sub-sample log KD2515-1 Sub-sam	photo # 94 KD25133-1 looking SE		
Sample log KD251ss 5 looking 5-SE Sample log KD251ss collected @ 1033 Sub-sample: Description: coordinates: KD15185-1 (MI) Sill jullament brain (104R 5/6); solt 33.731874; 89.78999 212.7 Low planticity; mojet roots KD25155-2 Same a choice 33.732377,-69.790114, 227.4 KD25155-3 (89) Sand w/ grand: quilentish red 33.732407,-89.789748,229.8 (54K 5/6); time; sub-round: loose	photo #95 KO25185.3 looking South		1
Sample los x025;55 collectad e 1033 Sub-sample: Description: coordinates: K075/85-1 (M) Silt; gellangth brain (104R 5/6); solt 33.731074,-87.769999, 217.7 low plasticity morst roots K725/55-2 Same a above 33.732377,-69.790114, 227.4 K025/55-3 (8) Sand n/ grazul: gellangth (ed 33.732407,-89.789748,229.0 (54R 5/6); time; sub-round: loose Sub-sample of the sub-round of the	photo # 96 KDZJISS-1 looking NE		- 1
Sub-Sample: Description: coordinates: KOTSIGS-1 (ML) Sitt; getlament brain (104R 5/6); sott 33.731874,-87.789999, 217.7 Low plasticity; moret roots KOTSISS-2 Same a above 33.737377,-67.790114, 227.4 KOTSISS-3 (SP) Sand or grand: getlawish red 33.732407,-89.789748,229.0 (54R 5/6); time; sub-round: loose Sub-sandar Course admissed	photo # 97 KD25133 5 looking S-SI		1
Sub-Sample: Description: coordinates: KOTSIGS-1 (ML) Sitt; getlament brain (104R 5/6); sott 33.731874,-87.789999, 217.7 Low plasticity; moret roots KOTSISS-2 Same a above 33.737377,-67.790114, 227.4 KOTSISS-3 (SP) Sand or grand: getlawish red 33.732407,-89.789748,229.0 (54R 5/6); time; sub-round: loose Sub-sandar Course admissed			
Sub-Sample: Description: coordinates: KD75195-1 (ML) Sitt; getlement brain (104R 5/6); sott 33.731874,-87.789999, 217.7 low plasticity; moret roots KD75155-2 Same a above 33.732377,-67.790114, 227.4 KD75155-3 (SP) Sand or/ gravel: getlewish red 33.732407,-89.789748,229.0 (S4R 5/6); time; sub-cound: loose Sub-samples admired			1
Sub-Sample: Description: coordinates: KD75195-1 (ML) Sitt; getlement brain (104R 5/6); sott 33.731874,-87.789999, 217.7 low plasticity; moret roots KD75155-2 Same a above 33.732377,-67.790114, 227.4 KD75155-3 (SP) Sand or/ gravel: getlewish red 33.732407,-89.789748,229.0 (S4R 5/6); time; sub-cound: loose Sub-samples admired			,
Sub-Sample: Description: coordinates: KD75195-1 (ML) Sitt; getlement brain (104R 5/6); sott 33.731874,-87.789999, 217.7 low plasticity; moret roots KD75155-2 Same a above 33.732377,-67.790114, 227.4 KD75155-3 (SP) Sand or/ gravel: getlewish red 33.732407,-89.789748,229.0 (S4R 5/6); time; sub-cound: loose Sub-samples admired			1
Sub-sample: Description: coordinates: KOTSIGS-1 (ML) Silt; gellowish brain (104R 5/6); soft 33.731874,-89.789999, 217.7 Low plasticity; moret roots KOTSISS-2 Same a above 33.737377,-69.790114, 227.4 KOTSISS-3 (8) Sand of gravel: gellowish red 33.732407,-89.789748,229.0 (54R 5/6); time; sub-round: loose Sub-samples	Sample lan -2=	1072	1
KO25155-1 (Mi) Sitt ; getlemot brain (104R 5/6); sott 33.731874, -89.769999, 217.7 Low plasticity, marst roots KD25155-2 Same a above 33.732377, -69.790114, 227.4 KD25155-3 (SP) Sant w/ gravel: getlemost ced 33.732407, -89.789748,229.0 (54R 5/6); time; sub cound: loose Sylvanolist Counter admired			i.
K725155-2 Same a above 33.732377,-69.790114,227.4 K725155-3 (89) Saml or grand: gellowish red 33.732407,-89.789748,229.0 (542 5/6); fine; sub round: loose		2 7 - 024 60 7 60000 717 7	
K725155-2 Same a above 33.732377,-69.790114,227.4 K725155-3 (89) Saml of gravel: gellowish cell 33.732407,-89.789748,229.0 (542 5/6); fine; sub count: loose 5-12-angular Counts seemed		16/- 5041	1
KO25155-3 (59) Sand w/ gravel. yellowish red 33.732407, -89.789748,229.0 (5412 5/6); fine; sub cound; loose		13 777777 - 69 790114 177 U	f.
(542 5/6); time; sub round; loose		-1	1
(54/2 5/6); time; sub cound: 1005l	KO25155-3 (59) Said w/ gravel; yellow	13h (ed 33. + 31 40+, -01. +04 448, 227.2	> 1
Sypanolar Course almiel			
KD25155-4 Some as #1 33.731915,-67.769787, 2214 KD25155-5 Some as above 33.732346,-69.790164,25.3	the state of the s	lemise!	1
KD25155-5 Same as above 33.732346, -89.740164, 25.3		33,731915,-87,789787, 2214	1
		33.732346, -69, 790164, 25.3	1
			4


3-,		a 1 (s) 1	+ 1 1 1	4 1 1 1	F E
to 275 Koppers	Pr.		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 3
	1 1 1 1				1 1
le lacetien	MAR			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
mile localion					y .
2 - min driver	Interior	}			1 F
	1	* LN			r t
	- 1 / / / / / - 1 / / / / / / / / / / / / / / / / / /	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1
& grassof an	- W \			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
	• 井 \	7	1 1 1	<u> </u>	1 1
				1 1 1	1 1
A STATE OF THE PARTY OF THE PAR		New	0 0 0 0 0 0		1 1
	111111111111111111111111111111111111111	V wood			1 1
K MARKENNIO	Man :	1 fevel			1 1
(nd) -	I wood deck	1 (potentially)			1 1.
*5.		P.T.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PARENEU -	1	1		4	4 4
(4)67		1			1
	112.5			1 1 1 1	1 1
Cost post	4 135-1	F.6	1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			1 1 1 1		
123 R-1011 75	obstructed by	harse			
			(2) (4) (4) (7) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		1 1
	1 1 1 1 1 1 1				1 1
thato lar	ess land				1
photo \$198 KD 775	1334 BOKING	1- 1		ME 10-101	(end)
ploto Had KD275		JE (near)	home where	45 le-100	
ploto 4100 K02755			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
Photo #101 K0275.			1 1 1		1 1
photo \$102 K027555		V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1
photo 2103 K027555	- (1,2) dark strea	Kr in soil!	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			1 1 4 1 1 1	1 1 1 1	
KD13555 (Medel @ 19	201	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	1 1 1	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Sample 109			capplinat es		1 1
	emption:		73777165	-69.790359	223.4
	; brome (1/R 4/3);		100000		1 1
	; dark (blackish) str		(f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
of.	charcoal? (buck,	shiny).	1 1 1	69 29 4 4 2 -	2750
	e as above		33.732265	-89.790637 -89.790314	7145
KD27555-2 Same			27777117	-0 110014	17.0
-11	of solly Snad		53. 45,610,1	4. 1 1	,
KD27555-3 3"	of solly Sand;	, yellowish	53. 43.0 10.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
KD27555-3 3"	(5472 5/6); 5	yellowish em: - loose;	53.47.0101	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
KD27555-3 3" (ed	((547 5/6) , S.	j yellowish iem: - laose; " brown soft		1	
1027555-3 3" red VU 9au	(5472 5/6); S of the bottom]	j yellowish iem: - laose; " brown soft		-89.790361	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

for supplies/ wach offree Kappers Drive lightly regetated Matel 043 house porch darange difets Koppers P.R. The garden buts of house photo # 104 KD297-1 North: 100 Kne photo # 105 10 KD 297-7 lookne SE photo # 100 KD297-3 ootins 5-SE photo # 100 KB797-4 W-NW looking photo # 1078 KD297-5 looking North 1354 11-10V 1st afterny to the ended up horse. KD29755 Collected @ 1429 WI -MS/MSD Samples Coor ductes: Sample 33,732016,-81,740993,00 Solt; brown (104R 8/3); soft; KD29755-1 of charcoal Mosel (oots preces above but is / glass a brick fragulars 33,732315, -89.791014, 226.5 K029755-2 33.732330,-89,790521,710,0 KD29755-3 33.731965,-69.790593,219.9 KD29755-4 above 33,731861, -89790697,213.5 Scalet Psquare 5


1500 Mob	back to Kopper Facolity for decon/ruse Sample
KD29755-E	B Collected @ 1576
1605 - Andrew to	Fedte to ship samples. Garnett remembres on site
1755 Anter back	on site. Continue decon and wrappy
1840 TT OFF.	site
18 D	
0730 It or equipment	for day.
0800 grove (Duronss (dramage way in front of opports Drive).
Sample loes	tion map with the state of the
TP O Difeh	
	Koppers Dave
photo log:	
Photo 109	DW20255 looking South
Sample lag	Coordnates:
#1 through #5	51+ w/ soud and free growt; 33.732478,-89.790785, brown (10424/3); sort, med; 33.732478,-89.790785,
	Sand and Long organish MOBT.
0842 Coll	est sample DW20255. Collect NS/MSD sample at DW20255.

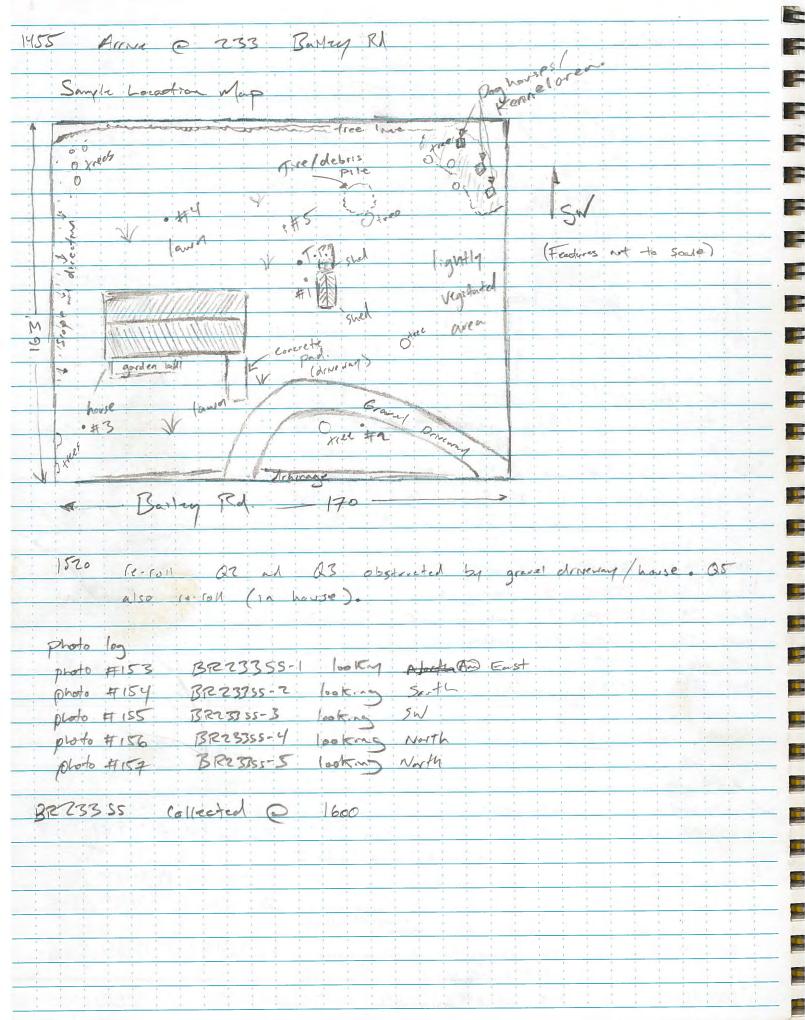
Sample Cocastron Map Note Note Note Note Depring District Reppers Dive Single lan South 1-5 (a) STH, general from (ank SM), 33.732526-69.789904,220 South 1-5 (a) STH, general from (ank SM), 33.732526-69.789904,220 Note Dollowing Diverse Comment (ank SM), South 1-5 (a) STH, general from (a) STH, general from (a) STH, general form (a) STH, genera	1 1	mare	to I	DW 20355	(m	Frant	of	248	Kopers	ane)	
photo loa photo spile Single loa State loa Sample loa atam may Somple loa atam say Somple description: South born loay state Somple description: South born loay state South loar gladerety, most South loar gladerety most South loar gladerety most South loar gladerety most	Comple	· lacosto.	in M	1.0		1 1 1	t t	6 6 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Coordinates Photo log Photo galle Surfice for Surfice for Surfice for Surfice for Surfice for Photos Surfice for	Jerry		locals!	e	1 t		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H 1 1 1		
photo load photo square Drive Photo load photo square Drive Simple lan Simple lan Simple lan Somple lan Somple lan Somple lan Somple land S	1	14				IN	1 F. 1.	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
Photo log photo \$710 DW20355 bokeng NE Surple log Coordinates Subject 1.5 (m) STH; general tran (love 5/4), 33.732526,69.789984,220 Subject 1.5 (m) STH; general tran (love 5/4), 33.732526,69.789984,220 Subject 1.5 (m) STH; general tran (love 5/4), 33.732526,69.789984,220 Subject 1.5 (m) STH; general tran (love 5/4), 33.732526,69.789984,220 Allow C DW2045S (bedoeen boundary order 725 End of 12 4124]) Supple location may Grassia train Supple location may Dirto HIII DW2045S loveing E, slang beloping pole Supple description: SIH; bean (love 5/3); 33.732648,-89.78897721 free Sund and Grand; Subject of Course of Supple 11 50014 (love pole 5/4); 33.732648,-89.78897721 free Sund and Grand; Subject of Course of Supple 11 50014 (love pole 5/4); 30.732648,-89.78897721 free Sund and Grand; Subject of Course of Supple 11 50014 (love pole 5/4); 30.732648,-89.78897721	1	13/	V gra	N. A.	ingle			6 1 1 4 4 1 1 4a, 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, , , , , , , , , , , , , , , , , , ,
photo log photo 4110 DW20355 hotong NE Sougle log South los (a) Silt; general form (love 5/4); South Swetch 1-5 (a) Silt; general form (love 5/4); But 33.732526-69.789984; 220 But 0355 Lothertod @ 0410 Anne @ Dw20455 (bolomer boundary order 225 E M W [12 4129]) Soughle location may Grassyl field N Soughle location may Divid 1.7 / Supile A15' from T.P. Leopers Done Photo HIII DW20455 looking E, slay bleplow pole Sample description: Silt; brown (love 5/3); 33.737640,-89.78897721 force Sun and grass! Soft; low publicating most South prices of churend observed in subscript; most South prices of churend observed in subscript most			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/	30		t t			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
photo 10g photo \$\frac{110}{2} \text{Dw20355} \text{lockeng} \text{NE} Songle lon Songle lon Songle lon Songle lon Rests; lan photherty; moust PW20355 talkeded @ 00010 Anne @ Dw20455 (before bendery with 275 & N [724124]) Songle location may Songle loc	91	V into	11-14		Draw	mage !	Dirtch	1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Suple las Substitute (a) STH; year and from (color 5/4), Substitute (a) STH; year and from (color 5/4), Substitute (a) Photocolory; movet Bur 20355 (Meeted @ 0410 Aure @ Dur 20455 (Meeted @ 0410 Aure @ Dur 20455 (Meeted @ 0410 Aure @ Dur 20455 (Meeted @ 0410 Suple lacatem may Observed may pole Suple descripton: Silt brown (lay R 5/3); 33,737640,-89,7889772. First Sund and gravel: Suple descripton: Silt law plestricting mass Suple descripton: Silt law pictured mass Suple descripton suple law suple)	1 1=	Kapt	pers	DINE	1 1	1 1 1	1 1	1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
Super los DW 20355 hotery NE Super los Coordinates Sub Sure 1-5 (m) STH; year and from (colf 5/4); 33.732526-69.709984, 220 Sub Sure 2 1-5 (m) STH; year and from (colf 5/4); 33.732526-69.709984, 220 But 20355 folicated @ 00/10 Anne @ DW 20455 (before boundary of 225 E M W [12 4124]) Super location may Grassy treld N Super location may Photo FIII DW26455 looking E slavy bloplan pole Super description: SIH; brown (oyk 5/3); 33.737640,-89.7089772. First Sud and gravel: Seft; law plottering most Sum prices of chareen observed in subscript ill Only (eastern most supple)	-1 -4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f		1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
Souple loss Sub Sweet 1-5 (m) STH; year-res form (will 5/4); 33.732526-69.789984, 220 Sub Sweet 1-5 (m) STH; year-res form (will 5/4); 33.732526-69.789984, 220 Sub Sweet 1-5 (m) STH; year-res form (will 5/4); 33.732526-69.789984, 220 Dw70355 (observed @ 00/10 Aure @ Dw70455 (observed beauthry orbit 70.5 E orbit 1/29] Suple location may Grassy treld N Suple not form T.P. tappers Deve Photo HII Dw20455 looking E, should bloplane pole Suple description: S1H; brown (048 5/3): 33.732640-89.7889772. First Sind and gravel: Seft; low platforming most Saull prices of chareau Objection in Subscript HII Only (endern most swelle)	1		1 1 1		1 1	1/2	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t 1 1 1		
Super 1-5 (m) STH, general bran (cold 5/4); 33.732526-69.789984, 220 Casts: DW20355 Educated @ Octo Amer @ Dw20455 (beforeen boundary of the 725 & 1 w [12 1129]) Somple location may J 2554 Foold N Super 1.8 Expers Dense Photo # 111 DW20455 (oking E, slung bleplow pole Sample description: Silt; bran (1048 5/3); 33.732640,-89.78897721 fecces Sund and gravel; Soft; low publicating most samil prices of conceand observed in subsingle #1	Phot	· #110	DW	120355	looking	IVE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1))
Super 1-5 (m) STH, yearnes bran (1048 5/4); Soft law photherty; most Rasts. DW20355 interted @ 0410 Anne @ Dw20455 (between boundary with 725 & 1 W [12 1129]) Somple location may Grass of treld M Somple Markets Device District Single Also from T.P. Leppers Device District Single description: SIH; bran (1048 5/3); 33,732640,-89.78897721 Freie Single description: SIH; bran (1048 5/3); 33,732640,-89.78897721		1 1 1	1 1 1	- Y Y Y	1 1	1 1	1 t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e narla	L	•
PW 20355 Lotherted & DOGO Affine & DW 2045S (bedween boundary and 2025 & M W [12 4129]) Simple Invature many Simple Invature many Simple Invature many Simple Accompany Druce Photo # III DW2045S looking E, shary belopher pole Simple description: Silt brown (10 48 5/3); 33.732640,-89.78897721 Frace Shid and gravel; Selt; low pleatherty; most Sandl prices of churesol observed in Subscript #II Only (exitered most simple)	Sanje	2 100	1 1 1 1 1	1 1 1	1 1		1 () () ()		Coon	42	1
PW20355 Lotherted & OCHO Affine & DW2045S (bedween boundary and 2025 & M W [12 4129]) Simple Invature many Single Invature many Single According Following E, sharp belopher pole Single description: Silt brown (10 48 5/3); 33.732640,-89.78897721 Free Shid and gravel; Soft; low pleatherty; most Soft; lo	Sub San	ere 1-5	(mL) S	Flt; gener	the brian	~ (10.4R	5/4);		777325	7.689.789984	7.7.0
DW20355 Enterted @ 60110 Anne @ Dw20455 (between boundary with 725 Ent W [124124]) Somple location may Graff 1? / Somple als' from T.P. Lappers Drave District M DW20455 (ooking E, shoup beligher pole Somple description: SIH; brown (104R 5/3); 33,732640,-89.78897721 Free Soul and gravel; Soft; low plattering; most Soull prices of churend observed in Sebsoule #11 Only (enstein most smile)) (-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sa	ft; lav :	plastre.	dy; no	+85		3 30 1 3 2		11
Anne @ Durouss (borner boundary of the 2025 End in [12 4124]) Simple location may grass of treld N Simple simple Kappers Drive Photo III Durouss looking E, shang beloplan pole Sample description: Silt brown (10 YR 5/3); 33,732640,-89,78897721 Frece Sind and gravel; Soft low protecting most Smill prices of charceant observed in Subscript III Only (Enstein most simple)				442			1 1		0 1	1 1 1 1	1
Access Developers Developer Super Su	Dwz	0755	rotect	-10	note		1 1	1 1 1 1 1 1 1 1 1	1 1 1 1		
Simple location may grassy treld N Surjee als' from T.P. teppers Drue Photo II III DW20485 looking E, shory beligher pole Sample description: SIH brown (10 YR 5/3), 33,732640,-89,78897721 freie Sind and Gravel; Selt; low platterty most Saul prices of churend observed in substitle #1 Only (enotion most simple)		1 P 1			1			b 1 1			4
Photo # 111 DW20455 looking E, show believer pole Sample description: Silt; brown (10 YR 5/3); 33,732640,-89,78897721 Free Seal and gravel; Soft; low plastrerty; most Small preces of chareant observant in Subsingle #1 Only (emotion most simple)	Sam	V	gras	854 Fre1	d	1					4 4 4 4 4 4 4 4
photo # 111 DW20455 Looking E, show teleplane pole Sample description: Soit; brown (10 yr 5/3); 33,732640,-89,78897721 Free Shall and gravel; Soit; low plattering most Samil preces of charead observant in Subsimple #11 Only (enstern most simple)	1 -	Lucy V.S.	/	: : V		Sampile	15	from !	T.P.		1
Photo II III DW20455 looking E, show, beliefare pole Sample description: Silt; brown (1048 5/3); 33,732648,-89.78897721 Frace Shall and gravel; Soft; low plastrerty; most Samil preces of chareaul observal in substitute #1 Only (emotion most simple)	1 1	-		Time	1	† † †					- 1
Sample description: Stit; brown (10 4/R 5/3); 33,732640,-89,788977,21 free Shall and gravel; Soft; law platterity; mount Samil preces of chareaul observal in subsingle #1 Only (eastern most single)		1001	pers	Drive		3-40		7 1	1 1	1 1 1	i
Sample description: Stit; brown (10 4/R 5/3); 33,732640,-89,788977,21 free Shall and gravel; Soft; law platterity; mount Samil preces of chareaul observal in subsingle #1 Only (eastern most single)			1		1			1 1		1 1 V	1
Free Sand and Gravel; Soft; law plestrerty; most Somall preces of chureout Observed in subsupple #1 Only (eastern most small)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1			
Free Sand and Gravel; Soft; law plestrerty; most Somall preces of chureout Observed in subsupple #1 Only (eastern most small)	phot		Dwi	10485 look	ing E,	showy dela	rplane p	nole			1 1 1 1 1 1 1
smill preces of chareaul observal in subsmile #1 Only (emotion most smile)		to # 111	1 1 1		1 1					09 78897	7.4.1
observat in subsurple #11 Only (eastern most smalle)		to # 111	1 1 1	from: Si	il+;	brown I	(10 YR	5/3);		48,-89.78897	721
only (eastern most smelle)		to # 111	1 1 1	fron: Si fr So	1+; 0+; 10	brown on place	(10 YR	5/3); ravel;		40,-89.78897	721
		to # 111	1 1 1	from: Si fr So	11+) cese 0++ ; 0	brown shad an place preces	(10 YR) Aresty	s/3); ravel; 1; more chureans		40,-89.78897	721
Dw 20455 collected @ 0945		to # 111	1 1 1	Fron: 51 Fr 50	rese oft; lo	brown sund an preces	loyR dresty of Subsurg	5/3); ravel; 1; mors chureoul		40,-89.78897	721
W CONTOURN PLANTS		to # 111	1 1 1	Fron: 51 Fr 50	rese oft; lo	brown sund an preces	loyR dresty of Subsurg	5/3); ravel; 1; mors chureoul		40,-89.78897	721

Mare to DW70555 (in front of EPA #9) Proto #112 DW20555 looking NE Srit I dork grapish brown (104R 4/2); 33.732844, -89.788780705 Somple description: soft low prestreity, roads, high organize content. trace said in Sub-simple #3-5; fine. Slass and plastre on sample of 5 (western most 1010 - Collect sample DW20555. 井いる W20655 looking SW Sand and Sot (50/56) yeary dark gray 33,733177673-87,767679724 Sample Description: (1048 3/1). fore soft pose; most; Preces of chircoal; Solt yellowish brown (10 4/ 5/6) soft Ion prostruty in bottom 3 of sysmple #4. Collected @ Scale: 1 square = $D\omega$ 20655

10		-
300 heard buck to o	Africa to arrange Samples.	_
538 Acere @	321 Koppers Drue	
		_
Sample Loca	Arun Map	
	Proposition shed	
4 1.9.	noise \$ 1	
VXXXX TOTAL	Streetive Streetive	
	wood purch	
h of oftel		
	7 45	
10:	3	
HER		
	0 0	
J. Frankling Co.	2 DIFER	
Kop	Pers Diver 15 7	
	KO321SS-1 looky NW	
photo # 118 k	D32155-24 looky oft NW	
photo # 119	031155-3 looking proof South	
photo # 120 k	D32155- 1/2 looking South 5-SE	
photo \$121 K	032155-5 looking Sw	
Sample Log		
Sub- Sample:	Description coordinates	2
KD3218-1	(di) Silt; grapish som (104R s/2); 33.732113, -89,791198, 237.3)
	Sodt; low plastreity; morst;	
- t + t + t + t + t + t + t + t + t + t	black fraguents Smilrar	
	to other Sagle but Skypt	
	yesperlar / orenthused look.	
K1737155-4	Some as above 33.732142, -89,79/143, 208.6	
K037195-3	same 65 above 33.732310, -69.790963, 228.7	
K1737155-2	Same us above 33.732296,-89.79/126,224.2	
15032155-5	Same as above 33.732271,-89.791150,229.0	
	same as above	

16.6.6	Marke:	to:	BREPA	2155	to beg	n pre	p work	for	tomarro	20
	Samplan	1			J					
45	Move to Somplan	: BR3:	7355 7	Set	VP	finas	for	toman	0.35	
-11	Smelna	1 2							A state to	
				0 1	1	1 1	1 1	The state of the s	1 1 1	
70	atun to	- F	nows o	facility	for	1	100	5 1/0	1. 1. 1.	
		: 100/	of the same of the	/	1	area /	100	say a.		
			1 1	1 4 4	1 1	1 1	1 1 1	1 1 1.	d by t	1
50	(alleit	(000	11 11	(-			21.4%	1 1 1		
74	Collect	rine	Dank	7100		DW 210	SS	ger buel	at / spoon	1
,	1 1		1	7	1 1	1 1	D 1 4	() (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	17 04	31	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1 1 1	1 1 1	1 1 1	1 1 1 1	1
1.,1		4 0	1 1 1	1 1 1	1 1 1	1 1 1	1 4 1 1 4 1	1 1	1 1 1	1
14/	10	- Y	1 1		1 1 1	1 1	F. 1 F	1 1 1	1 1 1 1	
				1 1 1	1 1	1	L 1 L	1 1 1		
720	Arm.	vp	ree	for	samples	1 1	t t t	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
735	Arran	0	Kepper	3 fac	Moty,	load	Egry.	menA	nto	1
ich	reles.	4 1 3 2 4	1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1			1 1 1	1
200	Arrase	P	BIZEPA	2155	Condie	+ +1	15 t-	Maite		
- 1			1 1	1 1 1	1 1 L	4 A 1		Q		2
4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1		1 1 E	1 1 1	1			
200	e location	· ma			4 (i) j.	1 1 1	1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-	oten in the second	PARTIES AND ADDRESS OF THE PARTIES AND ADDRESS O	The Assessment of the Contract	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	col	1 1 1	i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Mesos		-1000	Carried Startes	antha !	1 7					
man	and mythe	Time	4	A	A				1 1 1	
Street Street	as agree	eme	#(7	1	1 2 1 2 2 1 4 1 1 1 1 1	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		T T T T T T T T T T T T T T T T T T T	-
S. S	- Africa	Eme	#(1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
o .	- ATTE	with	1		1					
0	- All	gress fre	1		1					V
0	A A A A	grass fre	1		1					
0	#3 H3	gress fre	1		1					
0	#4 . #4 . #4 . #4 . # . # . # . # . # .	gress fiel	1							V
0	# # H	grass fre	1							
0	#3 H	gress fre	1							
0	#4	gress fiel	1	0 1						V
0	#3	grass fiel	1 1 1	0 0						
0	#3	gress fiel	1							
اللوا	HS HU HS WAR BONNEY	gress fiel	2	0						
0	Howevery Boardery	gress fiel	2	0						
٥	H3 H3 Banden	gress field	1 V	0	7 North					
Prod	Bowley 109	gress fre	2 / 123' - 123' -	Ookin	1 /					
Die Contraction of the contracti	Bowley 109 109 109 101 10 #125	gress field the BRE BRE	2 / 123' - PAZISS-PAZISS-2	O O I I looking	West					
pho pho	Barden Barden 109 10 #126 10 #125 10 #126	BRE BRE	2 PAZISS- PAZISS- PAZISS-2 PAZISS-2	O O O O O O O O O O O O O O O O O O O	west					
Photo	Bowley 109 109 109 101 10 #125	BRE BRE BRE	2 / 123' - PAZISS-PAZISS-2	O O I looking	west					

000000			1			t I
	Meeted @ 0845				, t) i
Sample lug		h 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) i
S. D. Sample:	Description		coord	1 ()	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) i
BREPAZISS-1	Sitt, ye land the brown	(104/K s/6);			784325,	
	Soft; low plostrates	, morst , nosts	33.730	1548,-89:	78388212	28.5
BREPAZISS-Z	same as above		*	* *		4
BREPAZISS-3	Some as above				784076	
BREPAZISS-4	Sam as where		33.730	1404, -89.	784097,	222.4
BREPAZISS-S	Some as above	ar 10/4	1×33.730	510,	4 4	
			33.730	471,-89.7	84058, 2	17.8
Mar to BR 373	ss @ 0900				4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				1 ()	i i i	
BR37355 Sample	Location sup	h h i i		1 1 1	1 1	
					1 1	
X	- January	-			1 1	
3520	~ (o)	↑ SW		1 1	1 1 1	
a gira Menetation				1 1 1	1 1	ľ
1 seems on a	1,1-		1 1 1 1 1 1	1 1 1	1 1 3 1 1 3	1
St III o Day			4 1 t	• • • · · · · · · · · · · · · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
11 000	4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 0 1 1 1	U 0 1	1
			1 1 4 1 1 1	1 1 1	U (1	1
Shed . #3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	6 4 1 6 4 1	1
2)	Pic Co		1 1 1 1 1 1 1 1	1 1 E		
01 1/10	(veter		1 1 1	1 0 1		1
To Ther S	G		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1	
YE A	XYS		1 1 1	1 1 1	1 1	+
43						1
1 Pendi	Mick push					- 1
	Barley Rd			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f. ()
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 t t	, i.
photo Log			1 1 1	1 1 1	-11- t 1	t .
photo #129 13R3	9355-1 looking E-NE		1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	λ
Photo # 130 BR39	738-2 looking South	1 d d d d d d d d d d d d d d d d d d d	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		- 1
	355-3 looking SE South	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1		-
Photo AT132 BR32		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1		1
put #133 BR37	355-5 looking SE		1 1			
profo 4134 BR373	155 drums in Q4 100	ky SE		1 1		1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1		1 1	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1	1
			b.	1 1 1	1 1	1
	4 4 4 4	7 7 6 4 1	1 1	(i)	4 4	
		1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·

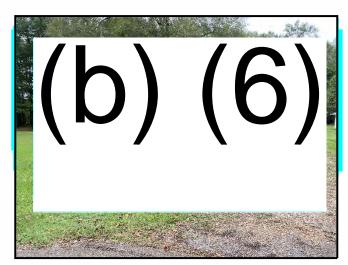

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
BR37355	collected @ 0940
: Somple log:	
Sv12 - samples	description: coordinates:
BP37755-1	SN+; brown (10-12-4/3); soft; 33.728978; 89.783431, 223.5"
	low plasticity, notes; costs
BR373562	Sure as aboute 33.729195, -89,783083, 214.5'
B1239355-3	Save as above color and to (2) 33.728947, 69.783049, 2266
BR37355-5	Color change to year and some (10/12/16) 33.729142, -69.762914, 218.1'
010 3 4 3 3 3 2	dark gray of brown (10-18 4/2)
BR37355-4	Color charge to yellowith brown (10/12/6) 33.729(05,-69.783/10,234.7'
27333	Color change to yellowith brown (10/18/5/6) 33.729(1)5,-89.483/60,234.7
1008 Move	to 351 Barley Rd
Somple los	cartion map
	Thick
	- Vegetoring
	4 6
	X T.P. WILL
	grass are
The state of	
/ Pay	a start L
V	
The state of the s	
0	V
N Y	
1	Liet res
7 3	
015	Jen. J.
Burlay	KN : 124/
1035	2.1011 : Q'Z at conton point HS. both ended in the house/convert
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Scale: 1 square =

proto Log	
Photo #135 B235155-1 looking sw	
- Photo #136 BR351SS-2 looking East	
photo #137 BR35735-3 lasking W-NW	
ploto #138 PR351:55-4 600 Kmg N	
photo # 139 151236155-5 looking E	
BR351SS collected at 1114	
Jub-Souple: Description:	coard mentes:
- RR35155-1 StH; brown (104R 5/3), 50H	33.729034,-89.783581,203.7
law glostinity, ment; roots	27 700702 (9 - 27)
13.735153-7 Sme as above	33.729392,-69.763324,221.6
B1235155-3 Same as above B1235155-4 Same as above	33.729276,-89,783074,213.2
7000	33, 729178, -89, 783281, 2069
DK 35155-5 Sine as above	33.729308,-89.763476,221.3
1143 mars to 315 Burley Rd	
y Songle Localron mans	
Ki Na	
5 1 120 0 0 0 0 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5	debus pile
6. K. Y. V.	forestunid dains Fearenagen, ero
Processing to the state of the	tax warming labels], e-waste,
A large	propure times, P.T. wood
heast heast	pie of R. R. dies, metal
burn a	scrups)
Perturb med 1	
Trad Jepit's	
Shed Grand	
or top down	
Wood clee	
- 144 -> Barley Rd	
Possible Carley Cal	
- M	
ren	
Scale: 1 square =	0_ 0

73/									146				
1	Photo 1 -			1 1		A .	· · · · · · · · · · · · · · · · · · ·	T.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
	photo # 140	BR31555	-1 /00	tan	E-NE	1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	proto #141	BR31555-	1 1	. /	South	1		1	2 1	1 -1			
	photo HM2	DR-31555-			rast			n n	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 11 1			
1	ploto #143	BR31555-		KM	-			1					
	Photo Hill	BR71555-		Kaj		1	1	10.	F F 3				
	photo #195	BR3.555-		. /.		ant.	0600	- His	LOS		1		
	photo #146	BR31355	Moran	MM 5	ica AH	+5	1/0-4	rate		eligrant.	Liek	7	
		NW:		1 1						0	(ma p		
						4	1 1))	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	BR31555=	collected	0 1	250			1 t	i i	*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1		
	Simple long	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	F F 4		1		
	Sub somple:		Pescript	ien				6	t t t t t t t t t t t t t t t t t t t	-84.78	3586		4.
	DR31555-1		It; bran) . 50	f-1:	33	.71966	3,489.74		,209.0	- Land
4		and the same of th	w plast	4	i i				F F A				
			ace an					1	t / t	1 1 1			
- 1	13131555-7		up as				ee	33	72999	7,-89.783	427;	235.4	
-		F 1 1 1	lack (un	1 (40	1 1	1				1 1 1	1		
		P I I I I	Hose	1	F 4 1	1							
		1 1 1	ve but						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
1	BR31555-3	F I II II	me es	1		ed b	vick:	33.	72959	1,-89.783	273, 2	03.1	
		1 1 1 2	agments	4. 74	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					4 4 4			
- 1	BR31535-4	·	me es	#1	but w/	no	gravel:			, -89.783	692	2090	-
- 1	37731555-5	5	mp as	#1.	fine -	frace	gravel	33.	729718	,-89.78	3431	2257	
- 3				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1			t	(b) (t) (b) (t) (t) (t) (t) (t) (t)	- 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-		1		1 1	1 1	- 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	310 arive (2	289	Bariley 1	1		4		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1	
								1	F	1 1 1	1		
-						1		1		1 1	3		
* * *			A 1	1 1	1 1 1			1.4	1 1 1	1 1 1			
1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P 1 1 1 1	1	1 1				1		, , , , , , , , , , , , , , , , , , ,			
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	t 1		1		1		1 1	-		
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1) (F. A. I	1	1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 - 1 E			
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	* t	1 1		4		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1	1 1	1 1 1 1 4 1	1	1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 (1) 1 (1) 1 (1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1- 1-	1 1 1 1 1 1 1 4 4	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7		
- t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	1 1	1 1. 1 1.	t t t	1		1	f	1 0 0 1 1 1 0 1 1 0			
1	1 1 1 1	1 1 1 1 1 1 1 1		1 1	ti t t	1.		e d	1 4 1 1 4 1 1 1 1	1 1 1	1		
	The state of the s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1-	t (f	1 3 1 1 1 9	1	1 - 1 1 - 1 1 1 - 1 1	· _ t	f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
		1 1 1 1 1 1	1	1 1	1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 - 0 - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1			
4 ,	le: 1 square =	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7	6 1	1	U 0.0 area	U	P X 1	ide to the	1		
SCa	ne. ii square	_											

and the second s		-
· HM		
	" TO	
Jank 1 Day	ev *I	
Report dodo		
No.		
oc of	960	1
ASIA EL		- 1
9	V 3	1
	V Con Reces)	
	5 (10.11)	1
	# -	
horse		
of the state of th		1
Promage Wallexal		1
Sarlay RA - 10	63'	
photo 147 BRZ89SS-1 looks shoto 148 BRZ89SS-2 looks photo 149 BRZ89SS-3 looks photo 150 BRZ89SS-84 looks photo 151 BRZ89SS-5 looks photo 152 BRZ89SS Divery	my Fast Nost Nod	
3878955 called @ 1438		1
		1
Sample log		1
Sib-sample description		
20	COSTONITOS	7 400
) Ne 100	with brown (1018 s/4); 33.730071, -87.784087, 2	14.7
	plasticity, Morat; roots	
Jane as	33.730247, -64. 763627, 20	13.7
77-0000	73 -199/2 199/2	44
3728955-3 Sme as	above by color chance 33.729962, -84.783301,220	
2728955-3 Some as	18) + Charrier Wood	. !
BR28955-3 Some as to (10 4R 5/	18) + the dark according 33,729664,-89,783817 740	. !
BR28955-3 Some as to (10 4R 5/ BR28955-4 Color ching brown (104R	18) + the dock grappsh 33.729664,-89.783817,240 R 4/2)	1.8
BR28955-3 Some as to (10 4R 5/ BR28955-4 Color ching brown (104R	18) + the dark according 33,729664,-89,783817 740	1.8


Sample lag		
Sub sample:	Description:	coordinates:
B1223355-1	SM+ dark grapin from (104/2/4/2)	33.730802,-89.784399, 28
	Soft; law plasticity; maint;	
	black fragments (inknown object)	
	Simplear to those observed on	
	tappers done smores.	
BR73355-2	tothe Color change to	33.730961, -69.784319,20
6	dork gellowith brown (10/12 4/6)	-89,784109,2
	no plack fragments	-89.780 m
BR23355-3	Sme as #2	33,736791,89.780
BR23355-9	Same as above with black	33.730740, -89.784262, 23
1	fragments in bottom 2 mines	
B1273355-5	Sure as #2 al #3	33.730770,-69.784320,227
1610 complete	BR733	
1615		
Collect Co.	mpossible sample from 6 Barley I	The parels (BRS0055)
Diplomate Sample	for BRSOOSS (BR86155) coll	estion time and a
Dipirente Sample	for BRS00SS (BR861SS) coll	ection time noted as
Depliente Somple	for BRSOOSS (BR861SS) coll	ection time noted as
1700		
1700		
1700 1630 Mob bock	to Kapper's facility for	
1700	to Kapper's facility for	decon
1700 1630 Mob bock	to Kapper's faculty for	decon
1700 1630 Mob bock BR23355-EB	to Kapper's faculty for	decon
1700 1630 Mob bock BR23355-EB	to topper's facility for collected @ 1655 (from bowl)	decon
1700 1630 Mob bock BR23355-EB	collected @ 1655 (from bowl)	decon
1700 1630 Mob bock BR23355-EB on BR23355)	to topper's facility for collected @ 1655 (from bowl)	decon
1700 1650 Mob bock BR23355-EB on BR23355) Clean y and v	collected @ 1655 (from bowl,	decon spoon, al eyes bretted use off-Site @ 1730
1700 1650 Mob bock BR23355-EB on BR23355) Clean y and v	collected @ 1655 (from bowl,	decon spoon, al eyes bretted use off-Site @ 1730
1700 1630 Mob Lock BR23355-EB ON BR23355) Clean y and v 10/5/20	collected @ 1655 (from bowl) pload egropment @ affree. boxes / packagay From Suppli	decon spoon, al eyer bretted use off-Site @ 1730
1700 1650 Mob Lock BR23355-EB ON BR23355) Plean y and v 10/5/20 0815 prik vp 0850 On-Sife	collected @ 1655 (from bowl). Aload egropment @ affree. boxes / purkayon France Supply Begin decon	decon spoon, al eyer bretted use off-Site @ 1730
1700 1650 Mob Lock BR23355-EB ON BR23355) Plean y and v 10/5/20 0815 Pick up 0850 On-Sife	collected @ 1655 (from bowl) pload egropment @ affree. boxes / packagay From Suppli	decon spoon, al eyes bretted use off-Site @ 1730
1700 1650 Mob Lock BR23355-EB ON BR23355) Plean y and v 10/5/20 0815 prik vp 0850 prik vp 0850 prik vp 1035 frysh	collected @ 1655 (from bowl). Aload egropment @ affree. boxes / purkayon France Supply Begin decon	decon poon, al eyer breket use
1700 1650 Mob bock BR23355-EB ON BR23355) Clean y and v 10/5/20 0815 Pick up 0850 On-sife 1035 Amish	collected @ 1655 (from bowl) Aload equipment @ orthree. boxes / purkaying Along Suppli Bean decon deconformating supply equipment	decon poon, al eyer breket use
1700 1630 Mob Lock BR23355-EB ON BR23355) Clean y and v 10/5/20 0815 Pick up 0850 ON-Site 1035 Amjsh Prior do 1230 TA orth-s	collected @ 1655 (from bowl) Aload egropment @ affree. boxes / pretaggy Aggroup Suppli Begin deconformating surply egropment wiappy them for shipment, 144 top 1 men ~ 30 mm	decon poon, al eyer breket use
1700 1630 Mob bock BR23355-EB ON BR23355) Clean y and v 10/5/20 0815 pick up 0815 pick up 0850 prosife 1035 Amish Play do 1230 TA off-s 1300 Wrey cox	collected @ 1655 (from bowl) pload equipment @ affree. bries / puckaying Demons Suppli Begin decon deconformating surpling equipment wapping them for shipment, 142 for 1 men ~ 30 mm	off-site @ 1730
1700 1630 Mob bock BR23355-EB OR BR23355) Plean y and v 10/5/20 0815 Pick up 6850 ON-Sife 1035 Amjsh 1230 TA off-S 1300 Wrey 1922 1445 Sample	collected @ 1655 (from bowl) pland egrapment @ office boxes / puckayan Argun Suppli Bean lecon deconformating supply wrapping them for shipment, the for weste disposal	decon 1000, al evger bretted use Off-Site @ 1730 (S. Mary air day (Decon water Drim)
1700 1630 Mob bock BR23355-EB BR23355) Plean y and v 10/5/20 0815 Pick up 6850 On-Sife 1035 Amph 1230 TA off-S 1300 Wry 122 1445 Sample 1630 A Aryan	collected @ 1655 (from bowl) pload egypment @ office. boxes / puckayan Begrap Suppli Begin decon deconformating surphy egypment wapping them for Shipment, the tax I men ~ 30 mm puck, pack up boxes dean for wester disposal. (1) officially not to Butesville in	Acon water Din) And off agreement and
1700 1630 Mob bock BR23355-EB OR BR23355) Plean y and v 10/5/20 0815 Pick up 6850 ON-Sife 1035 Amjsh 1230 TA off-S 1300 Wrey 1922 1445 Sample	collected @ 1655 (from bowl) pload egrapment @ enfiree. boxes / pretagger Agents Suppli Begin decon deconfamonty surply egrapment wappy them for Shipment, the for make up boxes down for mate disposal (A) off side not to Butes Will I Fel EK 6 Kinh brenk down	decon 1000, off-Site & 1730 CS. Mary and day (Decon water Drum)

į

1

APPENDIX B

Photographic Sampling Log

Photo 1: View of KD302 lot (from southeast corner) looking northwest.

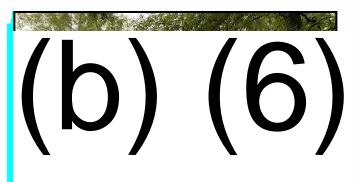


Photo 2: View of KD302SS-1 looking southwest.

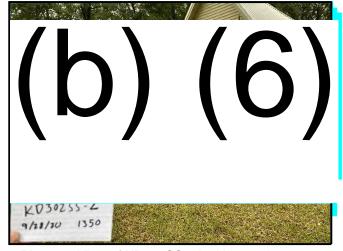


Photo 3: View of KD302SS-2 looking northwest.

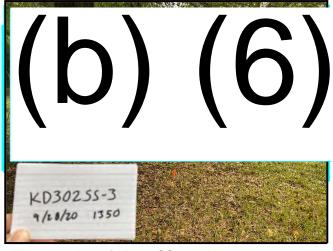


Photo 4: View of KD302SS-3 looking northeast.

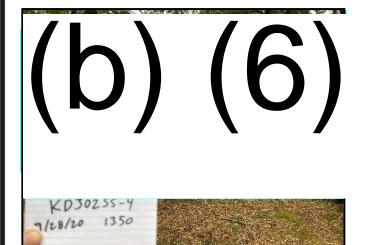
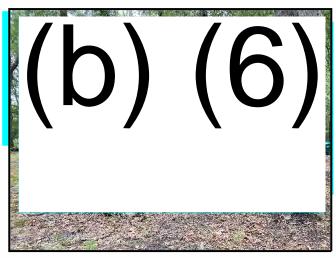



Photo 5: View of KD302SS-4 looking southwest.

Photo 6: View of burn pile in quadrant 4 of KD302 lot looking north. Located approximately 30 ft from KS302SS-4.

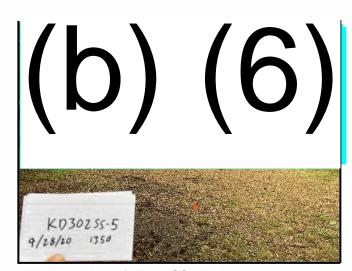


Photo 7: View of KD302SS-5 looking northeast

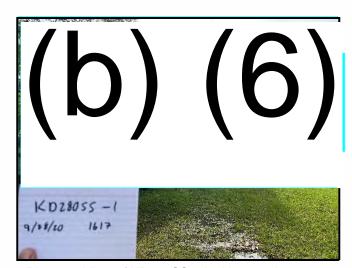
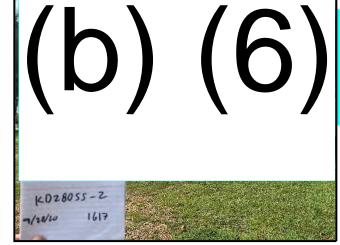



Photo 8: View of KD280SS-1 looking southwest.

Photo 9: View of KD280SS-2 looking northwest

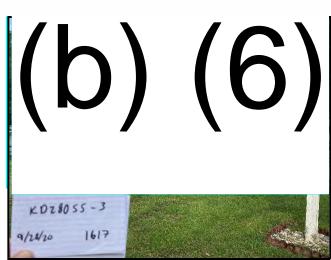
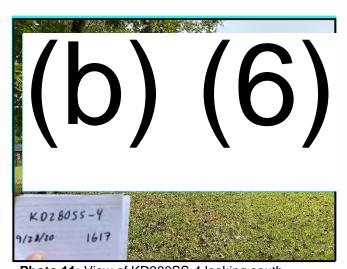



Photo 10: View of KD280SS-3 looking northeast.

Photo 11: View of KD280SS-4 looking south.

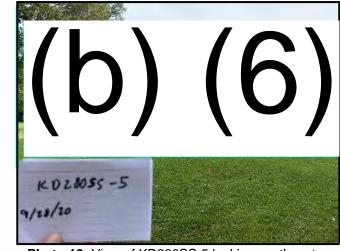


Photo 12: View of KD280SS-5 looking southeast.

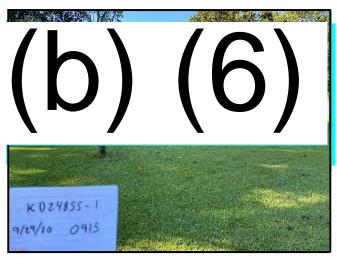


Photo 13: View of KD248SS-1 looking south.

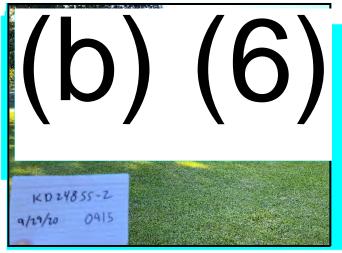


Photo 14: View of KD248SS-2 looking southeast.

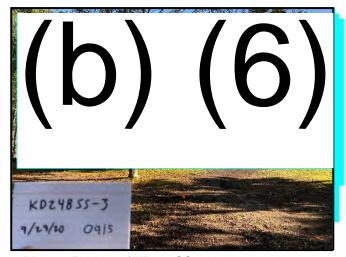


Photo 15: View of KD248SS-3 looking northeast.

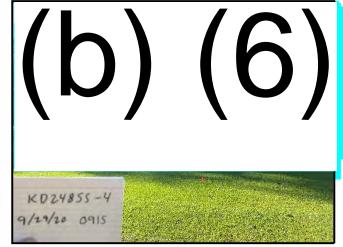


Photo 16: View of KD248SS-4 looking south.

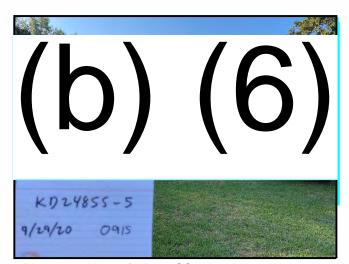


Photo 17: View of KD248SS-5 looking southeast.

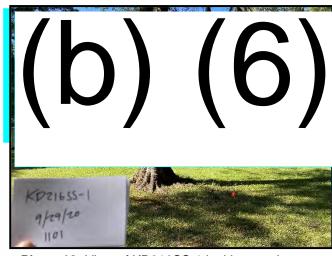
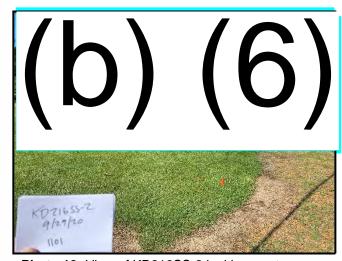
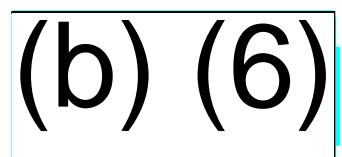




Photo 18: View of KD216SS-1 looking southwest.

Photo 19: View of KD216SS-2 looking west.

Photo 20: View of KD216SS-3 looking north-northeast.

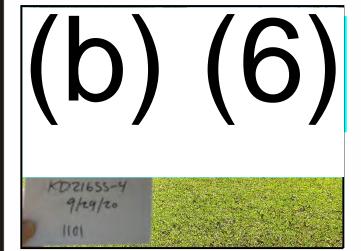
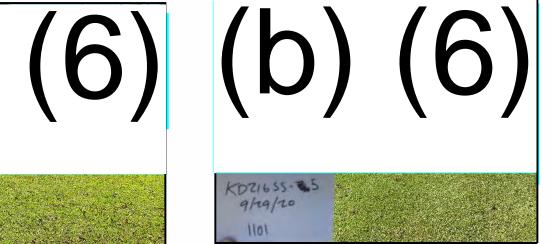



Photo 21: View of KD216SS-4 looking southeast.

Photo 22: View of KD216SS-5 looking southwest.

(b) (6)

Photo 23: View of KD132SS-1 looking west.

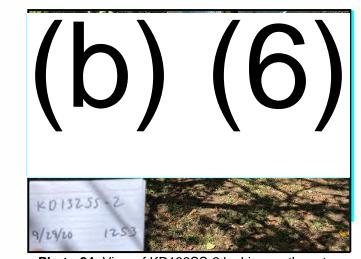


Photo 24: View of KD132SS-2 looking northwest.

Beazer East, Inc. Grenada, Mississippi

Photo 25: View of KD132SS-3 looking northeast.

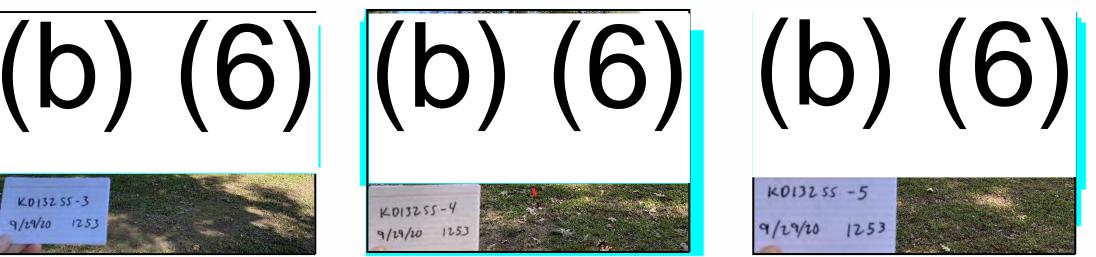


Photo 26: View of KD132SS-4 looking southeast.

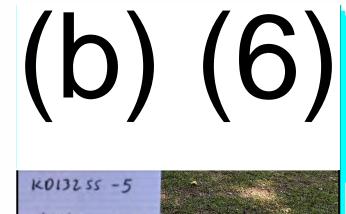


Photo 27: View of KD132SS-5 looking east.

9/29/20 1253

Photo 28: View of KD132SS-1 looking east with gas/oil containers in background.

Photo 29: Overview of KDEPA9 lot looking NW.

Photo 30: Overview of KDEPA9 lot looking west.

Photo 31: View of KDEPA9SS-3 looking southeast.

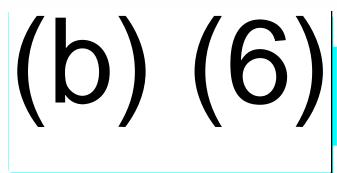


Photo 32: View of KDEPA9SS-2 looking northeast.

Photo 33: View of KDEPA9SS-5 looking northeast.

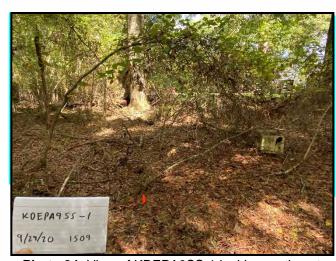


Photo 34: View of KDEPA9SS-1 looking northeast.

Photo 35: View of KDEPA9SS-4 looking southwest.

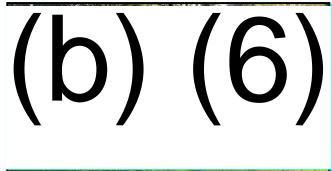


Photo 36: View of KD106SS-1 looking southwest.

Beazer East, Inc. Grenada, Mississippi

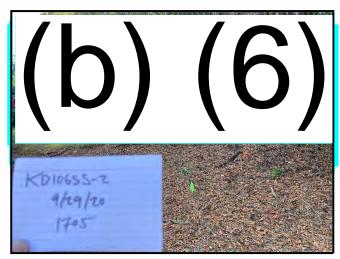


Photo 37: View of KD106SS-2 looking west.

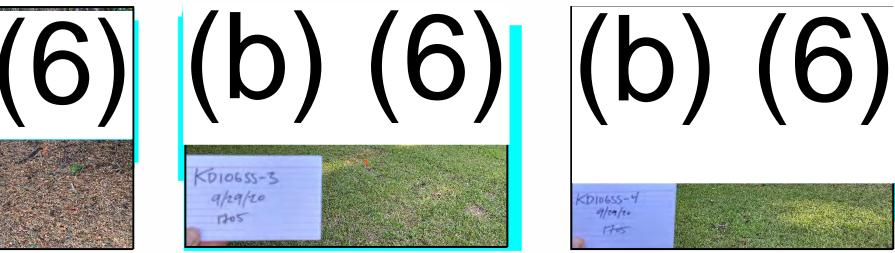


Photo 38: View of KD106SS-3 looking north-

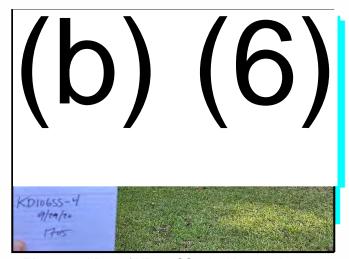


Photo 39: View of KD106SS-4 looking south.

Photo 40: View of KD106SS-5 looking westnorthwest.

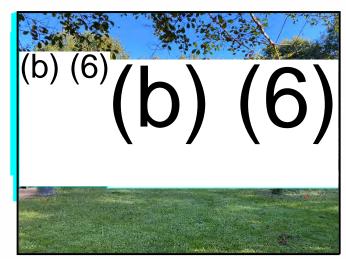
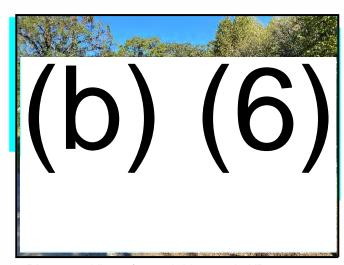



Photo 41: Overview of KD080 quadrants 1 and 2 looking northeast. Heavy vegetation in quadrant 1 shown in background.

Photo 42: View of gravel driveway in KD080 quadrant 2 looking northwest.

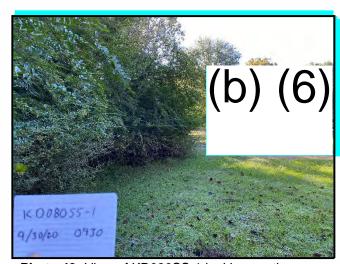


Photo 43: View of KD080SS-1 looking south.

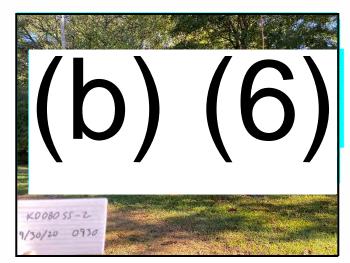


Photo 44: View of KD080SS-2 looking northeast.

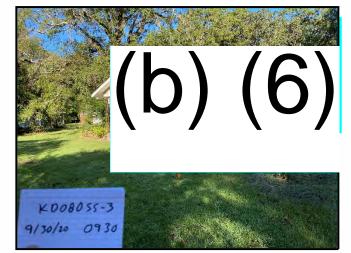


Photo 45: View of KD080SS-3 looking northwest.

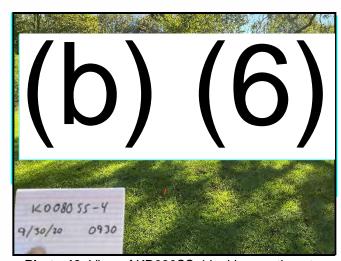


Photo 46: View of KD080SS-4 looking southeast.

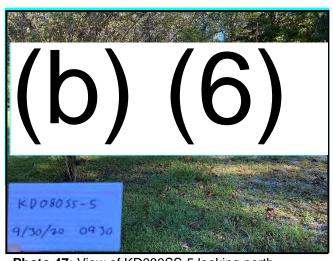
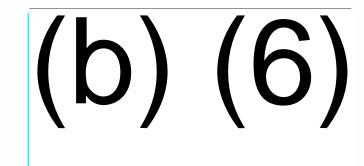
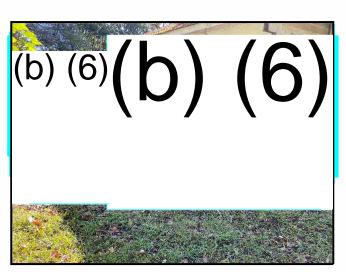




Photo 47: View of KD080SS-5 looking north.

Photo 49: Oil/gas containers in quadrant 4 of KD080 lot looking southeast.

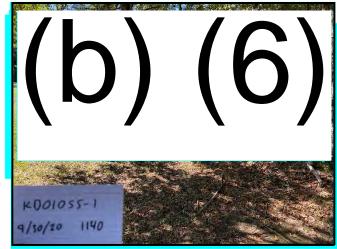


Photo 50: View of KD010SS-1 looking southwest.

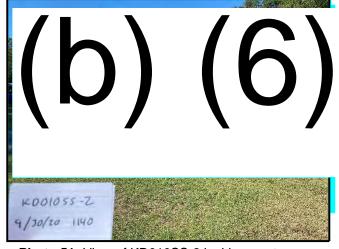


Photo 51: View of KD010SS-2 looking west.

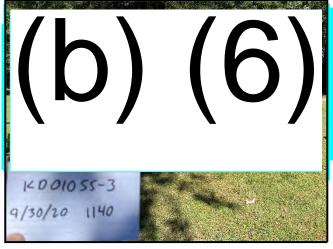


Photo 52: View of KD010SS-3 looking north.

Photo 53: View of KD010SS-4 looking northwest.

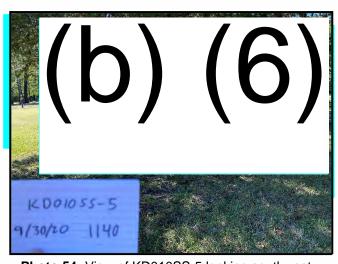


Photo 54: View of KD010SS-5 looking southwest.

Photo 55: View of original location for KD010SS-4 looking northwest. Area appeared to be used for washing vehicles/equipment. A new location for KD010SS-4 was generated due to soil staining.

Photo 56: Close up of KD010 quadrant 4 white stained soil (non-native color) in wash area.

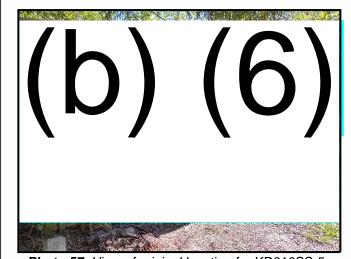
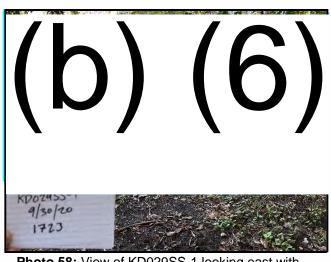



Photo 57: View of original location for KD010SS-5 looking northwest (location in shed). A new location for KD010SS-5 was generated.

Photo 58: View of KD029SS-1 looking east with burn/trash piles in background.

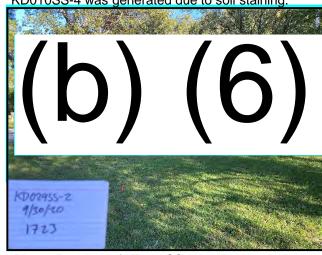


Photo 59: View of KD029SS-2 looking southeast.

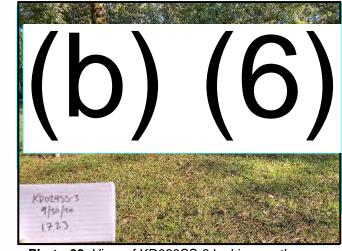


Photo 60: View of KD029SS-3 looking south.

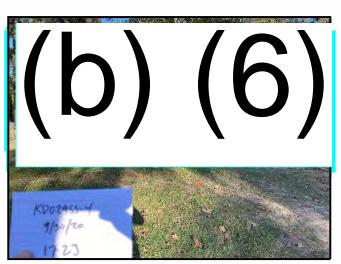
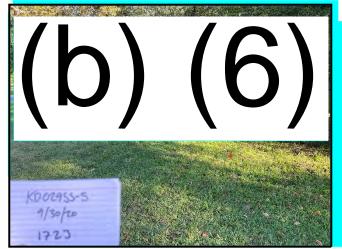
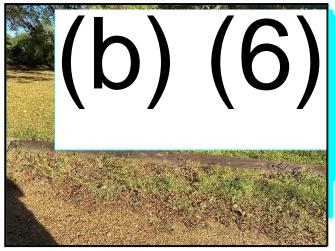




Photo 61: View of KD029SS-4 looking east.

Photo 62: View of KD029SS-5 looking southeast with KD029SS-3 in background.

Photo 63: View of KD029SS-3 looking southeast near telephone pole (~10 ft).

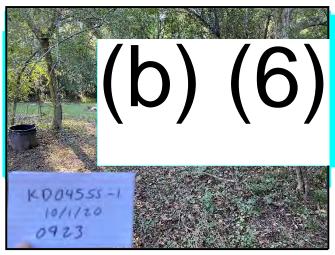


Photo 64: View of KD045SS-1 looking southeast.

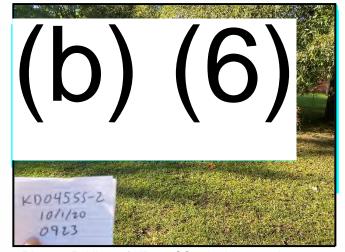


Photo 65: View of KD045SS-2 looking southwest.

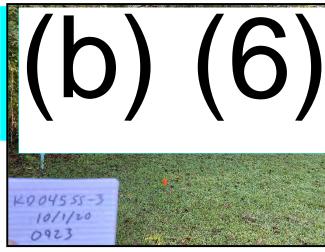
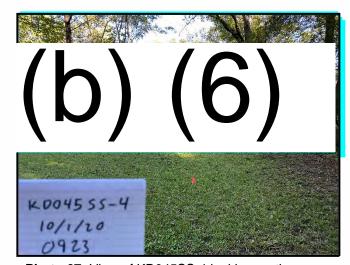
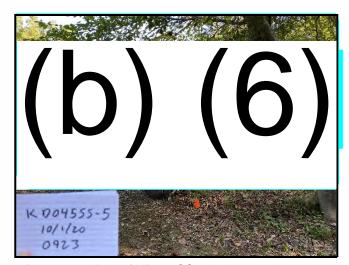


Photo 66: View of KD045SS-3 looking south.

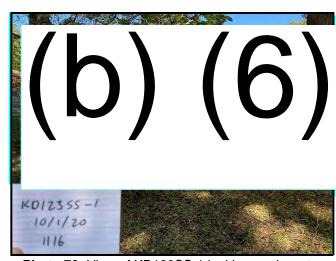

Photo 67: View of KD045SS-4 looking north.

Photo 68: View of KD045SS-5 looking northeast with active deck construction in background.

Photo 69: View of KD045SS-2 looking south. Debris (brick) present in initial attempt.

Photo 70: View of KD123SS-1 looking northwest.

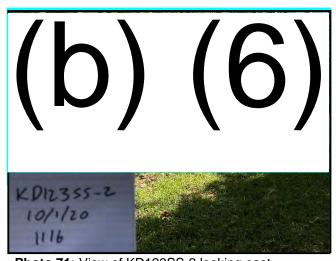


Photo 71: View of KD123SS-2 looking east.

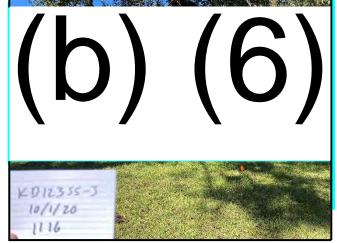


Photo 72: View of KD123SS-3 looking west.

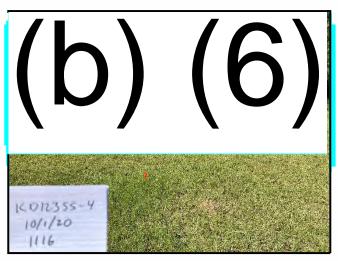


Photo 73: View of KD123SS-4 looking west.

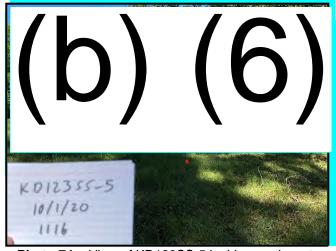
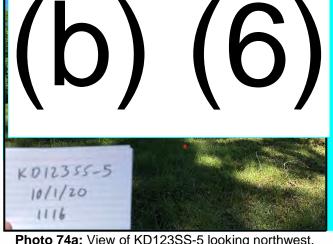



Photo 74a: View of KD123SS-5 looking northwest.

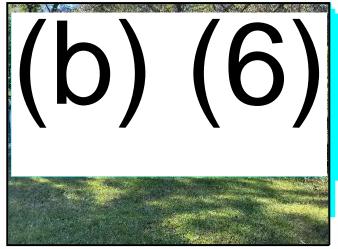


Photo 74b: View of KD123SS-5 original location (under lean-to shed) looking south. A new location for KD123SS-5 was generated.

Photo 75: View of KD149SS-1 looking northeast.

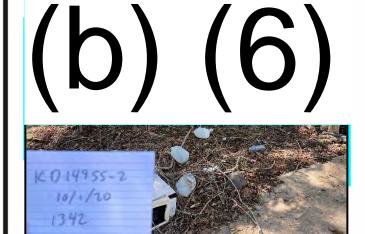


Photo 76: View of KD149SS-2 looking west.

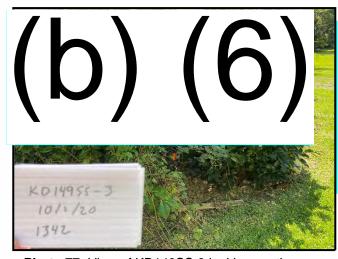


Photo 77: View of KD149SS-3 looking south.

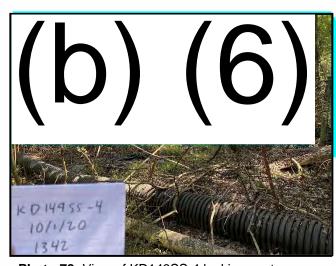


Photo 78: View of KD149SS-4 looking eastsoutheast.

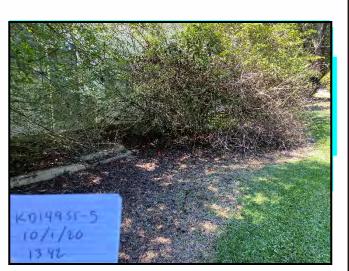


Photo 79: View of KD149SS-5 looking west.

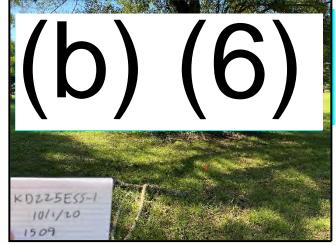


Photo 80: View of KD225ESS-1 looking northwest.

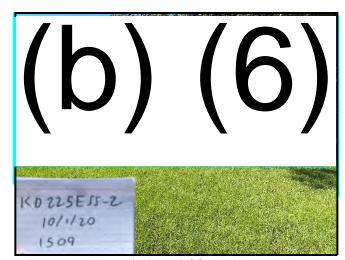


Photo 81: View of KD225ESS-2 looking northwest.

Photo 82: View of KD225ESS-3 looking west.

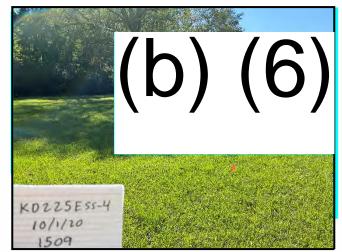
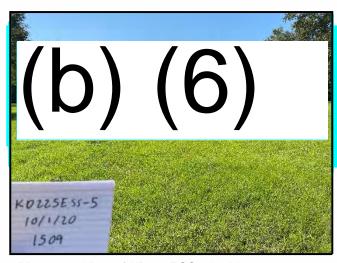



Photo 83: View of KD225ESS-4 looking south.

Photo 84: View of KD225ESS-5 looking west-southwest.

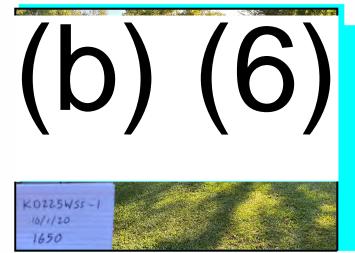


Photo 85: View of KD225WSS-1 looking south.

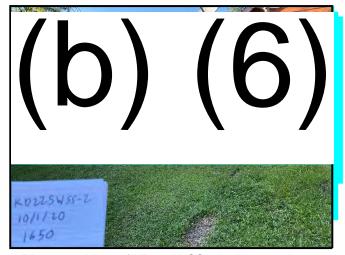


Photo 86: View of KD225WSS-2 looking northwest.

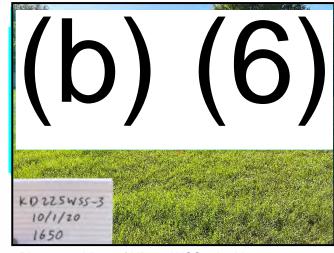


Photo 87: View of KD225WSS-3 looking west.

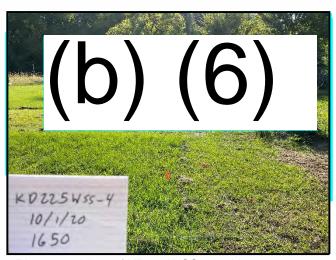
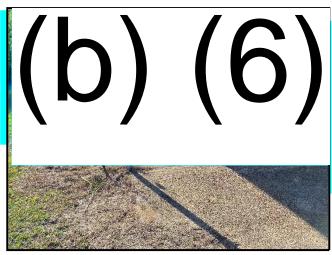



Photo 88: View of KD225WSS-4 looking west.

Photo 89: View of original location (under concrete parking slab) for KD225WSS-2 looking west. A new location for KD225WSS-2 was generated.

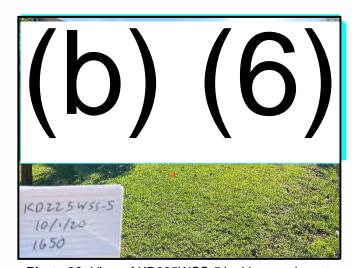


Photo 90: View of KD225WSS-5 looking southwest.

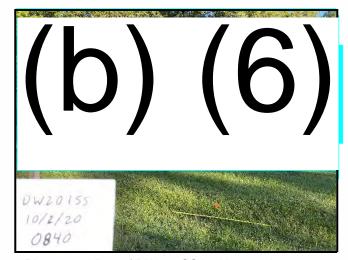


Photo 91: View of DW201SS looking northwest.

Photo 92: View of DW201SS looking northeast (post sample collection).

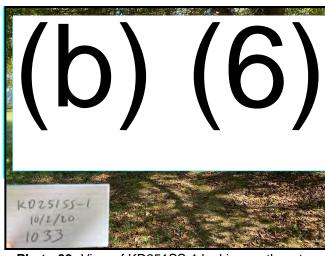


Photo 93: View of KD251SS-1 looking northeast.

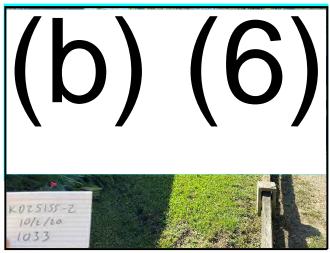


Photo 94: View of KD251SS-2 looking southeast.

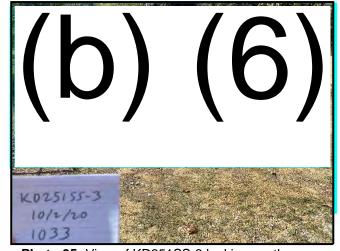


Photo 95: View of KD251SS-3 looking south.

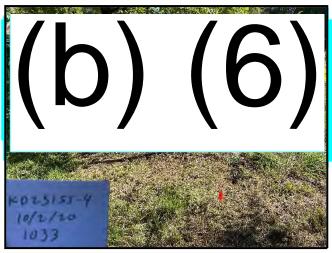
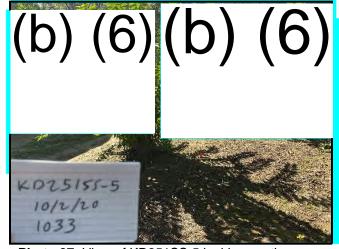



Photo 96: View of KD251SS-4 looking northeast.

Photo 97: View of KD251SS-5 looking south-southeast.

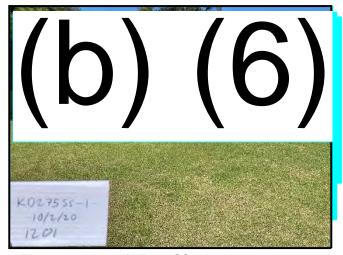


Photo 98: View of KD275SS-1 looking west.

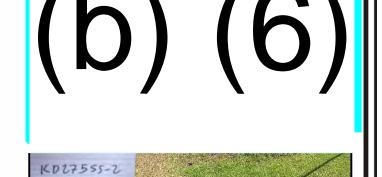
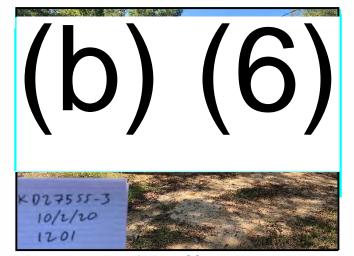
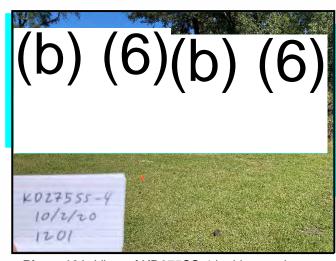
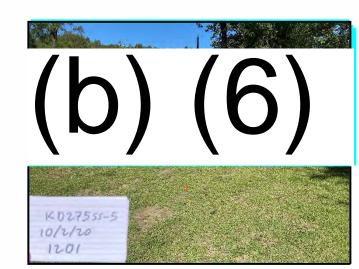


Photo 99: View of KD275SS-2 looking northeast.

10/2/20

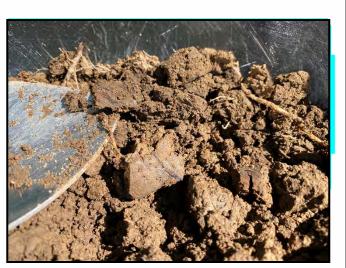

Photo 100: View of KD275SS-3 looking south.

Photo 101: View of KD275SS-4 looking northwest.

Photo 102: View of KD275SS-5 looking west-northwest.

Photo 103: Closeup of KD275SS-(1 and 2) showing dark streaks in soil.

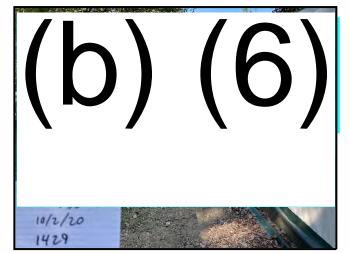
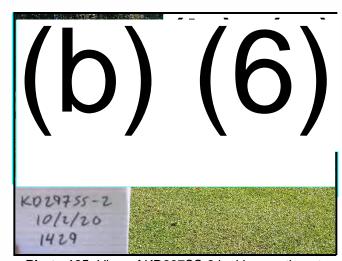



Photo 104: View of KD297SS-1 looking north.

Photo 105: View of KD297SS-2 looking southeast.

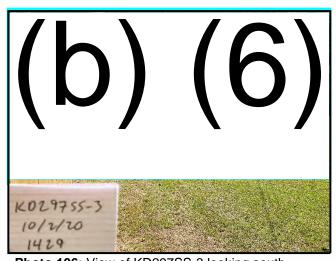
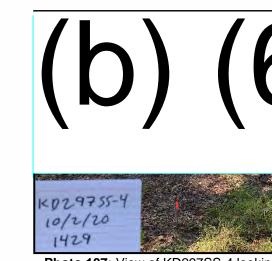



Photo 106: View of KD297SS-3 looking south.

Photo 107: View of KD297SS-4 looking west-northwest.

Beazer East, Inc. Grenada, Mississippi 2020 Additional Off-Site Sampling

Page 9 of 14

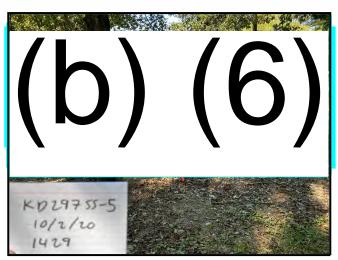


Photo 108: View of KD297SS-5 looking north.

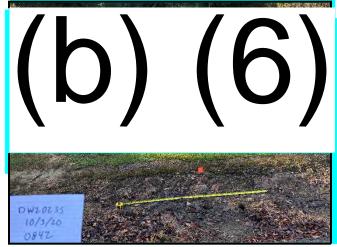


Photo 109: View of DW202SS looking south.

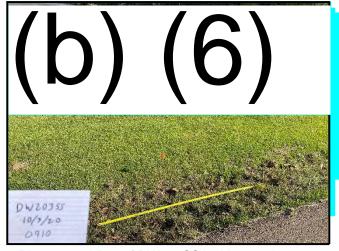
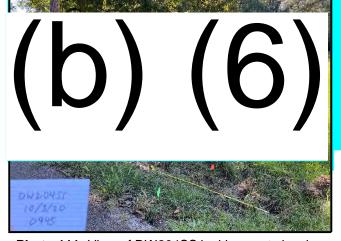



Photo 110: View of DW203SS looking northeast.

Photo 111: View of DW204SS looking east showing proximity to telephone pole.

Photo 112: View of DW205SS looking northeast.

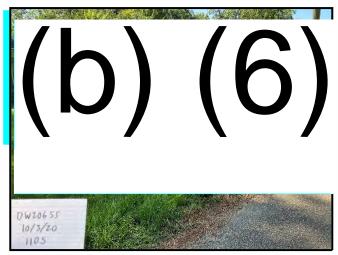
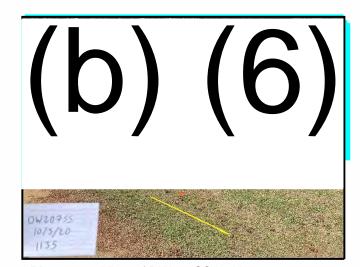
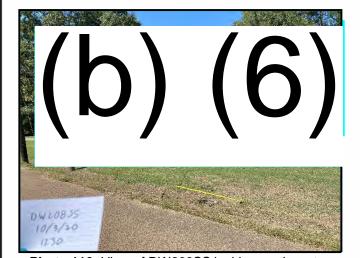


Photo 113: View of DW206SS looking southwest.

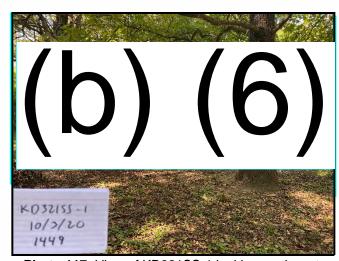

Photo 114: View of DW207SS looking west.

Photo 115: Closeup of hand auger bucket showing black object at DW208SS 5th (furthest east) location.

Photo 116: View of DW208SS looking northwest.

Photo 117: View of KD321SS-1 looking northwest.

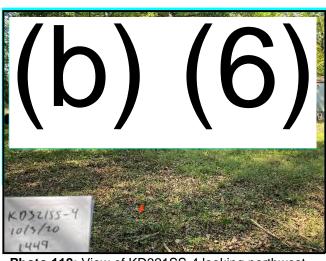


Photo 118: View of KD321SS-4 looking northwest.

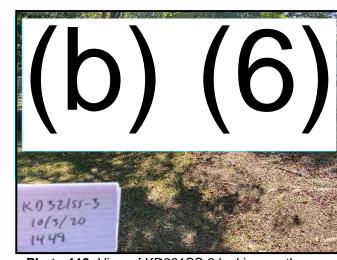
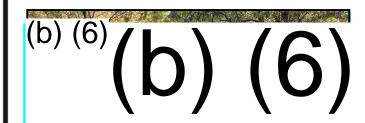



Photo 119: View of KD321SS-3 looking south.

Photo 120: View of KD321SS-2 looking south-southeast.

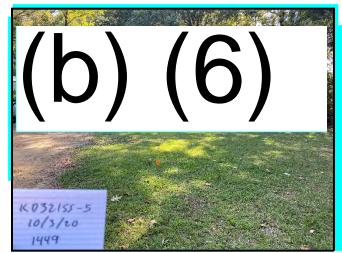
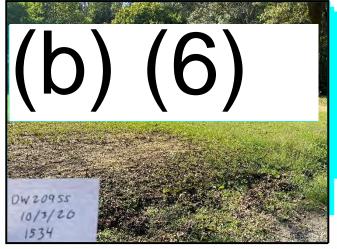



Photo 121: View of KD321SS-5 looking south.

Photo 122: View of DW209SS looking west-northwest.

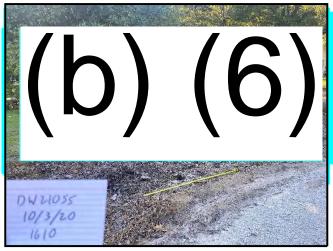


Photo 123: View of DW210SS looking northwest.

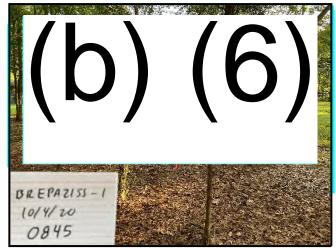
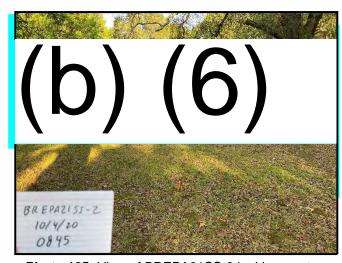
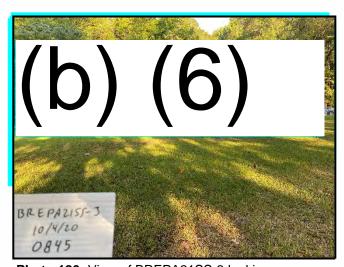
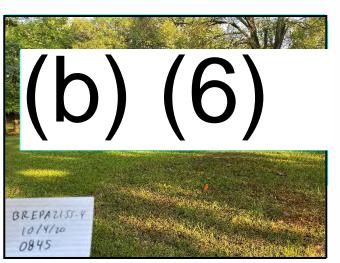
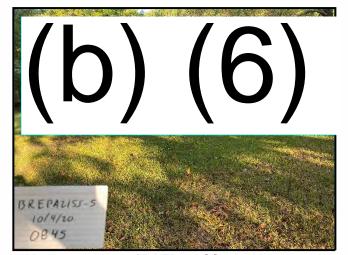


Photo 124: View of BREPA21SS-1 looking north.


Photo 125: View of BREPA21SS-2 looking west.

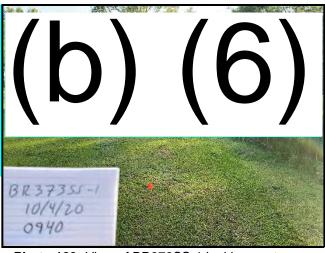

Photo 126: View of BREPA21SS-3 looking northwest.

Photo 127: View of BREPA21SS-4 looking northwest.

Photo 128: View of BREPA21SS-5 looking northwest.

Photo 129: View of BR373SS-1 looking east-northeast.

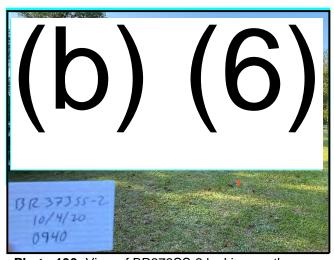


Photo 130: View of BR373SS-2 looking south.

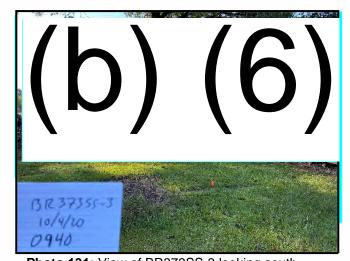


Photo 131: View of BR373SS-3 looking south.

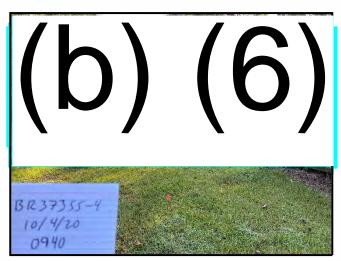


Photo 132: View of BR373SS-4 looking east.

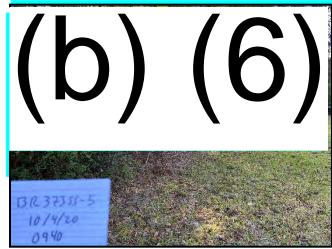
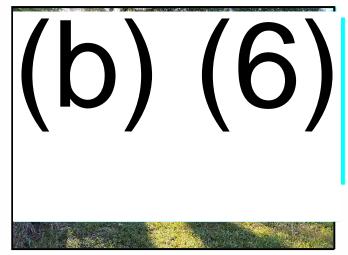



Photo 133: View of BR373SS-5 looking southeast.

Photo 134: View of drums in quadrant 4 of BR373 lot looking southeast.

Photo 135: View of BR351SS-1 looking southwest.

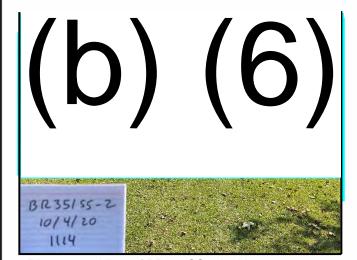
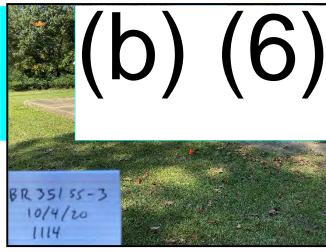



Photo 136: View of BR351SS-2 looking east.

Photo 137: View of BR351SS-3 looking west-northwest.

Photo 138: View of BR351SS-4 looking north.

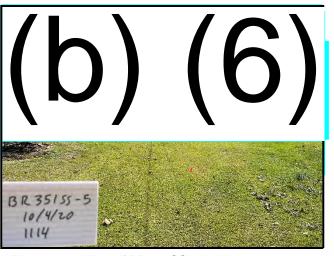
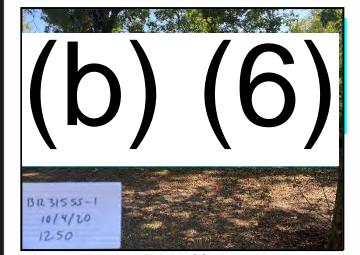



Photo 139: View of BR351SS-5 looking east.

Photo 140: View of BR315SS-1 looking east-northeast.

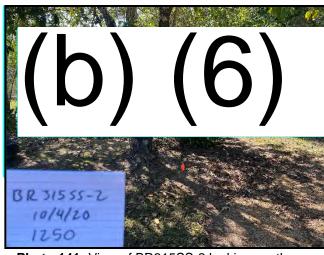
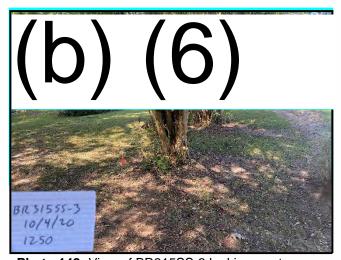



Photo 141: View of BR315SS-2 looking south.

Photo 142: View of BR315SS-3 looking west.

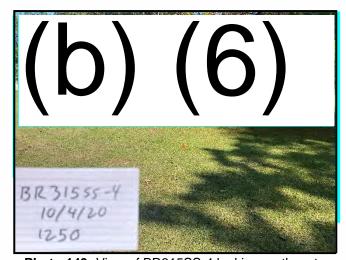


Photo 143: View of BR315SS-4 looking northeast.

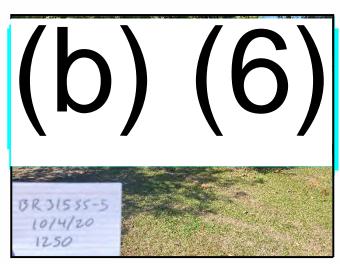
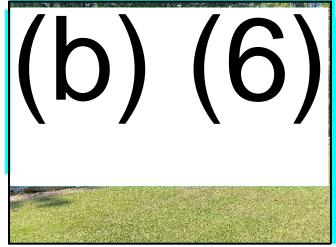
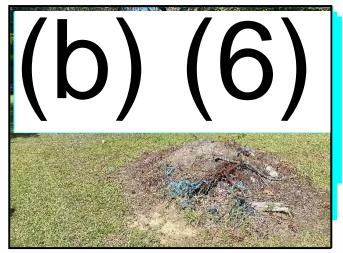




Photo 144: View of BR315SS-5 looking west.

Photo 145: View of drums/debris at back of BR315 property looking west.

Photo 146: View of inorganic burn piles in BR315 lot (with e-waste in background) looking northwest.

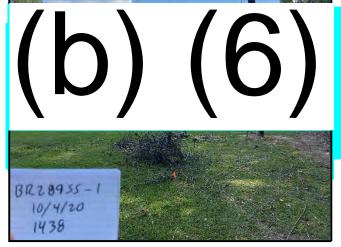


Photo 147: View of BR289SS-1 looking east.

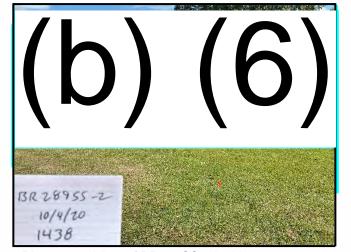


Photo 148: View of BR289SS-2 looking east.

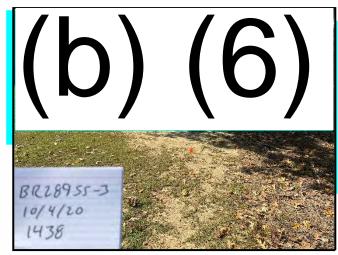


Photo 149: View of BR289SS-3 looking west.

Photo 150: View of BR289SS-4 looking northwest.

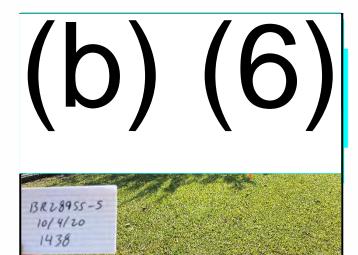
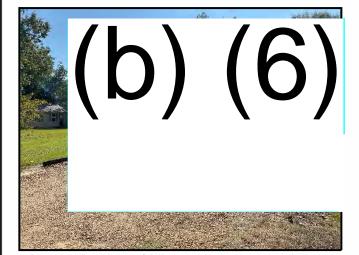



Photo 151: View of BR289SS-5 looking south

Photo 152: View of BR289 driveway with railroad tie border looking south.

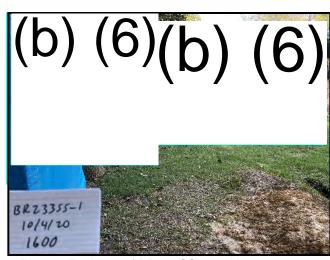


Photo 153: View of BR233SS-1 looking east.

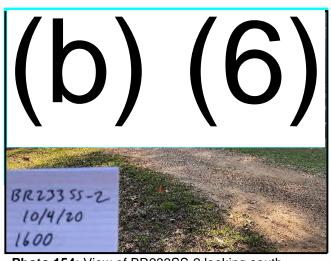


Photo 154: View of BR233SS-2 looking south.

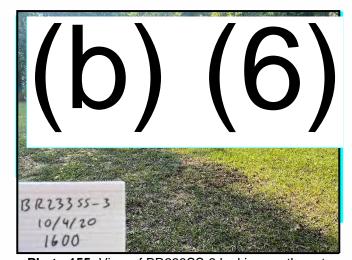


Photo 155: View of BR233SS-3 looking southwest.

APPENDIX C

2020 Analytical Laboratory Data

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-111697-1

Client Project/Site: Grenada, Mississippi

For:

Tetra Tech GEO 2969 Prospect Park Drive Suite 100 Rancho Cordova, California 95670

Attn: Ms. Jennifer Abrahams, P.G.

Monca Borbst

Authorized for release by: 10/27/2020 9:32:08 AM

Veronica Bortot, Senior Project Manager (412)963-2435

Veronica.Bortot@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi Laboratory Job ID: 180-111697-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	15
QC Sample Results	33
QC Association Summary	43
Chain of Custody	46
Field Data Sheets	50
Receipt Checklists	51

10

12

13

14

Case Narrative

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111697-1

Job ID: 180-111697-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-111697-1

Comments

No additional comments.

Receipt

The samples were received on 10/1/2020 9:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS Semi VOA

Method 8270E: The following sample was diluted due to the nature of the sample matrix: KD280SS. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Dioxin

Method 8290A: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 320-419525 and analytical batch 320-420486 recovered outside control limits for 2,3,4,6,7,8-HxCDF. The recoveries for this analyte were within limits in both the LCS and LCSD.

Method 8290A: The concentration of one or more analytes associated with the following sample exceeded the instrument calibration range: KDEPA9SS. These analytes have been qualified; however, the peak(s) did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Method 8290A: The concentration of OCDD associated with the following sample exceeded the instrument calibration range: KD248SS. These analytes have been qualified; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Method 8290A: The concentration of OCDD associated with the following sample exceeded the instrument calibration range: KD860SS. These analytes have been qualified; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Qualifiers

	Semi	

Qualifier	Qualifier Description
-----------	-----------------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Dioxin

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
В	Compound was found in the blank and sample.
E	Result exceeded calibration range.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

MLMPN MQL

EDL

LOD

LOQ

MCL

MDA MDC

MDL Method Detection Limit Minimum Level (Dioxin) Most Probable Number Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Pittsburgh

10/27/2020

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20 *
Florida	NELAP	E871008	06-30-21
Georgia	State	PA 02-00416	04-30-21
Illinois	NELAP	004375	06-30-21
Kansas	NELAP	E-10350	01-31-21
Kentucky (UST)	State	162013	04-30-21
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-21
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-21
New Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-21
New York	NELAP	11182	04-01-21
North Carolina (WW/SW)	State	434	01-01-21
North Dakota	State	R-227	04-30-21
Oregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-21
Texas	NELAP	T104704528	03-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-21
Virginia	NELAP	10043	09-14-21
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Pittsburgh

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Pittsburgh

Sample Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111697-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-111697-1	KD302SS	Solid	09/28/20 13:50	10/01/20 09:00
180-111697-2	KD280SS	Solid	09/28/20 16:17	10/01/20 09:00
180-111697-3	KD280SS-EB	Water	09/28/20 17:45	10/01/20 09:00
180-111697-4	KD248SS	Solid	09/29/20 09:15	10/01/20 09:00
180-111697-5	KD216SS	Solid	09/29/20 11:01	10/01/20 09:00
180-111697-6	KD132SS	Solid	09/29/20 12:53	10/01/20 09:00
180-111697-7	KDEPA9SS	Solid	09/29/20 15:09	10/01/20 09:00
180-111697-8	KD106SS-EB	Water	09/29/20 17:55	10/01/20 09:00
180-111697-9	KD106SS	Solid	09/29/20 17:05	10/01/20 09:00
180-111697-10	KD080SS	Solid	09/30/20 09:30	10/01/20 09:00
180-111697-11	KD010SS	Solid	09/30/20 11:40	10/01/20 09:00
180-111697-12	KD860SS	Solid	09/30/20 12:00	10/01/20 09:00

4

_

7

8

9

10

13

14

Method Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Method **Method Description** Protocol Laboratory **EPA 8270D LL** Semivolatile Organic Compounds by GC/MS - Low Level SW846 TAL PIT **EPA 8270E** Semivolatile Organic Compounds (GC/MS) SW846 **TAL PIT** SW846 8290A Dioxins and Furans (HRGC/HRMS) TAL SAC SM 2540G Total, Fixed, and Volatile Solids SM TAL PIT 3520C Liquid-Liquid Extraction (Continuous) SW846 TAL PIT 3541 **Automated Soxhlet Extraction** SW846 TAL PIT

Protocol References:

8290

8290

SM = "Standard Methods For The Examination Of Water And Wastewater"
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Separatory Funnel (Liquid-Liquid) Extraction of Dioxins and Furans

Soxhlet Extraction of Dioxins and Furans

TAL SAC

TAL SAC

SW846

SW846

2

3

4

6

10

4 4

12

13

14

10/27/2020

Client: Tetra Tech GEO

Project/Site: Granada, Mississ

Project/Site: Grenada, Mississippi

Client Sample ID: KD302SS

Date Collected: 09/28/20 13:50 Date Received: 10/01/20 09:00 Lab Sample ID: 180-111697-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			333942	10/19/20 18:36	PMH	TAL PIT
	Instrument	ID: NOEQUIP								

Client Sample ID: KD302SS Lab Sample ID: 180-111697-1

 Date Collected: 09/28/20 13:50
 Matrix: Solid

 Date Received: 10/01/20 09:00
 Percent Solids: 77.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.11 g	5.0 mL	332759	10/08/20 14:08	JAS	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH731		1	1 mL	1 mL	333005	10/11/20 18:13	VVP	TAL PIT
Total/NA	Prep	8290			9.94 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A		1			422781	10/17/20 23:54	AS	TAL SAC
	Instrumen	t ID: DFS 1								

Client Sample ID: KD280SS

Lab Sample ID: 180-111697-2

Matrix: Solid

Date Collected: 09/28/20 16:17 Date Received: 10/01/20 09:00

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor Amount** Amount **Analyst** Total/NA Analysis SM 2540G 333942 10/19/20 18:36 PMH TAL PIT Instrument ID: NOEQUIP

Client Sample ID: KD280SS

Date Collected: 09/28/20 16:17

Matrix: Solid

Date Received: 10/01/20 09:00 Percent Solids: 80.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.74 g	5.0 mL	332759	10/08/20 14:08	JAS	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH731		3	1 mL	1 mL	333005	10/11/20 18:41	VVP	TAL PIT
Total/NA	Prep	8290			10.37 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A		1			422781	10/18/20 00:42	AS	TAL SAC
	Instrumer	nt ID: DFS 1								

Client Sample ID: KD280SS-EB

Lab Sample ID: 180-111697-3

Matrix: Water

Date Received: 10/01/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C		· 	240 mL	250 uL	332126	10/02/20 11:12	BJT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270D LL at ID: CHMSD7		1	1 mL	1 mL	333064	10/12/20 21:17	VVP	TAL PIT
Total/NA	Prep	8290			977.8 mL	20.0 uL	419525	10/07/20 11:35	NR	TAL SAC
Total/NA	Analysis	8290A		1			420486	10/10/20 11:27	ALM	TAL SAC
	Instrumer	nt ID: 3D5								

Eurofins TestAmerica, Pittsburgh

Page 9 of 52

8

10

12

13

14

sburgh

Client: Tetra Tech GEO

Client Sample ID: KD248SS

Date Collected: 09/29/20 09:15 Date Received: 10/01/20 09:00

Lab Sample ID: 180-111697-4

Matrix: Solid

Matrix: Solid

Percent Solids: 79.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			333942	10/19/20 18:36	PMH	TAL PIT
	Instrumor	THE NOTE OF THE								

Lab Sample ID: 180-111697-4 Client Sample ID: KD248SS

Date Collected: 09/29/20 09:15 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 76.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.28 g	5.0 mL	332759	10/08/20 14:08	JAS	TAL PIT
Total/NA	Analysis	EPA 8270E		1	1 mL	1 mL	333005	10/11/20 19:08	VVP	TAL PIT
	Instrumen	it ID: CH731								
Total/NA	Prep	8290			10.41 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A		1			422781	10/18/20 01:29	AS	TAL SAC
	Instrumen	t ID: DFS 1								

Client Sample ID: KD216SS Lab Sample ID: 180-111697-5

Date Collected: 09/29/20 11:01

Date Received: 10/01/20 09:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			333942	10/19/20 18:36	PMH	TAL PIT
	Instrumen	t ID: NOEQUIP								

Client Sample ID: KD216SS Lab Sample ID: 180-111697-5 Matrix: Solid

Date Collected: 09/29/20 11:01 Date Received: 10/01/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.12 g	5.0 mL	332759	10/08/20 14:08	JAS	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E nt ID: CH731		1	1 mL	1 mL	333005	10/11/20 19:36	VVP	TAL PIT
Total/NA	Prep	8290			10.60 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A		1			423107	10/18/20 09:00	AS	TAL SAC
	Instrumer	nt ID: DFS 1								

Client Sample ID: KD132SS Lab Sample ID: 180-111697-6 Date Collected: 09/29/20 12:53 **Matrix: Solid**

Date Received: 10/01/20 09:00

 rep Type otal/NA	Batch Type Analysis	Batch Method SM 2540G	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 333942	Prepared or Analyzed 10/19/20 18:36	Analyst PMH	Lab TAL PIT
	Instrumen	t ID: NOEQUIP								

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: KD132SS

Date Collected: 09/29/20 12:53 Date Received: 10/01/20 09:00 Lab Sample ID: 180-111697-6

Matrix: Solid

Percent Solids: 78.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.23 g	5.0 mL	332759	10/08/20 14:08	JAS	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH731		1	1 mL	1 mL	333005	10/11/20 20:03	VVP	TAL PIT
Total/NA	Prep	8290			10.02 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A		1			423107	10/18/20 09:47	AS	TAL SAC
	Instrumer	it ID: DFS 1								

Client Sample ID: KDEPA9SS

Date Collected: 09/29/20 15:09

Date Received: 10/01/20 09:00

Lab Sample ID: 180-111697-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			333942	10/19/20 18:36	PMH	TAL PIT
	Instrument	ID: NOEQUIP								

Client Sample ID: KDEPA9SS

Date Collected: 09/29/20 15:09

Date Received: 10/01/20 09:00

Lab Sample ID: 180-111697-7

Matrix: Solid

Percent Solids: 72.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.82 g	5.0 mL	332759	10/08/20 14:08	JAS	TAL PIT
Total/NA	Analysis	EPA 8270E		1	1 mL	1 mL	333005	10/11/20 20:31	VVP	TAL PIT
	Instrumer	nt ID: CH731								
Total/NA	Prep	8290	RA		10.02 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A	RA	1			424573	10/22/20 13:47	SMA	TAL SAC
	Instrumer	nt ID: 11D2								
Total/NA	Prep	8290			10.02 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A		1			423107	10/18/20 10:35	AS	TAL SAC
	Instrumer	nt ID: DFS 1								

Client Sample ID: KD106SS-EB

Date Collected: 09/29/20 17:55

Date Received: 10/01/20 09:00

Lab Sample ID:	180-111697-8
	Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			270 mL	2.5 mL	332321	10/05/20 16:50	BJT	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH732		1	1 mL	1 mL	333663	10/16/20 13:05	VVP	TAL PIT
Total/NA	Prep	8290			988.3 mL	20.0 uL	419525	10/07/20 11:35	NR	TAL SAC
Total/NA	Analysis	8290A		1			420486	10/10/20 12:14	ALM	TAL SAC
	Instrumen	t ID: 3D5								

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: KD106SS

Lab Sample ID: 180-111697-9

Date Collected: 09/29/20 17:05 **Matrix: Solid** Date Received: 10/01/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			333944	10/19/20 19:07	PMH	TAL PIT

Instrument ID: NOEQUIP

Client Sample ID: KD106SS Lab Sample ID: 180-111697-9

Date Collected: 09/29/20 17:05 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 76.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.49 g	5.0 mL	332759	10/08/20 14:08	JAS	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH731		1	1 mL	1 mL	333005	10/11/20 20:58	VVP	TAL PIT
Total/NA	Prep	8290	RA		10.37 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 11D2	RA	1			424573	10/22/20 14:25	SMA	TAL SAC
Total/NA	Prep	8290			10.37 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: DFS 1		1			423107	10/18/20 11:23	AS	TAL SAC

Client Sample ID: KD080SS

Lab Sample ID: 180-111697-10 Date Collected: 09/30/20 09:30 **Matrix: Solid**

Date Received: 10/01/20 09:00

		Prep Type Total/NA	Batch Type Analysis	Batch Method SM 2540G	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 333944	Prepared or Analyzed 10/19/20 19:07	Analyst PMH	Lab TAL PIT
--	--	--------------------	---------------------	-----------------------	-----	---------------	-------------------	-----------------	---------------------------	---	----------------	----------------

Client Sample ID: KD080SS

Lab Sample ID: 180-111697-10 Date Collected: 09/30/20 09:30 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 78.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.0 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis	EPA 8270E		3	1 mL	1 mL	333708	10/16/20 18:42	VVP	TAL PIT
	Instrumer	nt ID: CH71								
Total/NA	Prep	8290			10.80 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis	8290A		1			423107	10/18/20 12:11	AS	TAL SAC
	Instrumer	nt ID: DFS 1								

Client Sample ID: KD010SS

Lab Sample ID: 180-111697-11 Date Collected: 09/30/20 11:40 **Matrix: Solid**

Date Received: 10/01/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540G		1			333944	10/19/20 19:07	PMH	TAL PIT
	Instrumer	nt ID: NOEQUIP								

Eurofins TestAmerica, Pittsburgh

Page 12 of 52

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD010SS Lab Sample ID: 180-111697-11

Date Collected: 09/30/20 11:40 **Matrix: Solid** Date Received: 10/01/20 09:00 **Percent Solids: 81.1**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 19:07	VVP	TAL PIT
Total/NA	Prep	8290	RA		10.64 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1			424573	10/22/20 15:04	SMA	TAL SAC
Total/NA	Prep	8290			10.64 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: DFS 1		1			423107	10/18/20 12:59	AS	TAL SAC

Client Sample ID: KD860SS Lab Sample ID: 180-111697-12 Date Collected: 09/30/20 12:00 **Matrix: Solid**

Date Received: 10/01/20 09:00

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run Amount **A**mount Analyst Lab Total/NA Analysis SM 2540G 333944 10/19/20 19:07 PMH TAL PIT Instrument ID: NOEQUIP

Client Sample ID: KD860SS Lab Sample ID: 180-111697-12

Date Collected: 09/30/20 12:00 **Matrix: Solid** Date Received: 10/01/20 09:00 **Percent Solids: 81.8**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.2 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 19:33	VVP	TAL PIT
Total/NA	Prep	8290	RA		10.75 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 11D2	RA	1			424573	10/22/20 15:42	SMA	TAL SAC
Total/NA	Prep	8290			10.75 g	20.0 uL	419261	10/06/20 13:56	SR1	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: DFS 1		1			423405	10/20/20 04:21	AS	TAL SAC

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Lab Chronicle

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Analyst References:

Lab: TAL PIT

Batch Type: Prep

BJT = Bill Trout

CSC = Chayce Cockroft

JAS = Jeremy Stundon

Batch Type: Analysis

PMH = Paloma Hoelzle

VVP = Vincent Piccolino

Lab: TAL SAC

Batch Type: Prep

NR = Noe Ruiz

SR1 = Sina Rafieefar

Batch Type: Analysis

ALM = Adrian Messecar

AS = Ajay Sharda

SMA = Saleh Arghestani

Project/Site: Grenada, Mississippi

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

Phenol-d5 (Surr)

Client Sample ID: KD302SS Lab Sample ID: 180-111697-1

Date Collected: 09/28/20 13:50

Matrix: Solid
Date Received: 10/01/20 09:00

Matrix: Solid
Percent Solids: 77.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		85	24	ug/Kg	<u></u>	10/08/20 14:08	10/11/20 18:13	1
Acenaphthylene	ND		85	19	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Anthracene	ND		85	22	ug/Kg	₩	10/08/20 14:08	10/11/20 18:13	1
Benzo[a]anthracene	51	J	85	38	ug/Kg	₽	10/08/20 14:08	10/11/20 18:13	1
Benzo[b]fluoranthene	83	J	85	21	ug/Kg	₩	10/08/20 14:08	10/11/20 18:13	1
Benzo[k]fluoranthene	ND		85	26	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Benzo[g,h,i]perylene	36	J	85	18	ug/Kg	₽	10/08/20 14:08	10/11/20 18:13	1
Benzo[a]pyrene	ND		85	37	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Chrysene	59	J	85	47	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Dibenz(a,h)anthracene	ND		85	54	ug/Kg	₽	10/08/20 14:08	10/11/20 18:13	1
Fluoranthene	79	J	85	22	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Fluorene	ND		85	17	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Indeno[1,2,3-cd]pyrene	ND		85	42	ug/Kg	₽	10/08/20 14:08	10/11/20 18:13	1
Naphthalene	31	J	85	17	ug/Kg	₽	10/08/20 14:08	10/11/20 18:13	1
Phenanthrene	70	J	85	23	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Pyrene	71	J	85	20	ug/Kg	☼	10/08/20 14:08	10/11/20 18:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70		45 - 105				10/08/20 14:08	10/11/20 18:13	1
2-Fluorophenol (Surr)	77		42 - 105				10/08/20 14:08	10/11/20 18:13	1
2,4,6-Tribromophenol (Surr)	79		31 - 105				10/08/20 14:08	10/11/20 18:13	1

53 - 105

47 - 105

46 - 105

87

76

81

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.3	0.32	pg/g	<u></u>	10/06/20 13:56	10/17/20 23:54	1
Total TCDD	1.2	J	1.3	0.32	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
1,2,3,7,8-PeCDD	0.62	J q	6.5	0.23	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
Total PeCDD	4.5	J q	6.5	0.23	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
1,2,3,4,7,8-HxCDD	1.7	J B	6.5	0.12	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
1,2,3,6,7,8-HxCDD	3.3	J	6.5	0.12	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
1,2,3,7,8,9-HxCDD	2.9	J	6.5	0.11	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
Total HxCDD	32	q B	6.5	0.12	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
1,2,3,4,6,7,8-HpCDD	88	В	6.5	0.53	pg/g	☼	10/06/20 13:56	10/17/20 23:54	1
Total HpCDD	210	В	6.5	0.53	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
OCDD	1500	В	13	1.2	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
2,3,7,8-TCDF	0.65	J	1.3	0.23	pg/g	☼	10/06/20 13:56	10/17/20 23:54	1
Total TCDF	1.3		1.3	0.23	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
1,2,3,7,8-PeCDF	0.45	J	6.5	0.13	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
2,3,4,7,8-PeCDF	0.49	J	6.5	0.13	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
Total PeCDF	5.3	J	6.5	0.13	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
1,2,3,4,7,8-HxCDF	1.1	J	6.5	0.19	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
1,2,3,6,7,8-HxCDF	0.85	J	6.5	0.17	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
2,3,4,6,7,8-HxCDF	0.67	J	6.5	0.18	pg/g	₽	10/06/20 13:56	10/17/20 23:54	1
1,2,3,7,8,9-HxCDF	0.29	J	6.5	0.18	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
Total HxCDF	16		6.5	0.18	pg/g	≎	10/06/20 13:56	10/17/20 23:54	1
1,2,3,4,6,7,8-HpCDF	15		6.5	0.23	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
1,2,3,4,7,8,9-HpCDF	1.1	J	6.5	0.26	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1

Eurofins TestAmerica, Pittsburgh

10/08/20 14:08 10/11/20 18:13

10/08/20 14:08 10/11/20 18:13

10/08/20 14:08 10/11/20 18:13

Project/Site: Grenada, Mississippi

Client Sample ID: KD302SS Lab Sample ID: 180-111697-1

Date Collected: 09/28/20 13:50

Date Received: 10/01/20 09:00

Matrix: Solid
Percent Solids: 77.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDF	46		6.5	0.25	pg/g	<u></u>	10/06/20 13:56	10/17/20 23:54	1
OCDF	49	В	13	0.14	pg/g	₩	10/06/20 13:56	10/17/20 23:54	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	65		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-1,2,3,7,8-PeCDD	66		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-1,2,3,6,7,8-HxCDD	73		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-1,2,3,4,6,7,8-HpCDD	74		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-OCDD	82		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-2,3,7,8-TCDF	63		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-1,2,3,7,8-PeCDF	63		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-1,2,3,4,7,8-HxCDF	67		40 - 135				10/06/20 13:56	10/17/20 23:54	1
13C-1,2,3,4,6,7,8-HpCDF	71		40 - 135				10/06/20 13:56	10/17/20 23:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Solids	79		0.50	0.50	%			10/19/20 18:36	

Client Sample ID: KD280SS

Date Collected: 09/28/20 16:17

Date Received: 10/01/20 09:00

Lab Sample ID: 180-111697-2

Matrix: Solid

Percent Solids: 80.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		240	68	ug/Kg	<u></u>	10/08/20 14:08	10/11/20 18:41	3
Acenaphthylene	ND		240	52	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Anthracene	ND		240	61	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Benzo[a]anthracene	ND		240	110	ug/Kg	₽	10/08/20 14:08	10/11/20 18:41	3
Benzo[b]fluoranthene	ND		240	58	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Benzo[k]fluoranthene	ND		240	71	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Benzo[g,h,i]perylene	ND		240	51	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Benzo[a]pyrene	ND		240	100	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Chrysene	ND		240	130	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Dibenz(a,h)anthracene	ND		240	150	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Fluoranthene	ND		240	62	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Fluorene	ND		240	46	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Indeno[1,2,3-cd]pyrene	ND		240	120	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Naphthalene	ND		240	46	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Phenanthrene	ND		240	63	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Pyrene	ND		240	56	ug/Kg	₩	10/08/20 14:08	10/11/20 18:41	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	46		45 - 105				10/08/20 14:08	10/11/20 18:41	3
2-Fluorophenol (Surr)	53		42 - 105				10/08/20 14:08	10/11/20 18:41	3
2,4,6-Tribromophenol (Surr)	48		31 - 105				10/08/20 14:08	10/11/20 18:41	3
Nitrobenzene-d5 (Surr)	57		53 - 105				10/08/20 14:08	10/11/20 18:41	3
Phenol-d5 (Surr)	54		47 - 105				10/08/20 14:08	10/11/20 18:41	3
Terphenyl-d14 (Surr)	49		46 - 105				10/08/20 14:08	10/11/20 18:41	3

2

Job ID: 180-111697-1

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi

Client Sample ID: KD280SS Date Collected: 09/28/20 16:17

Date Received: 10/01/20 09:00

Lab Sample ID: 180-111697-2

Matrix: Solid

Percent Solids: 80.6

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.27	pg/g		10/06/20 13:56	10/18/20 00:42	1
Total TCDD	ND		1.2	0.27	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
1,2,3,7,8-PeCDD	0.64	J	6.0	0.19	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
Total PeCDD	4.3	J	6.0	0.19	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
1,2,3,4,7,8-HxCDD	1.7	JB	6.0	0.12	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
1,2,3,6,7,8-HxCDD	4.1	J	6.0	0.11	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
1,2,3,7,8,9-HxCDD	3.1	J	6.0	0.11	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
Total HxCDD	34	q B	6.0	0.11	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
1,2,3,4,6,7,8-HpCDD	110	В	6.0	0.55	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
Total HpCDD	260	В	6.0	0.55	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
OCDD	1300	В	12	1.0	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
2,3,7,8-TCDF	ND		1.2	0.22	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
Total TCDF	0.54	Jq	1.2	0.22	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
1,2,3,7,8-PeCDF	ND		6.0	0.13	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
2,3,4,7,8-PeCDF	0.42	J	6.0	0.13	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
Total PeCDF	5.2	J	6.0	0.13	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
1,2,3,4,7,8-HxCDF	1.2	J	6.0	0.17	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
1,2,3,6,7,8-HxCDF	0.79	Jq	6.0	0.15	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
2,3,4,6,7,8-HxCDF	0.79	J	6.0	0.15	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
1,2,3,7,8,9-HxCDF	0.24	Jq	6.0	0.16	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
Total HxCDF	24	q	6.0	0.16	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
1,2,3,4,6,7,8-HpCDF	24		6.0	0.28	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
1,2,3,4,7,8,9-HpCDF	1.4	J	6.0	0.31	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
Total HpCDF	73		6.0	0.29	pg/g	☼	10/06/20 13:56	10/18/20 00:42	1
OCDF	66	В	12	0.19	pg/g	₽	10/06/20 13:56	10/18/20 00:42	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	64		40 - 135				10/06/20 13:56	10/18/20 00:42	1
13C-1,2,3,7,8-PeCDD	63		40 - 135				10/06/20 13:56	10/18/20 00:42	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	64	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-1,2,3,7,8-PeCDD	63	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-1,2,3,6,7,8-HxCDD	70	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-1,2,3,4,6,7,8-HpCDD	76	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-OCDD	82	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-2,3,7,8-TCDF	62	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-1,2,3,7,8-PeCDF	61	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-1,2,3,4,7,8-HxCDF	66	40 - 135	10/06/20 13:56	10/18/20 00:42	1
13C-1,2,3,4,6,7,8-HpCDF	71	40 - 135	10/06/20 13:56	10/18/20 00:42	1

General Chemistry							
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Total Solids		0.50	0.50 %			10/19/20 18:36	1

Client Sample ID: KD280SS-EB

Date Collected: 09/28/20 17:45

Lab Sample ID: 180-111697-3

Matrix: Water

Date Received: 10/01/20 09:00

Method: EPA 8270D LL -							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND -	0.20	0.068 ug/L		10/02/20 11:12	10/12/20 21:17	1
Acenaphthylene	ND	0.20	0.068 ug/L		10/02/20 11:12	10/12/20 21:17	1
Anthracene	ND	0.20	0.051 ug/L		10/02/20 11:12	10/12/20 21:17	1
Benzo[a]anthracene	ND	0.20	0.078 ug/L		10/02/20 11:12	10/12/20 21:17	1

Eurofins TestAmerica, Pittsburgh

4

6

8

4 4

11

13

14

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD280SS-EB

Lab Sample ID: 180-111697-3 Date Collected: 09/28/20 17:45 **Matrix: Water**

Date Received: 10/01/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	` D	Prepared	Analyzed	Dil Fac
Benzo[a]pyrene	ND		0.20	0.055	ug/L		10/02/20 11:12	10/12/20 21:17	1
Benzo[b]fluoranthene	ND		0.20	0.10	ug/L		10/02/20 11:12	10/12/20 21:17	1
Benzo[g,h,i]perylene	ND		0.20	0.072	ug/L		10/02/20 11:12	10/12/20 21:17	1
Benzo[k]fluoranthene	ND		0.20	0.092	ug/L		10/02/20 11:12	10/12/20 21:17	1
Chrysene	ND		0.20	0.084	ug/L		10/02/20 11:12	10/12/20 21:17	1
Dibenz(a,h)anthracene	ND		0.20	0.075	ug/L		10/02/20 11:12	10/12/20 21:17	1
Fluoranthene	ND		0.20	0.063	ug/L		10/02/20 11:12	10/12/20 21:17	1
Fluorene	ND		0.20	0.072	ug/L		10/02/20 11:12	10/12/20 21:17	1
Indeno[1,2,3-cd]pyrene	ND		0.20	0.089	ug/L		10/02/20 11:12	10/12/20 21:17	1
Naphthalene	ND		0.20	0.061	ug/L		10/02/20 11:12	10/12/20 21:17	1
Pentachlorophenol	ND		5.2	0.88	ug/L		10/02/20 11:12	10/12/20 21:17	1
Phenanthrene	ND		0.20	0.057	ug/L		10/02/20 11:12	10/12/20 21:17	1
Pyrene	ND		0.20	0.056	ug/L		10/02/20 11:12	10/12/20 21:17	1

%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
65	23 - 105	10/02/20 11:12	10/12/20 21:17	1
69	20 - 105	10/02/20 11:12	10/12/20 21:17	1
71	28 - 111	10/02/20 11:12	10/12/20 21:17	1
73	21 - 105	10/02/20 11:12	10/12/20 21:17	1
73	20 - 126	10/02/20 11:12	10/12/20 21:17	1
71	29 - 113	10/02/20 11:12	10/12/20 21:17	1
	65 69 71 73	65 23 - 105 69 20 - 105 71 28 - 111 73 21 - 105 73 20 - 126	65 23 - 105 10/02/20 11:12 69 20 - 105 10/02/20 11:12 71 28 - 111 10/02/20 11:12 73 21 - 105 10/02/20 11:12 73 20 - 126 10/02/20 11:12	65 23 - 105 10/02/20 11:12 10/12/20 21:17 69 20 - 105 10/02/20 11:12 10/12/20 21:17 71 28 - 111 10/02/20 11:12 10/12/20 21:17 73 21 - 105 10/02/20 11:12 10/12/20 21:17 73 20 - 126 10/02/20 11:12 10/12/20 21:17

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.78	J q	10	0.51	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total TCDD	0.78	Jq	10	0.51	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,7,8-PeCDD	0.65	Jq	51	0.60	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total PeCDD	0.65	Jq	51	0.60	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,4,7,8-HxCDD	1.8	J	51	0.95	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,6,7,8-HxCDD	ND		51	0.94	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,7,8,9-HxCDD	ND		51	0.86	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total HxCDD	1.8	J	51	0.92	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,4,6,7,8-HpCDD	2.8	JB	51	0.27	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total HpCDD	3.9	JqB	51	0.27	pg/L		10/07/20 11:35	10/10/20 11:27	1
OCDD	11	JB	100	0.37	pg/L		10/07/20 11:35	10/10/20 11:27	1
2,3,7,8-TCDF	0.99	JB	10	0.42	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total TCDF	1.8	JB	10	0.42	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,7,8-PeCDF	1.0	J	51	0.40	pg/L		10/07/20 11:35	10/10/20 11:27	1
2,3,4,7,8-PeCDF	ND		51	0.41	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total PeCDF	1.0	J	51	0.40	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,4,7,8-HxCDF	1.2	J	51	0.59	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,6,7,8-HxCDF	1.0	Jq	51	0.56	pg/L		10/07/20 11:35	10/10/20 11:27	1
2,3,4,6,7,8-HxCDF	1.1	J *1	51	0.60	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,7,8,9-HxCDF	ND		51	0.59	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total HxCDF	3.4	Jq	51	0.58	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,4,6,7,8-HpCDF	1.6	JqB	51	0.28	pg/L		10/07/20 11:35	10/10/20 11:27	1
1,2,3,4,7,8,9-HpCDF	1.5	J	51	0.32	pg/L		10/07/20 11:35	10/10/20 11:27	1
Total HpCDF	3.1	JqB	51	0.30	pg/L		10/07/20 11:35	10/10/20 11:27	1
OCDF	3.8	Jq	100	0.32	pg/L		10/07/20 11:35	10/10/20 11:27	1

Eurofins TestAmerica, Pittsburgh

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD280SS-EB

Lab Sample ID: 180-111697-3 Date Collected: 09/28/20 17:45

Matrix: Water Date Received: 10/01/20 09:00

Isotope Dilution	%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	92	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-1,2,3,7,8-PeCDD	94	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-1,2,3,6,7,8-HxCDD	91	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-1,2,3,4,6,7,8-HpCDD	106	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-OCDD	109	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-2,3,7,8-TCDF	96	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-1,2,3,7,8-PeCDF	87	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-1,2,3,4,7,8-HxCDF	92	40 - 135	10/07/20 11:35	10/10/20 11:27	1
13C-1,2,3,4,6,7,8-HpCDF	99	40 - 135	10/07/20 11:35	10/10/20 11:27	1

Lab Sample ID: 180-111697-4 **Client Sample ID: KD248SS** Date Collected: 09/29/20 09:15 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 76.8

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND -	86	25	ug/Kg	<u></u>	10/08/20 14:08	10/11/20 19:08	1
Acenaphthylene	120	86	19	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Anthracene	160	86	22	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Benzo[a]anthracene	610	86	38	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Benzo[b]fluoranthene	970	86	21	ug/Kg	☼	10/08/20 14:08	10/11/20 19:08	1
Benzo[k]fluoranthene	230	86	26	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Benzo[g,h,i]perylene	360	86	18	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Benzo[a]pyrene	510	86	37	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Chrysene	690	86	47	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Dibenz(a,h)anthracene	130	86	55	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Fluoranthene	790	86	23	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Fluorene	ND	86	17	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Indeno[1,2,3-cd]pyrene	330	86	42	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Naphthalene	110	86	17	ug/Kg	☼	10/08/20 14:08	10/11/20 19:08	1
Phenanthrene	230	86	23	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1
Pyrene	810	86	20	ug/Kg	₩	10/08/20 14:08	10/11/20 19:08	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	75	45 - 105	10/08/20 14:08	10/11/20 19:08	1
2-Fluorophenol (Surr)	75	42 - 105	10/08/20 14:08	10/11/20 19:08	1
2,4,6-Tribromophenol (Surr)	81	31 - 105	10/08/20 14:08	10/11/20 19:08	1
Nitrobenzene-d5 (Surr)	91	53 - 105	10/08/20 14:08	10/11/20 19:08	1
Phenol-d5 (Surr)	79	47 - 105	10/08/20 14:08	10/11/20 19:08	1
Terphenyl-d14 (Surr)	78	46 - 105	10/08/20 14:08	10/11/20 19:08	1

Method: 8290A -	Dioxins and Furans	(HRGC/HRMS)
Δnalvte	R	esult Qualifier

Michiga, Ozook - Dioxilis (ana i arans (into								
Analyte	Result C	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.3	0.30	pg/g		10/06/20 13:56	10/18/20 01:29	1
Total TCDD	1.1 J	J	1.3	0.30	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,7,8-PeCDD	1.5 J	J	6.3	0.24	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
Total PeCDD	12 0	9	6.3	0.24	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,4,7,8-HxCDD	5.2 J	JB	6.3	0.22	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,6,7,8-HxCDD	19		6.3	0.21	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,7,8,9-HxCDD	8.3		6.3	0.20	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
Total HxCDD	120 E	В	6.3	0.21	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1

Eurofins TestAmerica, Pittsburgh

10/27/2020

Page 19 of 52

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: KD248SS Lab Sample ID: 180-111697-4

Date Collected: 09/29/20 09:15

Date Received: 10/01/20 09:00

Matrix: Solid
Percent Solids: 76.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	580	В	6.3	2.3	pg/g		10/06/20 13:56	10/18/20 01:29	1
Total HpCDD	1400	В	6.3	2.3	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
OCDD	8500	EB	13	5.0	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
2,3,7,8-TCDF	ND		1.3	0.32	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
Total TCDF	ND	G	5.4	5.4	pg/g	☼	10/06/20 13:56	10/18/20 01:29	1
1,2,3,7,8-PeCDF	0.71	J	6.3	0.21	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
2,3,4,7,8-PeCDF	0.56	Jq	6.3	0.22	pg/g	☼	10/06/20 13:56	10/18/20 01:29	1
Total PeCDF	13	q	6.3	0.21	pg/g	₩	10/06/20 13:56	10/18/20 01:29	1
1,2,3,4,7,8-HxCDF	3.7	J	6.3	0.54	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,6,7,8-HxCDF	2.5	J	6.3	0.48	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
2,3,4,6,7,8-HxCDF	1.8	J	6.3	0.50	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,7,8,9-HxCDF	ND		6.3	0.52	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
Total HxCDF	140		6.3	0.51	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,4,6,7,8-HpCDF	150		6.3	1.4	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
1,2,3,4,7,8,9-HpCDF	8.2		6.3	1.5	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
Total HpCDF	630		6.3	1.5	pg/g	₽	10/06/20 13:56	10/18/20 01:29	1
OCDF	600	В	13	0.48	pg/g	☼	10/06/20 13:56	10/18/20 01:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	68		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-1,2,3,7,8-PeCDD	70		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-1,2,3,6,7,8-HxCDD	71		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-1,2,3,4,6,7,8-HpCDD	76		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-OCDD	88		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-2,3,7,8-TCDF	66		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-1,2,3,7,8-PeCDF	67		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-1,2,3,4,7,8-HxCDF	68		40 - 135				10/06/20 13:56	10/18/20 01:29	1
13C-1,2,3,4,6,7,8-HpCDF	70		40 - 135				10/06/20 13:56	10/18/20 01:29	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Solids	76		0.50	0.50	%	_		10/19/20 18:36	1

 Client Sample ID: KD216SS
 Lab Sample ID: 180-111697-5

 Date Collected: 09/29/20 11:01
 Matrix: Solid

 Date Received: 10/01/20 09:00
 Percent Solids: 79.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	MD		83	24	ug/Kg	*	10/08/20 14:08	10/11/20 19:36	1
Acenaphthylene	ND		83	18	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Anthracene	ND		83	22	ug/Kg	₩	10/08/20 14:08	10/11/20 19:36	1
Benzo[a]anthracene	75	J	83	37	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Benzo[b]fluoranthene	130		83	20	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Benzo[k]fluoranthene	53	J	83	25	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Benzo[g,h,i]perylene	67	J	83	18	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Benzo[a]pyrene	55	J	83	36	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Chrysene	96		83	46	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Dibenz(a,h)anthracene	ND		83	53	ug/Kg	₩	10/08/20 14:08	10/11/20 19:36	1
Fluoranthene	130		83	22	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Fluorene	ND		83	16	ug/Kg	₩	10/08/20 14:08	10/11/20 19:36	1

Eurofins TestAmerica, Pittsburgh

Page 20 of 52

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

13C-1,2,3,4,6,7,8-HpCDF

Client Sample ID: KD216SS Lab Sample ID: 180-111697-5

Date Collected: 09/29/20 11:01

Matrix: Solid

Date Received: 10/01/20 09:00

Percent Solids: 79.7

Method: EPA 8270E - Sem	ivolatile Organi	ic Compou	ınds (GC/MS)	(Conti	nued)				
Analyte	Result	Qualifier	RL	-	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	64	J	83	41	ug/Kg	₩	10/08/20 14:08	10/11/20 19:36	1
Naphthalene	32	J	83	16	ug/Kg	₩	10/08/20 14:08	10/11/20 19:36	1
Phenanthrene	66	J	83	22	ug/Kg	₩	10/08/20 14:08	10/11/20 19:36	1
Pyrene	110		83	20	ug/Kg	₽	10/08/20 14:08	10/11/20 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76		45 - 105				10/08/20 14:08	10/11/20 19:36	1
2-Fluorophenol (Surr)	74		42 - 105				10/08/20 14:08	10/11/20 19:36	1
2,4,6-Tribromophenol (Surr)	86		31 - 105				10/08/20 14:08	10/11/20 19:36	1
Nitrobenzene-d5 (Surr)	89		53 - 105				10/08/20 14:08	10/11/20 19:36	1
Phenol-d5 (Surr)	77		47 - 105				10/08/20 14:08	10/11/20 19:36	1
Terphenyl-d14 (Surr)	81		46 - 105				10/08/20 14:08	10/11/20 19:36	1
Method: 8290A - Dioxins a	ind Furans (HR	GC/HRMS)						
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.31	pg/g	-	10/06/20 13:56	10/18/20 09:00	1
Total TCDD	ND		1.2	0.31	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
1,2,3,7,8-PeCDD	0.68	J	5.9	0.26	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
Total PeCDD	3.6	Jq	5.9	0.26	pg/g	≎	10/06/20 13:56	10/18/20 09:00	1
1,2,3,4,7,8-HxCDD	1.8	JB	5.9	0.13	pg/g	≎	10/06/20 13:56	10/18/20 09:00	1
1,2,3,6,7,8-HxCDD	3.8	J	5.9	0.12	pg/g	₽	10/06/20 13:56	10/18/20 09:00	1
1,2,3,7,8,9-HxCDD	3.4	J	5.9	0.12	pg/g	₽	10/06/20 13:56	10/18/20 09:00	1
Total HxCDD	37	В	5.9	0.12	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
1,2,3,4,6,7,8-HpCDD	120	В	5.9	0.85	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
Total HpCDD	280	В	5.9	0.85	pg/g	₽	10/06/20 13:56	10/18/20 09:00	1
OCDD	2700	В	12	2.7	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
2,3,7,8-TCDF	ND		1.2	0.23	pg/g	₽	10/06/20 13:56	10/18/20 09:00	1
Total TCDF	ND		1.2	0.44	pg/g	₽	10/06/20 13:56	10/18/20 09:00	1
1,2,3,7,8-PeCDF	0.37	Jq	5.9	0.14	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
2,3,4,7,8-PeCDF	ND		5.9	0.14	pg/g	₽	10/06/20 13:56	10/18/20 09:00	1
Total PeCDF	3.4	Jq	5.9	0.14	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
1,2,3,4,7,8-HxCDF	1.5	J	5.9	0.19	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
1,2,3,6,7,8-HxCDF	1.2	J	5.9	0.17	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
2,3,4,6,7,8-HxCDF	0.95	J	5.9	0.17	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
1,2,3,7,8,9-HxCDF	ND		5.9	0.18	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
Total HxCDF	20		5.9	0.18	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
1,2,3,4,6,7,8-HpCDF	25		5.9	0.38	pg/g	₩	10/06/20 13:56	10/18/20 09:00	1
1,2,3,4,7,8,9-HpCDF	1.4	J	5.9		pg/g	≎	10/06/20 13:56	10/18/20 09:00	1
Total HpCDF	68		5.9		pg/g	≎	10/06/20 13:56	10/18/20 09:00	1
OCDF	85	В	12	0.19	pg/g	₽	10/06/20 13:56	10/18/20 09:00	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	62		40 - 135				10/06/20 13:56	10/18/20 09:00	1
13C-1,2,3,7,8-PeCDD	64		40 - 135				10/06/20 13:56	10/18/20 09:00	1
13C-1,2,3,6,7,8-HxCDD	67		40 - 135				10/06/20 13:56	10/18/20 09:00	1
13C-1,2,3,4,6,7,8-HpCDD	69		40 - 135				10/06/20 13:56	10/18/20 09:00	1
13C-OCDD	77		40 - 135				10/06/20 13:56	10/18/20 09:00	1
13C-2,3,7,8-TCDF	59		40 - 135				10/06/20 13:56	10/18/20 09:00	1
13C-1,2,3,7,8-PeCDF	61		40 - 135				10/06/20 13:56	10/18/20 09:00	1
13C-1,2,3,4,7,8-HxCDF	63		40 - 135				10/06/20 13:56	10/18/20 09:00	1

Eurofins TestAmerica, Pittsburgh

10/06/20 13:56 10/18/20 09:00

Page 21 of 52

40 - 135

66

2

3

5

7

9

10

12

1 /

14

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD216SS Lab Sample ID: 180-111697-5

Date Collected: 09/29/20 11:01 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 79.7

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Solids	80		0.50	0.50	%			10/19/20 18:36	1

Client Sample ID: KD132SS Lab Sample ID: 180-111697-6 Date Collected: 09/29/20 12:53 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 78.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		84	24	ug/Kg	*	10/08/20 14:08	10/11/20 20:03	1
Acenaphthylene	20	J	84	18	ug/Kg	₩	10/08/20 14:08	10/11/20 20:03	1
Anthracene	28	J	84	22	ug/Kg	☼	10/08/20 14:08	10/11/20 20:03	1
Benzo[a]anthracene	79	J	84	38	ug/Kg	₩	10/08/20 14:08	10/11/20 20:03	1
Benzo[b]fluoranthene	140		84	20	ug/Kg	₩	10/08/20 14:08	10/11/20 20:03	1
Benzo[k]fluoranthene	37	J	84	25	ug/Kg	☼	10/08/20 14:08	10/11/20 20:03	1
Benzo[g,h,i]perylene	78	J	84	18	ug/Kg	₩	10/08/20 14:08	10/11/20 20:03	1
Benzo[a]pyrene	65	J	84	36	ug/Kg	☼	10/08/20 14:08	10/11/20 20:03	1
Chrysene	120		84	46	ug/Kg	☼	10/08/20 14:08	10/11/20 20:03	1
Dibenz(a,h)anthracene	ND		84	53	ug/Kg	≎	10/08/20 14:08	10/11/20 20:03	1
Fluoranthene	110		84	22	ug/Kg	☼	10/08/20 14:08	10/11/20 20:03	1
Fluorene	ND		84	16	ug/Kg	☼	10/08/20 14:08	10/11/20 20:03	1
Indeno[1,2,3-cd]pyrene	52	J	84	41	ug/Kg	₩	10/08/20 14:08	10/11/20 20:03	1
Naphthalene	45	J	84	16	ug/Kg	☼	10/08/20 14:08	10/11/20 20:03	1
Phenanthrene	76	J	84	22	ug/Kg	₩	10/08/20 14:08	10/11/20 20:03	1
Pyrene	150		84	20	ug/Kg	₽	10/08/20 14:08	10/11/20 20:03	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77	45 - 105	10/08/20 14:08	10/11/20 20:03	1
2-Fluorophenol (Surr)	78	42 - 105	10/08/20 14:08	10/11/20 20:03	1
2,4,6-Tribromophenol (Surr)	77	31 - 105	10/08/20 14:08	10/11/20 20:03	1
Nitrobenzene-d5 (Surr)	89	53 - 105	10/08/20 14:08	10/11/20 20:03	1
Phenol-d5 (Surr)	82	47 - 105	10/08/20 14:08	10/11/20 20:03	1
Terphenyl-d14 (Surr)	83	46 - 105	10/08/20 14:08	10/11/20 20:03	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	MD		1.3	0.34	pg/g	*	10/06/20 13:56	10/18/20 09:47	1
Total TCDD	2.8	q	1.3	0.34	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,7,8-PeCDD	1.0	J	6.3	0.30	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
Total PeCDD	9.4	q	6.3	0.30	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,4,7,8-HxCDD	2.9	JB	6.3	0.17	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,6,7,8-HxCDD	7.3		6.3	0.17	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,7,8,9-HxCDD	5.7	J	6.3	0.16	pg/g	₩	10/06/20 13:56	10/18/20 09:47	1
Total HxCDD	65	В	6.3	0.17	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,4,6,7,8-HpCDD	240	В	6.3	1.1	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
Total HpCDD	570	В	6.3	1.1	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
OCDD	3100	В	13	2.2	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
2,3,7,8-TCDF	0.90	J	1.3	0.27	pg/g	☼	10/06/20 13:56	10/18/20 09:47	1
Total TCDF	3.5		1.3	0.27	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,7,8-PeCDF	0.44	Jq	6.3	0.18	pg/g	☼	10/06/20 13:56	10/18/20 09:47	1
2,3,4,7,8-PeCDF	ND		6.3	0.18	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1

Eurofins TestAmerica, Pittsburgh

Page 22 of 52

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

General Chemistry

Analyte

Total Solids

Client Sample ID: KD132SS Lab Sample ID: 180-111697-6

Date Collected: 09/29/20 12:53 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 78.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total PeCDF	5.9	Jq	6.3	0.18	pg/g	*	10/06/20 13:56	10/18/20 09:47	1
1,2,3,4,7,8-HxCDF	2.1	J	6.3	0.30	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,6,7,8-HxCDF	1.3	J	6.3	0.26	pg/g	☼	10/06/20 13:56	10/18/20 09:47	1
2,3,4,6,7,8-HxCDF	1.3	J	6.3	0.27	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,7,8,9-HxCDF	0.45	J	6.3	0.28	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
Total HxCDF	34		6.3	0.28	pg/g	₩	10/06/20 13:56	10/18/20 09:47	1
1,2,3,4,6,7,8-HpCDF	40		6.3	0.35	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
1,2,3,4,7,8,9-HpCDF	2.3	J	6.3	0.39	pg/g	≎	10/06/20 13:56	10/18/20 09:47	1
Total HpCDF	130		6.3	0.37	pg/g	₩	10/06/20 13:56	10/18/20 09:47	1
OCDF	160	В	13	0.23	pg/g	☼	10/06/20 13:56	10/18/20 09:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	59		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-1,2,3,7,8-PeCDD	59		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-1,2,3,6,7,8-HxCDD	67		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-1,2,3,4,6,7,8-HpCDD	70		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-OCDD	77		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-2,3,7,8-TCDF	57		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-1,2,3,7,8-PeCDF	57		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-1,2,3,4,7,8-HxCDF	61		40 - 135				10/06/20 13:56	10/18/20 09:47	1
13C-1,2,3,4,6,7,8-HpCDF	66		40 - 135				10/06/20 13:56	10/18/20 09:47	1

Lab Sample ID: 180-111697-7 Client Sample ID: KDEPA9SS Date Collected: 09/29/20 15:09 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 72.9

RL

0.50

RL Unit

0.50 %

D

Prepared

Analyzed

10/19/20 18:36

Result Qualifier

80

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		87	25	ug/Kg	*	10/08/20 14:08	10/11/20 20:31	1
Acenaphthylene	44	J	87	19	ug/Kg	₩	10/08/20 14:08	10/11/20 20:31	1
Anthracene	72	J	87	22	ug/Kg	₩	10/08/20 14:08	10/11/20 20:31	1
Benzo[a]anthracene	120		87	39	ug/Kg	≎	10/08/20 14:08	10/11/20 20:31	1
Benzo[b]fluoranthene	210		87	21	ug/Kg	₩	10/08/20 14:08	10/11/20 20:31	1
Benzo[k]fluoranthene	74	J	87	26	ug/Kg	₩	10/08/20 14:08	10/11/20 20:31	1
Benzo[g,h,i]perylene	110		87	19	ug/Kg	≎	10/08/20 14:08	10/11/20 20:31	1
Benzo[a]pyrene	100		87	38	ug/Kg	₩	10/08/20 14:08	10/11/20 20:31	1
Chrysene	180		87	48	ug/Kg	₩	10/08/20 14:08	10/11/20 20:31	1
Dibenz(a,h)anthracene	ND		87	56	ug/Kg	⊅	10/08/20 14:08	10/11/20 20:31	1
Fluoranthene	200		87	23	ug/Kg	☼	10/08/20 14:08	10/11/20 20:31	1
Fluorene	ND		87	17	ug/Kg	☼	10/08/20 14:08	10/11/20 20:31	1
Indeno[1,2,3-cd]pyrene	99		87	43	ug/Kg	⊅	10/08/20 14:08	10/11/20 20:31	1
Naphthalene	70	J	87	17	ug/Kg	☼	10/08/20 14:08	10/11/20 20:31	1
Phenanthrene	110		87	23	ug/Kg	☼	10/08/20 14:08	10/11/20 20:31	1
Pyrene	200		87	21	ug/Kg	☼	10/08/20 14:08	10/11/20 20:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68		45 - 105				10/08/20 14:08	10/11/20 20:31	1

Page 23 of 52

Dil Fac

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Client Sample ID: KDEPA9SS Lab Sample ID: 180-111697-7

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol (Surr)	70	42 - 105	10/08/20 14:08	10/11/20 20:31	1
2,4,6-Tribromophenol (Surr)	80	31 - 105	10/08/20 14:08	10/11/20 20:31	1
Nitrobenzene-d5 (Surr)	85	53 - 105	10/08/20 14:08	10/11/20 20:31	1
Phenol-d5 (Surr)	68	47 - 105	10/08/20 14:08	10/11/20 20:31	1
Terphenyl-d14 (Surr)	73	46 - 105	10/08/20 14:08	10/11/20 20:31	1

Method: 8290A - Dioxins and Furans	(HRGC/HRMS)
------------------------------------	-------------

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.4	0.40	pg/g	₩	10/06/20 13:56	10/18/20 10:35	1
Total TCDD	5.1		1.4	0.40	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
1,2,3,7,8-PeCDD	1.9	J	6.8	0.35	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
Total PeCDD	21	q	6.8	0.35	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
1,2,3,4,7,8-HxCDD	5.2	JB	6.8	0.31	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
1,2,3,6,7,8-HxCDD	19		6.8	0.30	pg/g	☼	10/06/20 13:56	10/18/20 10:35	1
1,2,3,7,8,9-HxCDD	6.6	J	6.8	0.28	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
Total HxCDD	120	В	6.8	0.29	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
1,2,3,4,6,7,8-HpCDD	580	В	6.8	2.0	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
Total HpCDD	1100	В	6.8	2.0	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
OCDD	6200	EB	14	3.9	pg/g	☼	10/06/20 13:56	10/18/20 10:35	1
Total TCDF	8.2		1.4	0.35	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
1,2,3,7,8-PeCDF	0.84	J	6.8	0.19	pg/g	₩	10/06/20 13:56	10/18/20 10:35	1
2,3,4,7,8-PeCDF	0.85	J	6.8	0.19	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
Total PeCDF	14		6.8	0.19	pg/g	☼	10/06/20 13:56	10/18/20 10:35	1
1,2,3,4,7,8-HxCDF	3.1	J	6.8	0.54	pg/g	₽	10/06/20 13:56	10/18/20 10:35	1
1,2,3,6,7,8-HxCDF	2.3	J	6.8	0.48	pg/g	☼	10/06/20 13:56	10/18/20 10:35	1
2,3,4,6,7,8-HxCDF	2.3	J	6.8	0.50	pg/g	☼	10/06/20 13:56	10/18/20 10:35	1
1,2,3,7,8,9-HxCDF	ND		6.8	0.52	pg/g	₩	10/06/20 13:56	10/18/20 10:35	1
Total HxCDF	100	q	6.8	0.51	pg/g	☼	10/06/20 13:56	10/18/20 10:35	1
1,2,3,4,6,7,8-HpCDF	120		6.8	1.2	pg/g	☼	10/06/20 13:56	10/18/20 10:35	1
1,2,3,4,7,8,9-HpCDF	4.5	J	6.8	1.3	pg/g	₩	10/06/20 13:56	10/18/20 10:35	1
Total HpCDF	480		6.8	1.2	pg/g	₩	10/06/20 13:56	10/18/20 10:35	1
OCDF	520	В	14	0.41	pg/g	₩	10/06/20 13:56	10/18/20 10:35	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	59	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-1,2,3,7,8-PeCDD	61	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-1,2,3,6,7,8-HxCDD	66	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-1,2,3,4,6,7,8-HpCDD	70	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-OCDD	83	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-2,3,7,8-TCDF	56	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-1,2,3,7,8-PeCDF	58	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-1,2,3,4,7,8-HxCDF	61	40 - 135	10/06/20 13:56	10/18/20 10:35	1
13C-1,2,3,4,6,7,8-HpCDF	67	40 - 135	10/06/20 13:56	10/18/20 10:35	1

Method	: 8290A - Diox	ins and Furans	(HRGC/HRMS) - RA
--------	----------------	----------------	------------	--------

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.61	J q	1.4	0.14	pg/g	₩	10/06/20 13:56	10/22/20 13:47	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	80		40 - 135				10/06/20 13:56	10/22/20 13:47	

Eurofins TestAmerica, Pittsburgh

Page 24 of 52

2

3

6

8

10

12

13

14

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Client Sample ID: KDEPA9SS Lab Sample ID: 180-111697-7

Date Collected: 09/29/20 15:09 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 72.9

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Solids	74		0.50	0.50	%			10/19/20 18:36	1

Client Sample ID: KD106SS-EB

Lab Sample ID: 180-111697-8 Date Collected: 09/29/20 17:55 **Matrix: Water**

Date Received: 10/01/20 09:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	1.8	0.60	ug/L		10/05/20 16:50	10/16/20 13:05	1
Acenaphthylene	ND	1.8	0.60	ug/L		10/05/20 16:50	10/16/20 13:05	1
Anthracene	ND	1.8	0.45	ug/L		10/05/20 16:50	10/16/20 13:05	1
Benzo[a]anthracene	ND	1.8	0.69	ug/L		10/05/20 16:50	10/16/20 13:05	1
Benzo[b]fluoranthene	ND	1.8	0.90	ug/L		10/05/20 16:50	10/16/20 13:05	1
Benzo[k]fluoranthene	ND	1.8	0.81	ug/L		10/05/20 16:50	10/16/20 13:05	1
Benzo[g,h,i]perylene	ND	1.8	0.64	ug/L		10/05/20 16:50	10/16/20 13:05	1
Benzo[a]pyrene	ND	1.8	0.49	ug/L		10/05/20 16:50	10/16/20 13:05	1
Chrysene	ND	1.8	0.75	ug/L		10/05/20 16:50	10/16/20 13:05	1
Dibenz(a,h)anthracene	ND	1.8	0.67	ug/L		10/05/20 16:50	10/16/20 13:05	1
Fluoranthene	ND	1.8	0.56	ug/L		10/05/20 16:50	10/16/20 13:05	1
Fluorene	ND	1.8	0.64	ug/L		10/05/20 16:50	10/16/20 13:05	1
Indeno[1,2,3-cd]pyrene	ND	1.8	0.79	ug/L		10/05/20 16:50	10/16/20 13:05	1
Naphthalene	ND	1.8	0.55	ug/L		10/05/20 16:50	10/16/20 13:05	1
Phenanthrene	ND	1.8	0.51	ug/L		10/05/20 16:50	10/16/20 13:05	1
Pyrene	ND	1.8	0.50	ug/L		10/05/20 16:50	10/16/20 13:05	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74	44 - 105				10/05/20 16:50	10/16/20 13:05	1
2-Fluorophenol (Surr)	61	38 - 105				10/05/20 16:50	10/16/20 13:05	1
2,4,6-Tribromophenol (Surr)	90	38 - 111				10/05/20 16:50	10/16/20 13:05	1
Nitrobenzene-d5 (Surr)	66	45 - 108				10/05/20 16:50	10/16/20 13:05	1
Phenol-d5 (Surr)	66	40 - 105				10/05/20 16:50	10/16/20 13:05	1
Terphenyl-d14 (Surr)	85	20 - 128				10/05/20 16:50	10/16/20 13:05	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10	0.40	pg/L		10/07/20 11:35	10/10/20 12:14	1
Total TCDD	ND		10	0.40	pg/L		10/07/20 11:35	10/10/20 12:14	1
1,2,3,7,8-PeCDD	ND		51	0.48	pg/L		10/07/20 11:35	10/10/20 12:14	1
Total PeCDD	ND		51	0.48	pg/L		10/07/20 11:35	10/10/20 12:14	1
1,2,3,4,7,8-HxCDD	ND		51	0.92	pg/L		10/07/20 11:35	10/10/20 12:14	1
1,2,3,6,7,8-HxCDD	ND		51	0.92	pg/L		10/07/20 11:35	10/10/20 12:14	1
1,2,3,7,8,9-HxCDD	ND		51	0.84	pg/L		10/07/20 11:35	10/10/20 12:14	1
Total HxCDD	ND		51	0.92	pg/L		10/07/20 11:35	10/10/20 12:14	1
1,2,3,4,6,7,8-HpCDD	0.60	JB	51	0.20	pg/L		10/07/20 11:35	10/10/20 12:14	1
Total HpCDD	1.5	JB	51	0.20	pg/L		10/07/20 11:35	10/10/20 12:14	1
OCDD	2.9	JB	100	0.28	pg/L		10/07/20 11:35	10/10/20 12:14	1
2,3,7,8-TCDF	ND		10	0.41	pg/L		10/07/20 11:35	10/10/20 12:14	1
Total TCDF	ND		10	0.41	pg/L		10/07/20 11:35	10/10/20 12:14	1
1,2,3,7,8-PeCDF	ND		51	0.39	pg/L		10/07/20 11:35	10/10/20 12:14	1
2,3,4,7,8-PeCDF	ND		51	0.40	pg/L		10/07/20 11:35	10/10/20 12:14	1

Eurofins TestAmerica, Pittsburgh

Page 25 of 52

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD106SS-EB

Lab Sample ID: 180-111697-8

Date Collected: 09/29/20 17:55 **Matrix: Water** Date Received: 10/01/20 09:00

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued) Dil Fac **Analyte** Result Qualifier **EDL** Unit Prepared Analyzed Total PeCDF 51 10/07/20 11:35 ND 0.40 pg/L 10/10/20 12:14 ND 51 0.45 pg/L 10/07/20 11:35 10/10/20 12:14 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF ND 51 0.42 pg/L 10/07/20 11:35 10/10/20 12:14 51 2,3,4,6,7,8-HxCDF ND 0.46 pg/L 10/07/20 11:35 10/10/20 12:14 1,2,3,7,8,9-HxCDF ND 51 0.45 pg/L 10/07/20 11:35 10/10/20 12:14 Total HxCDF ND 51 0.46 pg/L 10/07/20 11:35 10/10/20 12:14 51 0.15 pg/L 10/07/20 11:35 10/10/20 12:14 1,2,3,4,6,7,8-HpCDF 0.33 J q B 51 10/07/20 11:35 10/10/20 12:14 1,2,3,4,7,8,9-HpCDF ND 0.17 pg/L **Total HpCDF** 0.33 JqB 51 0.16 pg/L 10/07/20 11:35 10/10/20 12:14 0.28 pg/L **OCDF** ND 100 10/07/20 11:35 10/10/20 12:14 Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-2,3,7,8-TCDD 103 40 - 135 10/07/20 11:35 10/10/20 12:14 13C-1,2,3,7,8-PeCDD 93 40 - 135 10/07/20 11:35 10/10/20 12:14 81 10/07/20 11:35 10/10/20 12:14 13C-1,2,3,6,7,8-HxCDD 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 105 40 - 135 10/07/20 11:35 10/10/20 12:14 13C-OCDD 98 40 - 135 10/07/20 11:35 10/10/20 12:14 13C-2,3,7,8-TCDF 94 40 - 135 10/07/20 11:35 10/10/20 12:14 13C-1,2,3,7,8-PeCDF 88 10/07/20 11:35 10/10/20 12:14 40 - 135 13C-1,2,3,4,7,8-HxCDF 82 40 - 135 10/07/20 11:35 10/10/20 12:14 98 40 - 135 10/07/20 11:35 10/10/20 12:14 13C-1,2,3,4,6,7,8-HpCDF

Client Sample ID: KD106SS Lab Sample ID: 180-111697-9 Date Collected: 09/29/20 17:05 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 76.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		84	24	ug/Kg	*	10/08/20 14:08	10/11/20 20:58	1
Acenaphthylene	120		84	18	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Anthracene	230		84	22	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Benzo[a]anthracene	670		84	38	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Benzo[b]fluoranthene	740		84	21	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Benzo[k]fluoranthene	350		84	25	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Benzo[g,h,i]perylene	300		84	18	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Benzo[a]pyrene	340		84	36	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Chrysene	770		84	47	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Dibenz(a,h)anthracene	100		84	54	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Fluoranthene	1200		84	22	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Fluorene	ND		84	17	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Indeno[1,2,3-cd]pyrene	300		84	42	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Naphthalene	150		84	16	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Phenanthrene	440		84	23	ug/Kg	₩	10/08/20 14:08	10/11/20 20:58	1
Pyrene	960		84	20	ug/Kg	☼	10/08/20 14:08	10/11/20 20:58	1

Surrogate	%Recovery Qualified	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	63	45 - 105	10/08/20 14:08	10/11/20 20:58	1
2-Fluorophenol (Surr)	71	42 - 105	10/08/20 14:08	10/11/20 20:58	1
2,4,6-Tribromophenol (Surr)	75	31 - 105	10/08/20 14:08	10/11/20 20:58	1
Nitrobenzene-d5 (Surr)	80	53 - 105	10/08/20 14:08	10/11/20 20:58	1
Phenol-d5 (Surr)	74	47 - 105	10/08/20 14:08	10/11/20 20:58	1

Eurofins TestAmerica, Pittsburgh

Page 26 of 52

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD106SS

Date Collected: 09/29/20 17:05 Date Received: 10/01/20 09:00

Lab Sample ID: 180-111697-9

Matrix: Solid

Percent Solids: 76.8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14 (Surr)	72	46 - 105	10/08/20 14:08	10/11/20 20:58	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	ND		1.3	0.35	pg/g	-	10/06/20 13:56	10/18/20 11:23	
Total TCDD	3.1		1.3	0.35	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
1,2,3,7,8-PeCDD	1.7	J	6.3	0.37	pg/g	☼	10/06/20 13:56	10/18/20 11:23	
Total PeCDD	20		6.3	0.37	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
1,2,3,4,7,8-HxCDD	4.4	JB	6.3	0.24	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
1,2,3,6,7,8-HxCDD	14		6.3	0.23	pg/g	₽	10/06/20 13:56	10/18/20 11:23	•
1,2,3,7,8,9-HxCDD	6.8		6.3	0.22	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
Total HxCDD	120	В	6.3	0.23	pg/g	☼	10/06/20 13:56	10/18/20 11:23	
1,2,3,4,6,7,8-HpCDD	410	В	6.3	1.8	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
Total HpCDD	1000	В	6.3	1.8	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
OCDD	4500	В	13	3.1	pg/g	☼	10/06/20 13:56	10/18/20 11:23	
Total TCDF	19		1.3	0.39	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
1,2,3,7,8-PeCDF	1.5	Jq	6.3	0.35	pg/g	₩	10/06/20 13:56	10/18/20 11:23	
2,3,4,7,8-PeCDF	3.0	J	6.3	0.36	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
Total PeCDF	25	q	6.3	0.36	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
1,2,3,4,7,8-HxCDF	6.5		6.3	0.44	pg/g	₩	10/06/20 13:56	10/18/20 11:23	
1,2,3,6,7,8-HxCDF	4.1	J	6.3	0.39	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
2,3,4,6,7,8-HxCDF	4.3	J	6.3	0.40	pg/g	☼	10/06/20 13:56	10/18/20 11:23	
1,2,3,7,8,9-HxCDF	ND		6.3	0.42	pg/g	☼	10/06/20 13:56	10/18/20 11:23	
Total HxCDF	100	q	6.3	0.41	pg/g	☼	10/06/20 13:56	10/18/20 11:23	
1,2,3,4,6,7,8-HpCDF	84		6.3	0.91	pg/g	☼	10/06/20 13:56	10/18/20 11:23	
1,2,3,4,7,8,9-HpCDF	5.2	J	6.3	1.0	pg/g	₽	10/06/20 13:56	10/18/20 11:23	
Total HpCDF	270		6.3	0.96	pg/g	≎	10/06/20 13:56	10/18/20 11:23	
OCDF	270	R	13	0.26	pg/g	₩	10/06/20 13:56	10/18/20 11:23	

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	67	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-1,2,3,7,8-PeCDD	67	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-1,2,3,6,7,8-HxCDD	72	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-1,2,3,4,6,7,8-HpCDD	76	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-OCDD	86	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-2,3,7,8-TCDF	63	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-1,2,3,7,8-PeCDF	65	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-1,2,3,4,7,8-HxCDF	67	40 - 135	10/06/20 13:56	10/18/20 11:23	1
13C-1,2,3,4,6,7,8-HpCDF	71	40 - 135	10/06/20 13:56	10/18/20 11:23	1

	Method: 8290A - Dioxins and	Furans (HRGC/HRMS) - RA
ı		

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.5	1.3	0.15	pg/g	≎	10/06/20 13:56	10/22/20 14:25	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	90	40 - 135				10/06/20 13:56	10/22/20 14:25	1

Genera	Chem	istry
--------	------	-------

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac	
Total Solids	78	0.50	0.50 %			10/19/20 19:07	1	

Eurofins TestAmerica, Pittsburgh

10/27/2020

Page 27 of 52

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD080SS Lab Sample ID: 180-111697-10

Date Collected: 09/30/20 09:30 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 78.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		260	74	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 18:42	3
Acenaphthylene	110	J	260	56	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Anthracene	170	J	260	66	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Benzo[a]anthracene	270		260	120	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Benzo[b]fluoranthene	370		260	63	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Benzo[k]fluoranthene	140	J	260	77	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Benzo[g,h,i]perylene	190	J	260	55	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Benzo[a]pyrene	180	J	260	110	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Chrysene	310		260	140	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Dibenz(a,h)anthracene	260		260	160	ug/Kg	₽	10/14/20 08:24	10/16/20 18:42	3
Fluoranthene	430		260	67	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Fluorene	ND		260	50	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Indeno[1,2,3-cd]pyrene	160	J	260	130	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Naphthalene	100	J	260	50	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Phenanthrene	210	J	260	69	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Pyrene	450		260	60	ug/Kg	₩	10/14/20 08:24	10/16/20 18:42	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		45 - 105				10/14/20 08:24	10/16/20 18:42	3

Surrogate	%Recovery Q	Qualifier Limi	ts	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69	45 - 1	05	10/14/20 08:24	10/16/20 18:42	3
2-Fluorophenol (Surr)	77	42 - 1	105	10/14/20 08:24	10/16/20 18:42	3
2,4,6-Tribromophenol (Surr)	38	31 - 1	105	10/14/20 08:24	10/16/20 18:42	3
Nitrobenzene-d5 (Surr)	78	53 - 1	05	10/14/20 08:24	10/16/20 18:42	3
Phenol-d5 (Surr)	68	47 - 1	105	10/14/20 08:24	10/16/20 18:42	3
Terphenyl-d14 (Surr)	78	46 - 1	105	10/14/20 08:24	10/16/20 18:42	3

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.34	pg/g	☆	10/06/20 13:56	10/18/20 12:11	1
Total TCDD	ND		1.2	0.34	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
1,2,3,7,8-PeCDD	ND		5.9	0.26	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
Total PeCDD	3.0	J q	5.9	0.26	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
1,2,3,4,7,8-HxCDD	1.5	JB	5.9	0.12	pg/g	☼	10/06/20 13:56	10/18/20 12:11	1
1,2,3,6,7,8-HxCDD	3.6	J	5.9	0.12	pg/g	☼	10/06/20 13:56	10/18/20 12:11	1
1,2,3,7,8,9-HxCDD	2.9	J	5.9	0.11	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
Total HxCDD	33	В	5.9	0.12	pg/g	☼	10/06/20 13:56	10/18/20 12:11	1
1,2,3,4,6,7,8-HpCDD	110	В	5.9	0.81	pg/g	☼	10/06/20 13:56	10/18/20 12:11	1
Total HpCDD	270	В	5.9	0.81	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
OCDD	2000	В	12	1.6	pg/g	₽	10/06/20 13:56	10/18/20 12:11	1
2,3,7,8-TCDF	1.1	J	1.2	0.22	pg/g	₽	10/06/20 13:56	10/18/20 12:11	1
Total TCDF	2.3	q	1.2	0.22	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
1,2,3,7,8-PeCDF	0.51	J	5.9	0.13	pg/g	₽	10/06/20 13:56	10/18/20 12:11	1
2,3,4,7,8-PeCDF	0.69	J	5.9	0.13	pg/g	☼	10/06/20 13:56	10/18/20 12:11	1
Total PeCDF	7.2	q	5.9	0.13	pg/g	₽	10/06/20 13:56	10/18/20 12:11	1
1,2,3,4,7,8-HxCDF	2.0	J	5.9	0.22	pg/g	☼	10/06/20 13:56	10/18/20 12:11	1
1,2,3,6,7,8-HxCDF	0.97	J	5.9	0.20	pg/g	☼	10/06/20 13:56	10/18/20 12:11	1
2,3,4,6,7,8-HxCDF	1.1	J	5.9	0.20	pg/g	₽	10/06/20 13:56	10/18/20 12:11	1
1,2,3,7,8,9-HxCDF	ND		5.9	0.21	pg/g	₽	10/06/20 13:56	10/18/20 12:11	1
Total HxCDF	19		5.9	0.21	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
1,2,3,4,6,7,8-HpCDF	19		5.9	0.32	pg/g	₽	10/06/20 13:56	10/18/20 12:11	1
1,2,3,4,7,8,9-HpCDF	1.2	J	5.9	0.36	pg/g	☆	10/06/20 13:56	10/18/20 12:11	1

Eurofins TestAmerica, Pittsburgh

Page 28 of 52

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi

Client Sample ID: KD080SS Date Collected: 09/30/20 09:30

Lab Sample ID: 180-111697-10

Matrix: Solid

Percent Solids: 78.4

Date Received: 10/01/20 09:00
Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDF	<u>58</u>		5.9	0.34	pg/g	*	10/06/20 13:56	10/18/20 12:11	1
OCDF	67	В	12	0.18	pg/g	₩	10/06/20 13:56	10/18/20 12:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	55		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-1,2,3,7,8-PeCDD	55		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-1,2,3,6,7,8-HxCDD	60		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-1,2,3,4,6,7,8-HpCDD	63		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-OCDD	71		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-2,3,7,8-TCDF	53		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-1,2,3,7,8-PeCDF	53		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-1,2,3,4,7,8-HxCDF	56		40 - 135				10/06/20 13:56	10/18/20 12:11	1
13C-1,2,3,4,6,7,8-HpCDF	60		40 - 135				10/06/20 13:56	10/18/20 12:11	1

General Chemistry

Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Total Solids	80	0.50	0.50 %			10/19/20 19:07	1

Client Sample ID: KD010SS

Lab Sample ID: 180-111697-11 Date Collected: 09/30/20 11:40 **Matrix: Solid** Date Received: 10/01/20 09:00 Percent Solids: 81.1

Method: FPA 8270F -	Semivolatile Organic	Compounds (GC/MS)
Method. LI A 0270L -	Seminolatile Organic	Compounds (Convio)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	34	J	82	24	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 19:07	1
Acenaphthylene	490		82	18	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Anthracene	650		82	21	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Benzo[a]anthracene	920		82	37	ug/Kg	₽	10/14/20 08:24	10/16/20 19:07	1
Benzo[b]fluoranthene	2100		82	20	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Benzo[k]fluoranthene	720		82	25	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Benzo[g,h,i]perylene	830		82	18	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Benzo[a]pyrene	1100		82	35	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Chrysene	1200		82	45	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Dibenz(a,h)anthracene	310		82	52	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Fluoranthene	1400		82	22	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Fluorene	56	J	82	16	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Indeno[1,2,3-cd]pyrene	850		82	41	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Naphthalene	490		82	16	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Phenanthrene	710		82	22	ug/Kg	₩	10/14/20 08:24	10/16/20 19:07	1
Pyrene	1800		82	19	ug/Kg	≎	10/14/20 08:24	10/16/20 19:07	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	66	45 - 105	10/14/20 08:24 10)/16/20 19:07	1
2-Fluorophenol (Surr)	74	42 - 105	10/14/20 08:24 10)/16/20 19:07	1
2,4,6-Tribromophenol (Surr)	50	31 - 105	10/14/20 08:24 10)/16/20 19:07	1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/14/20 08:24 10)/16/20 19:07	1
Phenol-d5 (Surr)	65	47 - 105	10/14/20 08:24 10)/16/20 19:07	1
Terphenyl-d14 (Surr)	66	46 - 105	10/14/20 08:24 10)/16/20 19:07	1

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi

Client Sample ID: KD010SS

Total Solids

Lab Sample ID: 180-111697-11 Date Collected: 09/30/20 11:40 Date Received: 10/01/20 09:00

Matrix: Solid Percent Solids: 81.1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.32	pg/g	<u></u>	10/06/20 13:56	10/18/20 12:59	1
Total TCDD	2.5	q	1.2	0.32	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,7,8-PeCDD	2.8	J	5.8	0.33	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
Total PeCDD	31		5.8	0.33	pg/g	₽	10/06/20 13:56	10/18/20 12:59	1
1,2,3,4,7,8-HxCDD	7.6	В	5.8	0.29	pg/g	₽	10/06/20 13:56	10/18/20 12:59	1
1,2,3,6,7,8-HxCDD	20		5.8	0.28	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,7,8,9-HxCDD	14		5.8	0.26	pg/g	₽	10/06/20 13:56	10/18/20 12:59	1
Total HxCDD	190	В	5.8	0.28	pg/g	₽	10/06/20 13:56	10/18/20 12:59	1
1,2,3,4,6,7,8-HpCDD	660	В	5.8	2.5	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
Total HpCDD	1600	В	5.8	2.5	pg/g	₽	10/06/20 13:56	10/18/20 12:59	1
OCDD	6900	EB	12	4.3	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
Total TCDF	6.2	q	1.2		pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,7,8-PeCDF	0.75		5.8		pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
2,3,4,7,8-PeCDF	0.94		5.8		pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
Total PeCDF	11	q	5.8	0.17	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,4,7,8-HxCDF	4.5	J	5.8	0.51	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,6,7,8-HxCDF	3.5	J	5.8	0.46	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
2,3,4,6,7,8-HxCDF	3.1	J	5.8	0.48	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,7,8,9-HxCDF	ND		5.8	0.49	pg/g		10/06/20 13:56	10/18/20 12:59	1
Total HxCDF	100		5.8	0.49	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,4,6,7,8-HpCDF	120		5.8	1.2	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
1,2,3,4,7,8,9-HpCDF	7.6		5.8		pg/g		10/06/20 13:56	10/18/20 12:59	1
Total HpCDF	410		5.8		pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
OCDF	490	В	12	0.42	pg/g	₩	10/06/20 13:56	10/18/20 12:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	62		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-1,2,3,7,8-PeCDD	61		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-1,2,3,6,7,8-HxCDD	65		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-1,2,3,4,6,7,8-HpCDD	68		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-OCDD	78		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-2,3,7,8-TCDF	59		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-1,2,3,7,8-PeCDF	59		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-1,2,3,4,7,8-HxCDF	60		40 - 135				10/06/20 13:56	10/18/20 12:59	1
13C-1,2,3,4,6,7,8-HpCDF	65		40 - 135				10/06/20 13:56	10/18/20 12:59	1
·									
Method: 8290A - Dioxins									
Analyte		Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.59	J	1.2	0.11	pg/g	₩	10/06/20 13:56	10/22/20 15:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	84		40 - 135				10/06/20 13:56	10/22/20 15:04	1
General Chemistry						_			 -
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

10/19/20 19:07

0.50

82

0.50 %

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: KD860SS

Lab Sample ID: 180-111697-12

Date Collected: 09/30/20 12:00 **Matrix: Solid** Date Received: 10/01/20 09:00 **Percent Solids: 81.8**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	43	J	81	23	ug/Kg	-	10/14/20 08:24	10/16/20 19:33	1
Acenaphthylene	480		81	18	ug/Kg	☼	10/14/20 08:24	10/16/20 19:33	1
Anthracene	640		81	21	ug/Kg	☼	10/14/20 08:24	10/16/20 19:33	1
Benzo[a]anthracene	1200		81	36	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Benzo[b]fluoranthene	2200		81	20	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Benzo[k]fluoranthene	740		81	24	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Benzo[g,h,i]perylene	760		81	17	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Benzo[a]pyrene	990		81	35	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Chrysene	1500		81	45	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Dibenz(a,h)anthracene	280		81	52	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Fluoranthene	2000		81	21	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Fluorene	44	J	81	16	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Indeno[1,2,3-cd]pyrene	790		81	40	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Naphthalene	480		81	16	ug/Kg	☼	10/14/20 08:24	10/16/20 19:33	1
Phenanthrene	660		81	22	ug/Kg	₽	10/14/20 08:24	10/16/20 19:33	1
Pyrene	2600		81	19	ug/Kg	☼	10/14/20 08:24	10/16/20 19:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorohinhenyl	68		45 - 105				10/14/20 08:24	10/16/20 19:33	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68		45 - 105	10/14/20 08:24	10/16/20 19:33	1
2-Fluorophenol (Surr)	74		42 - 105	10/14/20 08:24	10/16/20 19:33	1
2,4,6-Tribromophenol (Surr)	60		31 - 105	10/14/20 08:24	10/16/20 19:33	1
Nitrobenzene-d5 (Surr)	74		53 - 105	10/14/20 08:24	10/16/20 19:33	1
Phenol-d5 (Surr)	66		47 - 105	10/14/20 08:24	10/16/20 19:33	1
Terphenyl-d14 (Surr)	77		46 - 105	10/14/20 08:24	10/16/20 19:33	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.1	0.43	pg/g		10/06/20 13:56	10/20/20 04:21	1
Total TCDD	12		1.1	0.43	pg/g	☼	10/06/20 13:56	10/20/20 04:21	1
1,2,3,7,8-PeCDD	5.5	J	5.7	0.65	pg/g	☼	10/06/20 13:56	10/20/20 04:21	1
Total PeCDD	72		5.7	0.65	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
1,2,3,4,7,8-HxCDD	14	В	5.7	0.45	pg/g	☼	10/06/20 13:56	10/20/20 04:21	1
1,2,3,6,7,8-HxCDD	37		5.7	0.43	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
1,2,3,7,8,9-HxCDD	25		5.7	0.40	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
Total HxCDD	360	В	5.7	0.43	pg/g	☼	10/06/20 13:56	10/20/20 04:21	1
1,2,3,4,6,7,8-HpCDD	1200	В	5.7	4.3	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
Total HpCDD	2800	В	5.7	4.3	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
OCDD	14000	EB	11	8.2	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
Total TCDF	14		1.1	0.49	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
1,2,3,7,8-PeCDF	1.3	Jq	5.7	0.79	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
2,3,4,7,8-PeCDF	1.2	Jq	5.7	0.80	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
Total PeCDF	37	q	5.7	0.80	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
1,2,3,4,7,8-HxCDF	7.1		5.7	1.6	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
1,2,3,6,7,8-HxCDF	4.8	J	5.7	1.5	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
2,3,4,6,7,8-HxCDF	5.4	J	5.7	1.5	pg/g	☼	10/06/20 13:56	10/20/20 04:21	1
1,2,3,7,8,9-HxCDF	ND		5.7	1.6	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
Total HxCDF	190		5.7	1.6	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
1,2,3,4,6,7,8-HpCDF	210		5.7	1.8	pg/g	₩	10/06/20 13:56	10/20/20 04:21	1
1,2,3,4,7,8,9-HpCDF	13		5.7	2.0	pg/g	₽	10/06/20 13:56	10/20/20 04:21	1
Total HpCDF	710		5.7	1.9	pg/g	₩	10/06/20 13:56	10/20/20 04:21	1

Eurofins TestAmerica, Pittsburgh

Page 31 of 52

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD860SS Lab Sample ID: 180-111697-12

Dat

ate Collected: 09/30/20 12:00	Matrix: Solid
ate Received: 10/01/20 09:00	Percent Solids: 81.8
	_

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	840	В	11	0.62	pg/g	-	10/06/20 13:56	10/20/20 04:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	69		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-1,2,3,7,8-PeCDD	70		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-1,2,3,6,7,8-HxCDD	76		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-1,2,3,4,6,7,8-HpCDD	77		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-OCDD	91		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-2,3,7,8-TCDF	68		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-1,2,3,7,8-PeCDF	68		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-1,2,3,4,7,8-HxCDF	73		40 - 135				10/06/20 13:56	10/20/20 04:21	1
13C-1,2,3,4,6,7,8-HpCDF	73		40 - 135				10/06/20 13:56	10/20/20 04:21	1
Method: 8290A - Dioxins	and Furans (HR	GC/HRMS)	- RA						
Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.2		1.1	0.17	pg/g	-	10/06/20 13:56	10/22/20 15:42	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	85		40 - 135				10/06/20 13:56	10/22/20 15:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Solids	82		0.50	0.50		— <u>-</u>		10/19/20 19:07	1

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Method: EPA 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level

MB MB

Lab Sample ID: MB 180-332126/1-A

Matrix: Water

Analysis Batch: 333064

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 332126

Amalada	Desuit Ouslife	DI	MDI	11:4	_	Duamanad	A a l a al	D:: F
Analyte	Result Qualifi		MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.19	0.065	ug/L		10/02/20 11:12	10/12/20 13:11	1
Acenaphthylene	ND	0.19	0.065	ug/L		10/02/20 11:12	10/12/20 13:11	1
Anthracene	ND	0.19	0.049	ug/L		10/02/20 11:12	10/12/20 13:11	1
Benzo[a]anthracene	ND	0.19	0.075	ug/L		10/02/20 11:12	10/12/20 13:11	1
Benzo[a]pyrene	ND	0.19	0.053	ug/L		10/02/20 11:12	10/12/20 13:11	1
Benzo[b]fluoranthene	ND	0.19	0.097	ug/L		10/02/20 11:12	10/12/20 13:11	1
Benzo[g,h,i]perylene	ND	0.19	0.069	ug/L		10/02/20 11:12	10/12/20 13:11	1
Benzo[k]fluoranthene	ND	0.19	0.088	ug/L		10/02/20 11:12	10/12/20 13:11	1
Chrysene	ND	0.19	0.081	ug/L		10/02/20 11:12	10/12/20 13:11	1
Dibenz(a,h)anthracene	ND	0.19	0.072	ug/L		10/02/20 11:12	10/12/20 13:11	1
Fluoranthene	ND	0.19	0.060	ug/L		10/02/20 11:12	10/12/20 13:11	1
Fluorene	ND	0.19	0.069	ug/L		10/02/20 11:12	10/12/20 13:11	1
Indeno[1,2,3-cd]pyrene	ND	0.19	0.085	ug/L		10/02/20 11:12	10/12/20 13:11	1
Naphthalene	ND	0.19	0.059	ug/L		10/02/20 11:12	10/12/20 13:11	1
Pentachlorophenol	ND	5.0	0.85	ug/L		10/02/20 11:12	10/12/20 13:11	1
Phenanthrene	ND	0.19	0.055	ug/L		10/02/20 11:12	10/12/20 13:11	1
Pyrene	ND	0.19	0.054	ug/L		10/02/20 11:12	10/12/20 13:11	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	63	23 - 105	10/02/20 11:12	10/12/20 13:11	1
2-Fluorophenol (Surr)	71	20 - 105	10/02/20 11:12	10/12/20 13:11	1
Nitrobenzene-d5 (Surr)	70	28 - 111	10/02/20 11:12	10/12/20 13:11	1
Phenol-d5 (Surr)	75	21 - 105	10/02/20 11:12	10/12/20 13:11	1
Terphenyl-d14 (Surr)	68	20 - 126	10/02/20 11:12	10/12/20 13:11	1
2,4,6-Tribromophenol (Surr)	56	29 - 113	10/02/20 11:12	10/12/20 13:11	1

Lab Sample ID: LCS 180-332126/2-A

Matrix: Water

Analysis Batch: 333064

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 332126

Analysis Batch. 333064	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	20.0	15.2		ug/L		76	50 - 100
Acenaphthylene	20.0	15.9		ug/L		80	51 - 100
Anthracene	20.0	16.1		ug/L		81	53 - 100
Benzo[a]anthracene	20.0	16.9		ug/L		85	51 - 100
Benzo[a]pyrene	20.0	16.2		ug/L		81	51 - 100
Benzo[b]fluoranthene	20.0	14.4		ug/L		72	45 - 100
Benzo[g,h,i]perylene	20.0	16.8		ug/L		84	51 - 100
Benzo[k]fluoranthene	20.0	15.0		ug/L		75	49 - 100
Chrysene	20.0	17.0		ug/L		85	51 - 100
Dibenz(a,h)anthracene	20.0	17.1		ug/L		86	50 - 100
Fluoranthene	20.0	17.8		ug/L		89	54 - 100
Fluorene	20.0	15.4		ug/L		77	53 - 100
Indeno[1,2,3-cd]pyrene	20.0	16.8		ug/L		84	50 - 100
Naphthalene	20.0	15.7		ug/L		78	55 - 100
Pentachlorophenol	40.0	27.6		ug/L		69	35 - 100
Phenanthrene	20.0	15.1		ug/L		75	51 - 100
Pyrene	20.0	14.9		ug/L		74	47 - 100

Eurofins TestAmerica, Pittsburgh

Page 33 of 52

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Method: EPA 8270D LL - Semivolatile Organic Compounds by GC/MS - Low Level (Continued)

Lab Sample ID: LCS 180-332126/2-A

Matrix: Water

Analysis Batch: 333064

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 332126

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	69		23 - 105
2-Fluorophenol (Surr)	82		20 - 105
Nitrobenzene-d5 (Surr)	80		28 - 111
Phenol-d5 (Surr)	86		21 - 105
Terphenyl-d14 (Surr)	76		20 - 126
2,4,6-Tribromophenol (Surr)	67		29 - 113

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 180-332321/1-A

Matrix: Water

Analysis Batch: 333663

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 332321

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	ND		1.9	0.65	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Acenaphthylene	ND		1.9	0.65	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Anthracene	ND		1.9	0.49	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Benzo[a]anthracene	ND		1.9	0.75	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Benzo[b]fluoranthene	ND		1.9	0.97	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Benzo[k]fluoranthene	ND		1.9	0.88	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Benzo[g,h,i]perylene	ND		1.9	0.69	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Benzo[a]pyrene	ND		1.9	0.53	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Chrysene	ND		1.9	0.81	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Dibenz(a,h)anthracene	ND		1.9	0.72	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Fluoranthene	ND		1.9	0.60	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Fluorene	ND		1.9	0.69	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Indeno[1,2,3-cd]pyrene	ND		1.9	0.85	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Naphthalene	ND		1.9	0.59	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Phenanthrene	ND		1.9	0.55	ug/L		10/05/20 13:10	10/16/20 09:34	1	
Pyrene	ND		1.9	0.54	ug/L		10/05/20 13:10	10/16/20 09:34	1	

MB MB	

Surrogate	%Recovery Q	ualifier Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	61	44 - 105	10/05/20 13:10	10/16/20 09:34	1
2-Fluorophenol (Surr)	53	38 - 105	10/05/20 13:10	10/16/20 09:34	1
2,4,6-Tribromophenol (Surr)	53	38 - 111	10/05/20 13:10	10/16/20 09:34	1
Nitrobenzene-d5 (Surr)	60	45 - 108	10/05/20 13:10	10/16/20 09:34	1
Phenol-d5 (Surr)	59	40 - 105	10/05/20 13:10	10/16/20 09:34	1
Terphenyl-d14 (Surr)	58	20 - 128	10/05/20 13:10	10/16/20 09:34	1

Lab Sample ID: LCS 180-332321/2-A

Matrix: Water

Analysis Batch: 333663

Client Sample	ID: Lab (Control S	Sample
---------------	-----------	-----------	--------

Prep Type: Total/NA Prep Batch: 332321

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	200	134		ug/L		67	51 - 100	
Acenaphthylene	200	139		ug/L		70	47 - 100	
Anthracene	200	138		ug/L		69	51 - 100	
Benzo[a]anthracene	200	142		ug/L		71	49 - 100	

Eurofins TestAmerica, Pittsburgh

Page 34 of 52

Client: Tetra Tech GEO

Job ID: 180-111697-1 Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-332321/2-A

Matrix: Water

Analysis Batch: 333663

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 332321

						%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
200	128		ug/L		64	47 - 100	
200	135		ug/L		67	47 - 100	
200	142		ug/L		71	50 - 100	
200	144		ug/L		72	49 - 100	
200	144		ug/L		72	49 - 100	
200	143		ug/L		72	50 - 100	
200	141		ug/L		71	52 - 100	
200	134		ug/L		67	52 - 100	
200	144		ug/L		72	51 - 100	
200	134		ug/L		67	53 - 100	
200	133		ug/L		67	49 - 100	
200	151		ug/L		76	45 - 100	
	200 200 200 200 200 200 200 200 200 200	200 128 200 135 200 142 200 144 200 144 200 143 200 141 200 134 200 144 200 134 200 134	200 128 200 135 200 142 200 144 200 144 200 143 200 141 200 134 200 144 200 134 200 134	200 128 ug/L 200 135 ug/L 200 142 ug/L 200 144 ug/L 200 144 ug/L 200 143 ug/L 200 141 ug/L 200 134 ug/L	200 128 ug/L 200 135 ug/L 200 142 ug/L 200 144 ug/L 200 144 ug/L 200 143 ug/L 200 141 ug/L 200 134 ug/L 200 144 ug/L 200 134 ug/L 200 134 ug/L 200 134 ug/L 200 134 ug/L	200 128 ug/L 64 200 135 ug/L 67 200 142 ug/L 71 200 144 ug/L 72 200 144 ug/L 72 200 143 ug/L 72 200 141 ug/L 71 200 134 ug/L 67 200 144 ug/L 67 200 134 ug/L 67 200 134 ug/L 67 200 133 ug/L 67	200 128 ug/L 64 47 - 100 200 135 ug/L 67 47 - 100 200 142 ug/L 71 50 - 100 200 144 ug/L 72 49 - 100 200 144 ug/L 72 50 - 100 200 143 ug/L 72 50 - 100 200 141 ug/L 71 52 - 100 200 134 ug/L 67 52 - 100 200 144 ug/L 72 51 - 100 200 134 ug/L 67 53 - 100 200 134 ug/L 67 53 - 100 200 133 ug/L 67 49 - 100

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	71		44 - 105
2-Fluorophenol (Surr)	76		38 - 105
2,4,6-Tribromophenol (Surr)	82		38 - 111
Nitrobenzene-d5 (Surr)	70		45 - 108
Phenol-d5 (Surr)	72		40 - 105
Terphenyl-d14 (Surr)	77		20 - 128

Lab Sample ID: MB 180-332759/1-A

Matrix: Solid

Analysis Batch: 333001

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 332759**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		34	9.6	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Acenaphthylene	ND		34	7.3	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Anthracene	ND		34	8.7	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Benzo[a]anthracene	ND		34	15	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Benzo[b]fluoranthene	ND		34	8.2	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Benzo[k]fluoranthene	ND		34	10	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Benzo[g,h,i]perylene	ND		34	7.2	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Benzo[a]pyrene	ND		34	14	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Chrysene	ND		34	19	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Dibenz(a,h)anthracene	ND		34	21	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Fluoranthene	ND		34	8.8	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Fluorene	ND		34	6.6	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Indeno[1,2,3-cd]pyrene	ND		34	17	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Naphthalene	ND		34	6.5	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Phenanthrene	ND		34	9.0	ug/Kg		10/08/20 14:08	10/11/20 15:41	1
Pyrene	ND		34	7.9	ug/Kg		10/08/20 14:08	10/11/20 15:41	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68	45 - 105	10/08/20 14:08	10/11/20 15:41	1
2-Fluorophenol (Surr)	76	42 - 105	10/08/20 14:08	10/11/20 15:41	1
2,4,6-Tribromophenol (Surr)	65	31 - 105	10/08/20 14:08	10/11/20 15:41	1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/08/20 14:08	10/11/20 15:41	1

Eurofins TestAmerica, Pittsburgh

Page 35 of 52

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-332759/1-A

Lab Sample ID: LCS 180-332759/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 333001

Analysis Batch: 333001

Analysis Batch: 333708

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 332759

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Phenol-d5 (Surr)	78		47 - 105	10/08/20 14:08	10/11/20 15:41	1
Terphenyl-d14 (Surr)	73		46 - 105	10/08/20 14:08	10/11/20 15:41	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 332759

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	3330	2290		ug/Kg		69	49 - 107	
Acenaphthylene	3330	2430		ug/Kg		73	46 - 110	
Anthracene	3330	2510		ug/Kg		75	47 - 116	
Benzo[a]anthracene	3330	2670		ug/Kg		80	48 - 101	
Benzo[b]fluoranthene	3330	2200		ug/Kg		66	46 - 100	
Benzo[k]fluoranthene	3330	2340		ug/Kg		70	43 - 114	
Benzo[g,h,i]perylene	3330	2620		ug/Kg		79	49 - 111	
Benzo[a]pyrene	3330	2470		ug/Kg		74	46 - 114	
Chrysene	3330	2670		ug/Kg		80	49 - 100	
Dibenz(a,h)anthracene	3330	2590		ug/Kg		78	49 - 112	
Fluoranthene	3330	2790		ug/Kg		84	54 - 105	
Fluorene	3330	2380		ug/Kg		71	50 - 106	
Indeno[1,2,3-cd]pyrene	3330	2600		ug/Kg		78	49 - 112	
Naphthalene	3330	2420		ug/Kg		72	53 - 100	
Phenanthrene	3330	2360		ug/Kg		71	46 - 111	
Pyrene	3330	2330		ug/Kg		70	49 - 100	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits	
2-Fluorobiphenyl	66		45 - 105	
2-Fluorophenol (Surr)	79		42 - 105	
2,4,6-Tribromophenol (Surr)	64		31 - 105	
Nitrobenzene-d5 (Surr)	76		53 - 105	
Phenol-d5 (Surr)	84		47 - 105	
Terphenyl-d14 (Surr)	73		46 - 105	

Lab Sample ID: MB 180-333372/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 333372

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		67	19	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Acenaphthylene	ND		67	15	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Anthracene	ND		67	17	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]anthracene	ND		67	30	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[b]fluoranthene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[k]fluoranthene	ND		67	20	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[g,h,i]perylene	ND		67	14	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]pyrene	ND		67	29	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Chrysene	ND		67	37	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Dibenz(a,h)anthracene	ND		67	43	ug/Kg		10/14/20 08:24	10/16/20 12:16	1

Eurofins TestAmerica, Pittsburgh

Page 36 of 52

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 180-333372/1-A

Matrix: Solid

Analysis Batch: 333708

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 333372

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Fluorene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Indeno[1,2,3-cd]pyrene	ND		67	33	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Naphthalene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Phenanthrene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Pyrene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64	45 - 105	10/14/20 08:24	10/16/20 12:16	1
2-Fluorophenol (Surr)	64	42 - 105	10/14/20 08:24	10/16/20 12:16	1
2,4,6-Tribromophenol (Surr)	39	31 - 105	10/14/20 08:24	10/16/20 12:16	1
Nitrobenzene-d5 (Surr)	70	53 - 105	10/14/20 08:24	10/16/20 12:16	1
Phenol-d5 (Surr)	61	47 - 105	10/14/20 08:24	10/16/20 12:16	1
Terphenyl-d14 (Surr)	70	46 - 105	10/14/20 08:24	10/16/20 12:16	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 333372

Matrix: Solid

Analysis Batch: 333708

Lab Sample ID: LCS 180-333372/2-A

Allalysis Batch. 000700	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	6670	5160		ug/Kg		77	49 - 107
Acenaphthylene	6670	5240		ug/Kg		79	46 - 110
Anthracene	6670	5380		ug/Kg		81	47 - 116
Benzo[a]anthracene	6670	4840		ug/Kg		73	48 - 101
Benzo[b]fluoranthene	6670	4630		ug/Kg		69	46 - 100
Benzo[k]fluoranthene	6670	4660		ug/Kg		70	43 - 114
Benzo[g,h,i]perylene	6670	4500		ug/Kg		68	49 - 111
Benzo[a]pyrene	6670	4770		ug/Kg		72	46 - 114
Chrysene	6670	4350		ug/Kg		65	49 - 100
Dibenz(a,h)anthracene	6670	4320		ug/Kg		65	49 - 112
Fluoranthene	6670	5050		ug/Kg		76	54 - 105
Fluorene	6670	5240		ug/Kg		79	50 - 106
Indeno[1,2,3-cd]pyrene	6670	5010		ug/Kg		75	49 - 112
Naphthalene	6670	4820		ug/Kg		72	53 - 100
Phenanthrene	6670	5130		ug/Kg		77	46 - 111
Pyrene	6670	4880		ug/Kg		73	49 - 100

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	80		45 - 105
2-Fluorophenol (Surr)	90		42 - 105
2,4,6-Tribromophenol (Surr)	80		31 - 105
Nitrobenzene-d5 (Surr)	88		53 - 105
Phenol-d5 (Surr)	78		47 - 105
Terphenyl-d14 (Surr)	85		46 - 105

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

MR MR

Lab Sample ID: MB 320-419261/1-A

Matrix: Solid

Analysis Batch: 423107

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 419261

IVIE			MB							
	Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
	2,3,7,8-TCDD	ND		1.0	0.30	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total TCDD	ND		1.0	0.30	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,7,8-PeCDD	ND		5.0	0.15	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total PeCDD	ND		5.0	0.15	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,4,7,8-HxCDD	0.231	J	5.0	0.060	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,6,7,8-HxCDD	ND		5.0	0.057	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,7,8,9-HxCDD	ND		5.0	0.054	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total HxCDD	0.231	J	5.0	0.057	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,4,6,7,8-HpCDD	0.209	J	5.0	0.058	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total HpCDD	0.209	J	5.0	0.058	pg/g		10/06/20 13:56	10/18/20 06:36	1
	OCDD	0.664	J	10	0.063	pg/g		10/06/20 13:56	10/18/20 06:36	1
	2,3,7,8-TCDF	ND		1.0	0.14	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total TCDF	ND		1.0	0.14	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,7,8-PeCDF	ND		5.0	0.068	pg/g		10/06/20 13:56	10/18/20 06:36	1
	2,3,4,7,8-PeCDF	ND		5.0	0.069	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total PeCDF	ND		5.0	0.069	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,4,7,8-HxCDF	ND		5.0	0.068	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,6,7,8-HxCDF	ND		5.0	0.061	pg/g		10/06/20 13:56	10/18/20 06:36	1
	2,3,4,6,7,8-HxCDF	ND		5.0	0.063	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,7,8,9-HxCDF	ND		5.0	0.065	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total HxCDF	ND		5.0	0.068	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,4,6,7,8-HpCDF	ND		5.0	0.040	pg/g		10/06/20 13:56	10/18/20 06:36	1
	1,2,3,4,7,8,9-HpCDF	ND		5.0	0.044	pg/g		10/06/20 13:56	10/18/20 06:36	1
	Total HpCDF	ND		5.0	0.044	pg/g		10/06/20 13:56	10/18/20 06:36	1
	OCDF	0.522	Jq	10	0.098	pg/g		10/06/20 13:56	10/18/20 06:36	1
ш										

MB MB Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-2,3,7,8-TCDD 60 40 - 135 <u>10/06/20 13:56</u> <u>10/18/20 06:36</u> 13C-1,2,3,7,8-PeCDD 64 40 - 135 10/06/20 13:56 10/18/20 06:36 13C-1,2,3,6,7,8-HxCDD 67 40 - 135 10/06/20 13:56 10/18/20 06:36 69 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 10/06/20 13:56 10/18/20 06:36 13C-OCDD 72 40 - 135 10/06/20 13:56 10/18/20 06:36 10/06/20 13:56 10/18/20 06:36 40 - 135 13C-2,3,7,8-TCDF 58 13C-1,2,3,7,8-PeCDF 62 40 - 135 10/06/20 13:56 10/18/20 06:36 13C-1,2,3,4,7,8-HxCDF 62 40 - 135 10/06/20 13:56 10/18/20 06:36 13C-1,2,3,4,6,7,8-HpCDF 66 40 - 135 10/06/20 13:56 10/18/20 06:36

Lab Sample ID: LCS 320-419261/2-A

Matrix: Solid

Analysis Batch: 423107

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 419261

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	19.2		pg/g		96	77 - 130	
1,2,3,7,8-PeCDD	100	93.8		pg/g		94	79 - 134	
1,2,3,4,7,8-HxCDD	100	95.7		pg/g		96	65 - 144	
1,2,3,6,7,8-HxCDD	100	95.8		pg/g		96	73 - 147	
1,2,3,7,8,9-HxCDD	100	95.6		pg/g		96	80 - 143	
1,2,3,4,6,7,8-HpCDD	100	93.5		pg/g		94	86 - 134	
OCDD	200	189		pg/g		95	80 - 137	

Eurofins TestAmerica, Pittsburgh

Page 38 of 52

2

3

4

7

10

12

13

М

Client: Tetra Tech GEO Job ID: 180-111697-1

Snike

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-419261/2-A

Matrix: Solid

Analysis Batch: 423107

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 419261
%Rec.

	Opine	LOU	LUU				/ortec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDF	20.0	20.4		pg/g		102	79 - 137	
1,2,3,7,8-PeCDF	100	98.2		pg/g		98	81 - 134	
2,3,4,7,8-PeCDF	100	97.0		pg/g		97	76 - 132	
1,2,3,4,7,8-HxCDF	100	102		pg/g		102	72 - 140	
1,2,3,6,7,8-HxCDF	100	106		pg/g		106	63 - 152	
2,3,4,6,7,8-HxCDF	100	109		pg/g		109	72 - 151	
1,2,3,7,8,9-HxCDF	100	105		pg/g		105	72 - 152	
1,2,3,4,6,7,8-HpCDF	100	95.3		pg/g		95	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	97.4		pg/g		97	79 - 139	
OCDF	200	194		pg/g		97	75 - 141	

LCS LCS

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	49		40 - 135
13C-1,2,3,7,8-PeCDD	51		40 - 135
13C-1,2,3,6,7,8-HxCDD	55		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	61		40 - 135
13C-OCDD	63		40 - 135
13C-2,3,7,8-TCDF	48		40 - 135
13C-1,2,3,7,8-PeCDF	48		40 - 135
13C-1,2,3,4,7,8-HxCDF	49		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	57		40 - 135

Lab Sample ID: LCSD 320-419261/3-A

Matrix: Solid

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 419261**

Analysis Batch: 423107 Spike LCSD LCSD %Rec. **RPD Analyte** Added Result Qualifier Unit D %Rec Limits RPD Limit 2,3,7,8-TCDD 20.0 18.1 91 77 - 130 6 20 pg/g 1,2,3,7,8-PeCDD 100 92.3 92 79 - 134 2 20 pg/g 1,2,3,4,7,8-HxCDD 100 92.6 93 65 - 144 3 20 pg/g 1,2,3,6,7,8-HxCDD 100 93.1 93 73 - 147 3 20 pg/g 100 90 20 1,2,3,7,8,9-HxCDD 89.8 pg/g 80 - 143 100 1,2,3,4,6,7,8-HpCDD 93.0 pg/g 93 86 - 134 20 OCDD 200 188 pg/g 94 80 - 137 20 2,3,7,8-TCDF 20.0 19.3 96 79 - 137 20 pg/g 20 1,2,3,7,8-PeCDF 100 93.6 94 81 - 134 pg/g 2,3,4,7,8-PeCDF 100 93.4 76 - 132 20 pg/g 100 98.9 99 72 - 140 20 1,2,3,4,7,8-HxCDF pg/g 1,2,3,6,7,8-HxCDF 100 104 104 63 - 152 20 pg/g 2,3,4,6,7,8-HxCDF 100 104 20 104 pg/g 72 - 151 5 1,2,3,7,8,9-HxCDF 100 97.3 pg/g 97 72 - 152 20 1,2,3,4,6,7,8-HpCDF 100 93.2 93 81 - 137 2 20 pg/g 1,2,3,4,7,8,9-HpCDF 100 92.5 93 79 - 139 5 20 pg/g **OCDF** 200 192 75 - 141 20 pg/g

	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	62		40 - 135
13C-1,2,3,7,8-PeCDD	63		40 - 135
13C-1.2.3.6.7.8-HxCDD	69		40 - 135

Eurofins TestAmerica, Pittsburgh

Page 39 of 52

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-419261/3-A

Matrix: Solid

Analysis Batch: 423107

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 419261

•	LCSD	LCSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-1,2,3,4,6,7,8-HpCDD	70		40 - 135
13C-OCDD	71		40 - 135
13C-2,3,7,8-TCDF	58		40 - 135
13C-1,2,3,7,8-PeCDF	61		40 - 135
13C-1,2,3,4,7,8-HxCDF	61		40 - 135
13C-1 2 3 4 6 7 8-HpCDF	68		40 - 135

Lab Sample ID: MB 320-419525/1-A

Matrix: Water

Analysis Batch: 420486

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 419525

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10	0.61	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total TCDD	ND		10	0.61	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8-PeCDD	ND		50	0.62	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total PeCDD	ND		50	0.62	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,7,8-HxCDD	ND		50	0.99	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,6,7,8-HxCDD	ND		50	0.98	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8,9-HxCDD	ND		50	0.90	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HxCDD	ND		50	0.99	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,6,7,8-HpCDD	0.630	Jq	50	0.35	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HpCDD	0.630	Jq	50	0.35	pg/L		10/07/20 11:35	10/10/20 09:04	1
OCDD	2.16	J	100	0.41	pg/L		10/07/20 11:35	10/10/20 09:04	1
2,3,7,8-TCDF	1.00	Jq	10	0.54	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total TCDF	1.00	Jq	10	0.54	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8-PeCDF	ND		50	0.48	pg/L		10/07/20 11:35	10/10/20 09:04	1
2,3,4,7,8-PeCDF	ND		50	0.50	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total PeCDF	ND		50	0.50	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,7,8-HxCDF	ND		50	0.49	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,6,7,8-HxCDF	ND		50	0.47	pg/L		10/07/20 11:35	10/10/20 09:04	1
2,3,4,6,7,8-HxCDF	ND		50	0.50			10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8,9-HxCDF	ND		50	0.49	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HxCDF	ND		50	0.50	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,6,7,8-HpCDF	0.569	J	50	0.31	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,7,8,9-HpCDF	ND		50	0.35	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HpCDF	0.569	J	50	0.33	pg/L		10/07/20 11:35	10/10/20 09:04	1
OCDF	ND		100	0.41	pg/L		10/07/20 11:35	10/10/20 09:04	1
	MR	MR							

	MB I	MB				
Isotope Dilution	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	98		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,7,8-PeCDD	95		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,6,7,8-HxCDD	91		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,4,6,7,8-HpCDD	85		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-OCDD	98		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-2,3,7,8-TCDF	100		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,7,8-PeCDF	90		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,4,7,8-HxCDF	100		40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,4,6,7,8-HpCDF	80		40 - 135	10/07/20 11:35	10/10/20 09:04	1

Eurofins TestAmerica, Pittsburgh

Page 40 of 52

10

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-419525/2-A

Matrix: Water

Analysis Batch: 420486

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 419525

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	200	212		pg/L		106	64 - 142	
1,2,3,7,8-PeCDD	1000	940		pg/L		94	71 - 140	
1,2,3,4,7,8-HxCDD	1000	886		pg/L		89	56 - 146	
1,2,3,6,7,8-HxCDD	1000	897		pg/L		90	73 - 144	
1,2,3,7,8,9-HxCDD	1000	868		pg/L		87	71 - 151	
1,2,3,4,6,7,8-HpCDD	1000	890		pg/L		89	78 - 139	
OCDD	2000	1730		pg/L		87	80 - 132	
2,3,7,8-TCDF	200	212		pg/L		106	71 - 142	
1,2,3,7,8-PeCDF	1000	973		pg/L		97	76 - 135	
2,3,4,7,8-PeCDF	1000	988		pg/L		99	74 - 137	
1,2,3,4,7,8-HxCDF	1000	972		pg/L		97	75 - 131	
1,2,3,6,7,8-HxCDF	1000	1030		pg/L		103	76 - 133	
2,3,4,6,7,8-HxCDF	1000	917		pg/L		92	80 - 137	
1,2,3,7,8,9-HxCDF	1000	946		pg/L		95	77 - 142	
1,2,3,4,6,7,8-HpCDF	1000	936		pg/L		94	79 - 133	
1,2,3,4,7,8,9-HpCDF	1000	913		pg/L		91	83 - 130	
OCDF	2000	2040		pg/L		102	72 - 140	

LCS LCS

%Recovery	Qualifier	Limits
87		40 - 135
84		40 - 135
102		40 - 135
79		40 - 135
92		40 - 135
99		40 - 135
77		40 - 135
89		40 - 135
94		40 - 135
	87 84 102 79 92 99 77 89	84 102 79 92 99 77 89

Lab Sample ID: LCSD 320-419525/3-A

Matrix: Water

Analysis Batch: 421505

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 419525

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	200	205		pg/L		102	64 - 142	4	20
1,2,3,7,8-PeCDD	1000	988		pg/L		99	71 - 140	5	20
1,2,3,4,7,8-HxCDD	1000	982		pg/L		98	56 - 146	10	20
1,2,3,6,7,8-HxCDD	1000	1000		pg/L		100	73 - 144	11	20
1,2,3,7,8,9-HxCDD	1000	1010		pg/L		101	71 - 151	15	20
1,2,3,4,6,7,8-HpCDD	1000	946		pg/L		95	78 - 139	6	20
OCDD	2000	1880		pg/L		94	80 - 132	8	20
2,3,7,8-TCDF	200	212		pg/L		106	71 - 142	0	20
1,2,3,7,8-PeCDF	1000	1010		pg/L		101	76 - 135	4	20
2,3,4,7,8-PeCDF	1000	961		pg/L		96	74 - 137	3	20
1,2,3,4,7,8-HxCDF	1000	1040		pg/L		104	75 - 131	6	20
1,2,3,6,7,8-HxCDF	1000	1100		pg/L		110	76 - 133	7	20
2,3,4,6,7,8-HxCDF	1000	1140	*1	pg/L		114	80 - 137	22	20
1,2,3,7,8,9-HxCDF	1000	1090		pg/L		109	77 - 142	14	20
1,2,3,4,6,7,8-HpCDF	1000	970		pg/L		97	79 - 133	4	20

Eurofins TestAmerica, Pittsburgh

Page 41 of 52

2

3

4

6

8

10

11

13

1.4

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-419525/3-A	1
Matrix: Water	

Analysis Batch: 421505

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 419525

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3,4,7,8,9-HpCDF	1000	988		pg/L		99	83 - 130	8	20
OCDF	2000	2050		pg/L		103	72 - 140	1	20

LCSD LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	88		40 - 135
13C-1,2,3,7,8-PeCDD	80		40 - 135
13C-1,2,3,6,7,8-HxCDD	92		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	92		40 - 135
13C-OCDD	103		40 - 135
13C-2,3,7,8-TCDF	96		40 - 135
13C-1,2,3,7,8-PeCDF	85		40 - 135
13C-1,2,3,4,7,8-HxCDF	94		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	96		40 - 135

Method: SM 2540G - Total, Fixed, and Volatile Solids

Lab Sample ID: 180-111697-1 DU

Matrix: Solid

Analysis Batch: 333942

Client Sample ID: KD302SS
Prep Type: Total/NA

Client Sample ID: KD280SS

Client Sample ID: KD106SS

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: 180-111697-2 DU

Matrix: Solid

Analysis Batch: 333942

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Solids	80		80.1		%			0.3	10

Lab Sample ID: 180-111697-9 DU

Matrix: Solid

Analysis Batch: 333944

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Solids	78		 78.4		%			0.3	10

Eurofins TestAmerica, Pittsburgh

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Prep Batch: 3	32	126
----------------------	----	-----

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-3	KD280SS-EB	Total/NA	Water	3520C	
MB 180-332126/1-A	Method Blank	Total/NA	Water	3520C	
LCS 180-332126/2-A	Lab Control Sample	Total/NA	Water	3520C	

Prep Batch: 332321

Lab Sample ID 180-111697-8	Client Sample ID KD106SS-EB	Prep Type Total/NA	Matrix Water	Method 3520C	Prep Batch
MB 180-332321/1-A	Method Blank	Total/NA	Water	3520C	
LCS 180-332321/2-A	Lab Control Sample	Total/NA	Water	3520C	

Prep Batch: 332759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-1	KD302SS	Total/NA	Solid	3541	
180-111697-2	KD280SS	Total/NA	Solid	3541	
180-111697-4	KD248SS	Total/NA	Solid	3541	
180-111697-5	KD216SS	Total/NA	Solid	3541	
180-111697-6	KD132SS	Total/NA	Solid	3541	
180-111697-7	KDEPA9SS	Total/NA	Solid	3541	
180-111697-9	KD106SS	Total/NA	Solid	3541	
MB 180-332759/1-A	Method Blank	Total/NA	Solid	3541	
LCS 180-332759/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 333001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 180-332759/1-A	Method Blank	Total/NA	Solid	EPA 8270E	332759
LCS 180-332759/2-A	Lab Control Sample	Total/NA	Solid	EPA 8270E	332759

Analysis Batch: 333005

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-1	KD302SS	Total/NA	Solid	EPA 8270E	332759
180-111697-2	KD280SS	Total/NA	Solid	EPA 8270E	332759
180-111697-4	KD248SS	Total/NA	Solid	EPA 8270E	332759
180-111697-5	KD216SS	Total/NA	Solid	EPA 8270E	332759
180-111697-6	KD132SS	Total/NA	Solid	EPA 8270E	332759
180-111697-7	KDEPA9SS	Total/NA	Solid	EPA 8270E	332759
180-111697-9	KD106SS	Total/NA	Solid	EPA 8270E	332759

Analysis Batch: 333064

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-3	KD280SS-EB	Total/NA	Water	EPA 8270D LL	332126
MB 180-332126/1-A	Method Blank	Total/NA	Water	EPA 8270D LL	332126
LCS 180-332126/2-A	Lab Control Sample	Total/NA	Water	EPA 8270D LL	332126

Prep Batch: 333372

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-10	KD080SS	Total/NA	Solid	3541	<u> </u>
180-111697-11	KD010SS	Total/NA	Solid	3541	
180-111697-12	KD860SS	Total/NA	Solid	3541	
MB 180-333372/1-A	Method Blank	Total/NA	Solid	3541	
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	3541	

Eurofins TestAmerica, Pittsburgh

Page 43 of 52

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Analysis Batch: 333663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-8	KD106SS-EB	Total/NA	Water	EPA 8270E	332321
MB 180-332321/1-A	Method Blank	Total/NA	Water	EPA 8270E	332321
LCS 180-332321/2-A	Lab Control Sample	Total/NA	Water	EPA 8270E	332321

Analysis Batch: 333708

Lab Sample ID 180-111697-10	Client Sample ID KD080SS	Prep Type Total/NA	Matrix Solid	Method EPA 8270E	Prep Batch 333372
180-111697-11	KD010SS	Total/NA	Solid	EPA 8270E	333372
180-111697-12	KD860SS	Total/NA	Solid	EPA 8270E	333372
MB 180-333372/1-A	Method Blank	Total/NA	Solid	EPA 8270E	333372
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	EPA 8270E	333372

Specialty Organics

Prep Batch: 419261

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-1	KD302SS	Total/NA	Solid	8290	
180-111697-2	KD280SS	Total/NA	Solid	8290	
180-111697-4	KD248SS	Total/NA	Solid	8290	
180-111697-5	KD216SS	Total/NA	Solid	8290	
180-111697-6	KD132SS	Total/NA	Solid	8290	
180-111697-7 - RA	KDEPA9SS	Total/NA	Solid	8290	
180-111697-7	KDEPA9SS	Total/NA	Solid	8290	
180-111697-9 - RA	KD106SS	Total/NA	Solid	8290	
180-111697-9	KD106SS	Total/NA	Solid	8290	
180-111697-10	KD080SS	Total/NA	Solid	8290	
180-111697-11 - RA	KD010SS	Total/NA	Solid	8290	
180-111697-11	KD010SS	Total/NA	Solid	8290	
180-111697-12 - RA	KD860SS	Total/NA	Solid	8290	
180-111697-12	KD860SS	Total/NA	Solid	8290	
MB 320-419261/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-419261/2-A	Lab Control Sample	Total/NA	Solid	8290	
LCSD 320-419261/3-A	Lab Control Sample Dup	Total/NA	Solid	8290	

Prep Batch: 419525

Lab Sample ID 180-111697-3	Client Sample ID KD280SS-EB	Prep Type Total/NA	Matrix Water	Method 8290	Prep Batch
180-111697-8	KD106SS-EB	Total/NA	Water	8290	
MB 320-419525/1-A	Method Blank	Total/NA	Water	8290	
LCS 320-419525/2-A	Lab Control Sample	Total/NA	Water	8290	
LCSD 320-419525/3-A	Lab Control Sample Dup	Total/NA	Water	8290	

Analysis Batch: 420486

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-3	KD280SS-EB	Total/NA	Water	8290A	419525
180-111697-8	KD106SS-EB	Total/NA	Water	8290A	419525
MB 320-419525/1-A	Method Blank	Total/NA	Water	8290A	419525
LCS 320-419525/2-A	Lab Control Sample	Total/NA	Water	8290A	419525

Eurofins TestAmerica, Pittsburgh

Page 44 of 52

2

3

4

6

9

12

13

14

Client: Tetra Tech GEO Job ID: 180-111697-1

Project/Site: Grenada, Mississippi

Specialty Organics

Analysis Batch: 421505

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 320-419525/3-A	Lab Control Sample Dup	Total/NA	Water	8290A	419525

Analysis Batch: 422781

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-1	KD302SS	Total/NA	Solid	8290A	419261
180-111697-2	KD280SS	Total/NA	Solid	8290A	419261
180-111697-4	KD248SS	Total/NA	Solid	8290A	419261

Analysis Batch: 423107

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-5	KD216SS	Total/NA	Solid	8290A	419261
180-111697-6	KD132SS	Total/NA	Solid	8290A	419261
180-111697-7	KDEPA9SS	Total/NA	Solid	8290A	419261
180-111697-9	KD106SS	Total/NA	Solid	8290A	419261
180-111697-10	KD080SS	Total/NA	Solid	8290A	419261
180-111697-11	KD010SS	Total/NA	Solid	8290A	419261
MB 320-419261/1-A	Method Blank	Total/NA	Solid	8290A	419261
LCS 320-419261/2-A	Lab Control Sample	Total/NA	Solid	8290A	419261
LCSD 320-419261/3-A	Lab Control Sample Dup	Total/NA	Solid	8290A	419261

Analysis Batch: 423405

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-12	KD860SS	Total/NA	Solid	8290A	419261

Analysis Batch: 424573

Lab Sample ID 180-111697-7 - RA	Client Sample ID KDEPA9SS	Prep Type Total/NA	Matrix Solid	Method 8290A	Prep Batch 419261
180-111697-9 - RA	KD106SS	Total/NA	Solid	8290A	419261
180-111697-11 - RA	KD010SS	Total/NA	Solid	8290A	419261
180-111697-12 - RA	KD860SS	Total/NA	Solid	8290A	419261

General Chemistry

Analysis Batch: 333942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111697-1	KD302SS	Total/NA	Solid	SM 2540G	
180-111697-2	KD280SS	Total/NA	Solid	SM 2540G	
180-111697-4	KD248SS	Total/NA	Solid	SM 2540G	
180-111697-5	KD216SS	Total/NA	Solid	SM 2540G	
180-111697-6	KD132SS	Total/NA	Solid	SM 2540G	
180-111697-7	KDEPA9SS	Total/NA	Solid	SM 2540G	
180-111697-1 DU	KD302SS	Total/NA	Solid	SM 2540G	
180-111697-2 DU	KD280SS	Total/NA	Solid	SM 2540G	

Analysis Batch: 333944

Lab Sample ID 180-111697-9	Client Sample ID KD106SS	Prep Type Total/NA	Matrix Solid	Method Prep Batch SM 2540G
180-111697-10	KD080SS	Total/NA	Solid	SM 2540G
180-111697-11	KD010SS	Total/NA	Solid	SM 2540G
180-111697-12	KD860SS	Total/NA	Solid	SM 2540G
180-111697-9 DU	KD106SS	Total/NA	Solid	SM 2540G

Eurofins TestAmerica, Pittsburgh

Page 45 of 52 10/27/2020

2

4

_

7

9

4 4

12

13

14

Environment Testing America

Form No. CA-C-WI-002, Rev. 4.34, dated 8/3/2020

>> Select a Laboratory or Service Center <<			Cha	in of	Chain of Custody Record	Secord			eurofins
A/N#									
A/N#	gi.								America
#WIA ##	Regulatory Program:		Dw	NPDES	RCRA Other:		TestAn	nerica Labora	TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmeri
	Project Manager:	Senaifer	Abraham	S'WY'S					COC No:
Client Contact	Email: Senn: Fer		MS/O	_	3	Kohl Date:	:		of 1 cocs
Your Company Name here Tetra tech	Tel/Fax: 416-853-		ree tetratecta. com		. 1	Verbattory Carrier:	rier:		TALS Project #:
1 Einfemble 1 Oc.	Analysis	Turnaround Time	Time		30				Sampler:
City/State/Zip Ranche Cordorn, CA, 95670	X CALENDAR DAYS	WOR	WORKING DAYS	T	et et				For Lab Use Only:
(xxx) xxx-xxxx Phone 416-853-4526	_	from Below	1	_	1) .do				Walk-in Client:
FAX	×	2 weeks		(N	الحرا				Lab Sampling:
Project Name: Additional Off- 514e Sampling		1 week		_	8				
		2 days			王)				Job / SDG No.:
H9 (1 0 2) - + 1		Sample							
Sample Identification	Sample Sample Date Time		Matrix c	Cont.	2 (£1) 51†bJ				Sample Specific Notes:
K030255	11:2/20 1350	7	1:05	2 2	×				
K028055	9/28/20 1617	2	1:05	2 2	XX				
KP18055-EB	Shell oysyb	0	water	2	XXX				
K024855		J	. 1:05	2	× ×				
K021655	1/29/20 1101	7	1105	2	× × ×				
KD13255	9/19/20 1253)	1:05	2	×××				
KOEPAGSS	4/14/10 1509	7	1:05	7	× × ×				
KD10655-EB	9/29/20 1755	9	Watel	7	XX				
KD10655	9/19/20 1705	7	1:05	2	× < <				
K0.8055	4/5./20 0930	7	1:05	2	× × ×		180-11	180-111697 Chain of Custody	of Custody
KD01055	9/30/20 1140	3	, 1:05	2	× ×		_	_	
Kp86055	9/30/10 1200	J	1:05	2	× × ×				
Preservation Used: (f= Ice), 2= HCI; 3= H2SO4; 4=HNO3;									
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	sse List any EPA Wast	e Codes for	the sample		sample Disposal (A	√ fee may be ass	essed if samples	are retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B	Unknown	wn		Return to Client	N Disposal by Lab		Archive for	Months
Special Instructions/QC Requirements & Comments: Standard EDD						•			
Custody Seals Intact:	Custody Seal No.:				Cooler Te	Cooler Temp. (°C): Obs'd:	Corr'd:		Therm ID No.:
Relinquished by: Af forz - Astern Morney			Date/Time	1/2	Received by:		Company:		Date/Time:
	Company:		Date/Time:		Received by Mul	Walso	Company	THA	1
Relinquished by:	Company:		Date/Time:		Received in Laboratory by:	ny by:	Company:	2	Date/Time:

12 13

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Phone: 412-963-7058 Fax:

Pittsburgh, PA 15238

Environment Testion	
🔆 eurofins	
Chain of Custody Record	
rica, Pittsburgh k	c: 412-963-2468

Client Information (Sub Contract Lab)	Sampler			Lab PM: Bortot,	Lab PM: Bortot, Veronica	10		Carrier Tracking No(s):	COC No: 180-413902.1	02.1
Client Contact: Shipping/Receiving	Phone:			E-Mail: Veror	ica.Bort	E-Mail: Veronica.Bortot@Eurofinset.com	mo	State of Origin: Mississippi	Page: Page 1 of 2	2
Company: TestAmerica Laboratories, Inc.					Accreditation	Accreditations Required (See note)	note):		Job # 180-111697-1	97-1
Address: 880 Riverside Parkway.	Due Date Requested: 10/19/2020	:pe				٨	Analysis Requested	ednested	Preservation Codes	on Codes:
City: West Sacramento	TAT Requested (days):	ays):							B - NaOH C - Zn Acetate	N - None N - AsNaO2
State, Zip. CA, 95605									D - Nitric Acid E - NaHSO4	
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	# Od								F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S203 S - H2SO4 S - Acid T - TSP Dodecahydrate
Email.	WO#.				(0)				_	
Project Name. Grenada, Mississippi	Project #: 18010096				es or N				rtainers L-EDA	W - pH 4-5 Z - ather (specify)
Site:	SSOW#:				A) as				other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (wewster, S=solid, O=wasteroll, BT=Tissue, A=Arr)	Field Filtered S Perform MS/MS 8290A/8290 P.S.	S_d_0628/A0628			Total Number o	Special Instructions/Note:
	X	X	Preserva	Preservation Code:	X				/\ ×	
KD302SS (180-111697-1)	9/28/20	13:50 Central		Solid		×			+	
KD280SS (180-111697-2)	9/28/20	16:17 Central		Solid		×			1	
KD280SS-EB (180-111697-3)	9/28/20	17:45 Central		Water	2.0	×			2	
KD248SS (180-111697-4)	9/29/20	09:15 Central		Solid		×			-	
KD216SS (180-111697-5)	9/29/20	11:01 Central		Solid	×				1	

Note: Since aboratory accretitations are subject to change, Eurofins TestAmenica places the ownership of method, analyte & accretitation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody, if the laboratory does not currently maintain accretitations in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification

×

Solid

2

× ×

Solid

Solid Water

> Central 17:55 Central 17:05 Central

> > KD106SS-EB (180-111697-8)

KD106SS (180-111697-9)

KDEPA9SS (180-111697-7)

KD132SS (180-111697-6)

Central 15:09

9/29/20 9/29/20 9/29/20 9/29/20

Unconfirmed			Return To Client Dis	Disposal By Lab		Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		nbe			
Empty Kit Refinquished by:	Date:	10	Time:	Method of Shipment.		
Relinquibled by:	Date Time: 15/20 170	72 Seminary	Received by:	Date/Time;	1001	Company
Relinguished by:	DateTime	Company	Received by:	Date/Time:	3	Company
Relinquished by:	Date/Time	Company	Received by:	Date/Time:	S	Company
Custody Seals Intact: Custody Seal No.: Req.			Cooler Temperature(s) °C and Other Remarks:	into 69 ca 0.9		

Client Information (Sub Contract Lab)	Sampler			Lab PM Bortot	Lab PM: Bortot, Veronica	25	Camer Tracking No(s)		COC No: 180-413902.2
Client Contact: Shipping/Receiving	Phone			E-Mail: Veror	nica.Borto	E-Mail: Veronica.Bortot@Eurofinset.com	State of Origin Mississippi	Page: Page 2 of 2	2 of 2
Company: TestAmerica Laboratories. Inc.					Accreditation	Accreditations Required (See note):		Job #:	Job #. 180-111697-1
Address: 880 Riverside Parkway,	Due Date Requested: 10/19/2020	:pe				Anal	Analysis Requested	Preser	S
City. West Sacramento State: 2p: CA occur.	TAT Requested (days):	ays):						A - HCL B - LNG C - Zn - Nigr	A - HCI. M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2 E - NaHGO O - Nitrit Acid P - Na2O4S
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	# Od							F-Med G-Ame	7
Email:	WO#:				(0)				0
Project Name: Grenada, Mississippi	Project #: 18010096				10 se				
Site:	#WOSS				e) as			of con	
Sample Identification - Client ID (Lab.ID)	Sample Date	Sample	Sample Type (C=comp,	Matrix (Wewster, Segolid, Owysteloll,	MISM moha9 ertorm MS/W	S_d_0628/A0628		otal Number	Special Instructions Motor
	X	X		ion Code:	X				
KD080SS (180-111697-10)	9/30/20	09:30 Central		Solid	×			-	
KD010SS (180-111697-11)	9/30/20	11:40 Central		Solid	×	2		-	
KD860SS (180-111697-12)	9/30/20	12:00 Central		Solid	×	~		F	
Note: Since laboratory accreditators are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sampler this relationship is the chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica aborations will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	stAmerica places the ownersh is/matrix being analyzed, the surrent to date, return the signe	ip of method, an amples must be d Chain of Custo	alyte & accred shipped back ody attesting to	tation compliar to the Eurofins said complicar	nce upon out TestAmerica ice to Eurofi	t subcontract laboratorie a laboratory or other inst ins TestAmerica.	s. This sample shipment is for ructions will be provided. Any	warded under chain-of-custody, changes to accreditation status	. If the laboratory does not current should be brought to Eurofins
Possible Hazard Identification					Samp	vle Disposal (A fee	may be assessed if so	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ger than 1 month)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank: 2			Specia	Special Instructions/QC Requirements	Disposal By Lab	b Archive For	Months
Emply Kit Relinquished by:	Ţ	Date:	-	V	Time:		Method of	Method of Shipment.	
Relifiquished by	Series Market	(10)	3	Company	8	Received by		10/6/70 100	_
Relinquished by:	Date/Time:			Company	2 8	Received by:		Date/Time:	Company
Custody Seals Intact: Custody Seal No.:	- J.				S	Cooler Temperature(s) "C and Other Remarks:	and Other Remarks: 6.5	2 4	
NO V	161							ca o	

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

Job:	180-111697 Field Sheet

SO(PD / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

le in the job folder with the COC.							
Therm. ID: Klas Corr. Factor:	(P1-)	6.4	_°C	Notes:	_	_	_
IceWet Gel	Othe	r	_	-		-	-
Cooler Custody Seal:			_				
Cooler ID:			_				
Temp Observed: 05 °C Correct	ed:	5.4	_°C				_
Opening/Processing The Shipment	Yes	No	NA				-
Cooler compromised/tampered with?	D	D	D				_
Cooler Temperature is acceptable?	Ø	D	ם				-
Initials: 97 Date: 10/	4176		_				_
Unpacking/Labeling The Samples	Yes	No	NA			_	-
CoC is complete w/o discrepancies?	D	0	D				
Samples compromised/tampered with?	D	D	D	-		-	-
Sample containers have legible labels?	D	D					-
Sample custody seal?			Ø				
Containers are not broken or leaking?	Ø	D	D				
Sample date/times are provided?	B	D		Trizma Lot #(s):			
Appropriate containers are used?	D	D		1 rizma Lot #(s):			-
Sample bottles are completely filled?	Ø		D	1200	_		2
Sample preservatives verified?			B				-
Samples w/o discrepancies?	0	D					
Zero headspace?*	D	D	B	Login Completion	Yes	No	NA
Alkalinity has no headspace?		D	B	Receipt Temperature on COC?	B	D	D
Perchlorate has headspace? (Methods 314, 331, 6850)	ם	0	B	Samples received within hold time?	B	0	D
Multiphasic samples are not present?	D	D		NCM Filed?	0	0	B
*Containers requiring zero headspace have no headspace	ce, or bubb	ole < 6 m	m (1/4")	Log Release checked in TALS?	0	В	
Initials: Date: 10 00	3			Initials: Date: 10 01	0/2)	_

INTACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTVFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Job Number: 180-111697-1

Login Number: 111697

Client: Tetra Tech GEO

List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

Answer	Comment
N/A	
True	
False	
True	
N/A	
	N/A True True True True True True True Tru

Client: Tetra Tech GEO Job Number: 180-111697-1

Login Number: 111697 List Source: Eurofins TestAmerica, Sacramento List Number: 2 List Creation: 10/06/20 12:08 PM

Creator: Saenhan Kae C

Creator: Saephan, Kae C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 6.5c corr: 6.9c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Residual Chlorine Checked.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-111805-1

Client Project/Site: Grenada, Mississippi

For:

Tetra Tech GEO 2969 Prospect Park Drive Suite 100 Rancho Cordova, California 95670

Attn: Ms. Jennifer Abrahams, P.G.

Authorized for release by:

10/27/2020 9:47:47 AM

Veronica Bortot, Senior Project Manager (412)963-2435

Veronica.Bortot@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

2

3

4

5

6

8

9

11

40

4 /

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi Laboratory Job ID: 180-111805-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	5
Certification Summary	6
Sample Summary	8
Method Summary	9
Lab Chronicle	10
Client Sample Results	17
QC Sample Results	37
QC Association Summary	47
Chain of Custody	51
Field Data Sheets	56
Receipt Checklists	57

3

4

6

9

10

12

13

14

Case Narrative

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111805-1

Job ID: 180-111805-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-111805-1

Comments

No additional comments.

Receipt

The samples were received on 10/3/2020 9:30 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.8° C and 3.6° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. There is no relinquished by time listed on one out of two COC's.

GC/MS Semi VOA

Method 8270E: The following sample was diluted due to the nature of the sample matrix: KD225WSS. Elevated reporting limits (RLs) are provided.

Method 8270E: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 180-333372 and analytical batch 180-333809 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Method 8290A: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 320-419525 and analytical batch 320-420486 recovered outside control limits for 2,3,4,6,7,8-HxCDF. The recoveries for this analyte were within limits in both the LCS and LCSD.

Method 8290A: The concentration of one or more analytes associated with the following samples exceeded the instrument calibration range: KD029SS, KD045SS, KD123SS, KD149SS, KD225ESS and KD225WSS. These analytes have been qualified; however, the peak(s) did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): KD029SS, KD045SS, KD123SS, KD149SS and KD225WSS. The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): DW201SS. The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The concentration of one or more analytes associated with the following sample exceeded the instrument calibration range: DW201SS. These analytes have been qualified; however, the peak(s) did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Case Narrative

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Job ID: 180-111805-1 (Continued)

Laboratory: Eurofins TestAmerica, Pittsburgh (Continued)

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

9

3

4

5

6

0

9

10

12

13

112

Definitions/Glossary

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Qualifiers

	Semi	

Qualifier	Qualifier Description
<u></u>	MO/MOD DDD

MS/MSD RPD exceeds control limits F2

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

Dioxin

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
E	Result exceeded calibration range.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

Glossary

DL, RA, RE, IN

DLC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL

EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Decision Level Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TFO

TNTC Too Numerous To Count

Eurofins TestAmerica, Pittsburgh

Page 5 of 58

10/27/2020

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20 *
Florida	NELAP	E871008	06-30-21
Georgia	State	PA 02-00416	04-30-21
Illinois	NELAP	004375	06-30-21
Kansas	NELAP	E-10350	01-31-21
Kentucky (UST)	State	162013	04-30-21
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-21
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-21
New Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-21
New York	NELAP	11182	04-01-21
North Carolina (WW/SW)	State	434	01-01-21
North Dakota	State	R-227	04-30-21
Oregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-21
Texas	NELAP	T104704528	03-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-21
Virginia	NELAP	10043	09-14-21
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Pittsburgh

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

Eurofins TestAmerica, Pittsburgh

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Tetra Tech GEO

Job ID: 180-111805-1 Project/Site: Grenada, Mississippi

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-111805-1	KD029SS	Solid	09/30/20 17:23	10/03/20 09:30
80-111805-2	KD045SS	Solid	10/01/20 09:23	10/03/20 09:30
80-111805-3	KD123SS	Solid	10/01/20 11:16	10/03/20 09:30
80-111805-4	KD149SS	Solid	10/01/20 13:42	10/03/20 09:30
0-111805-5	KD225ESS	Solid	10/01/20 15:09	10/03/20 09:30
0-111805-6	KD225WSS	Solid	10/01/20 16:50	10/03/20 09:30
0-111805-7	DW201SS	Solid	10/02/20 08:40	10/03/20 09:30
-111805-8	KD251SS	Solid	10/02/20 10:33	10/03/20 09:30
-111805-9	KD275SS	Solid	10/02/20 12:01	10/03/20 09:30
0-111805-10	KD297SS	Solid	10/02/20 14:29	10/03/20 09:30
-111805-11	KD010SS-EB	Water	09/30/20 17:50	10/03/20 09:30
0-111805-12	KD297SS-EB	Water	10/02/20 15:20	10/03/20 09:30
0-111805-13	KD225WSS-EB	Water	10/01/20 17:35	10/03/20 09:30

Method Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Method **Method Description** Protocol Laboratory TAL PIT **EPA 8270E** Semivolatile Organic Compounds (GC/MS) SW846 Dioxins and Furans (HRGC/HRMS) 8290A SW846 TAL SAC SM 2540G SM22 TAL PIT 2540G SM 2540G Total, Fixed, and Volatile Solids SM TAL PIT 3520C Liquid-Liquid Extraction (Continuous) SW846 TAL PIT 3541 **Automated Soxhlet Extraction** SW846 TAL PIT 8290 Separatory Funnel (Liquid-Liquid) Extraction of Dioxins and Furans SW846 TAL SAC

Protocol References:

8290

SM = "Standard Methods For The Examination Of Water And Wastewater"

Soxhlet Extraction of Dioxins and Furans

SM22 = Standard Methods For The Examination Of Water And Wastewater, 22nd Edition

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SAC

SW846

10/27/2020

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD029SS

Date Collected: 09/30/20 17:23 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G t ID: NOEQUIP		1			333628	10/15/20 18:23	TAM	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G t ID: NOEQUIP		1			334115	10/15/20 18:23	РМН	TAL PIT

Client Sample ID: KD029SS Lab Sample ID: 180-111805-1

Date Collected: 09/30/20 17:23 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 79.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.0 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 19:59	VVP	TAL PIT
Total/NA	Prep	8290			9.83 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 10D5		1			423668	10/20/20 14:34	ALM	TAL SAC
Total/NA	Prep	8290	RA		9.83 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1			424664	10/23/20 01:12	SMA	TAL SAC

Client Sample ID: KD045SS Lab Sample ID: 180-111805-2 **Matrix: Solid**

Date Collected: 10/01/20 09:23 Date Received: 10/03/20 09:30

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method 2540G at ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333628	Prepared or Analyzed 10/15/20 18:23	Analyst TAM	Lab TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			334115	10/15/20 18:23	РМН	TAL PIT

Lab Sample ID: 180-111805-2 **Client Sample ID: KD045SS** Date Collected: 10/01/20 09:23 **Matrix: Solid**

Date Received: 10/03/20 09:30 Percent Solids: 79.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 20:25	VVP	TAL PIT
Total/NA	Prep	8290			10.49 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 10D5		1			423668	10/20/20 15:19	ALM	TAL SAC
Total/NA	Prep	8290	RA		10.49 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1	-		424664	10/23/20 01:51	SMA	TAL SAC

Page 10 of 58

Client Sample ID: KD123SS

Date Collected: 10/01/20 11:16 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G at ID: NOEQUIP		1			333628	10/15/20 18:23	TAM	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			334115	10/15/20 18:23	PMH	TAL PIT

Client Sample ID: KD123SS

Date Collected: 10/01/20 11:16 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-3

Matrix: Solid Percent Solids: 76.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.3 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 20:50	VVP	TAL PIT
Total/NA	Prep	8290			10.21 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis	8290A		1			423668	10/20/20 16:04	ALM	TAL SAC
	Instrumer	it ID: 10D5								

Client Sample ID: KD149SS

Date Collected: 10/01/20 13:42

Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-4

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis	Batch Method 2540G at ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333628	Prepared or Analyzed 10/15/20 18:23	Analyst TAM	Lab TAL PIT
Total/NA	Analysis Instrumer	SM 2540G		1			334115	10/15/20 18:23	РМН	TAL PIT

Client Sample ID: KD149SS

Date Collected: 10/01/20 13:42

Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-4 **Matrix: Solid**

Percent Solids: 78.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.5 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E t ID: CH71		1	1 mL	1 mL	333708	10/16/20 21:16	VVP	TAL PIT
Total/NA	Prep	8290			9.80 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A t ID: 10D5		1			423668	10/20/20 16:49	ALM	TAL SAC
Total/NA	Prep	8290	RA		9.80 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A t ID: 11D2	RA	1			424664	10/23/20 02:29	SMA	TAL SAC

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: KD225ESS

Date Collected: 10/01/20 15:09

Lab Sample ID: 180-111805-5

Matrix: Solid

Job ID: 180-111805-1

Date Received: 10/03/20 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G at ID: NOEQUIP		1			333628	10/15/20 18:23	TAM	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			334115	10/15/20 18:23	РМН	TAL PIT

Client Sample ID: KD225ESS

Date Collected: 10/01/20 15:09 Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-5

Matrix: Solid Percent Solids: 75.2

Batch Batch Dil Initial Final Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor Amount** Amount Analyst Lab Total/NA 3541 333372 10/14/20 08:24 CSC TAL PIT Prep 15.2 g 5.0 mL Total/NA Analysis **EPA 8270E** 333708 10/16/20 21:42 VVP TAL PIT 1 1 mL 1 mL Instrument ID: CH71 Total/NA Prep 8290 10/08/20 04:37 FC TAL SAC 10.09 g 20 uL 419758 Total/NA Analysis 8290A 423668 10/20/20 17:34 ALM TAL SAC Instrument ID: 10D5

Client Sample ID: KD225WSS

Date Collected: 10/01/20 16:50

Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-6

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis	Batch Method 2540G at ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333628	Prepared or Analyzed 10/15/20 18:23	Analyst TAM	Lab TAL PIT
Total/NA	Analysis Instrumer	SM 2540G		1			334115	10/15/20 18:23	РМН	TAL PIT

Client Sample ID: KD225WSS

Date Collected: 10/01/20 16:50

Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-6 **Matrix: Solid** Percent Solids: 75.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.3 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH71		2	1 mL	1 mL	333708	10/16/20 22:07	VVP	TAL PIT
Total/NA	Prep	8290			9.92 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 10D5		1			423668	10/20/20 18:19	ALM	TAL SAC
Total/NA	Prep	8290	RA		9.92 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 11D2	RA	1			424664	10/23/20 03:07	SMA	TAL SAC

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: DW201SS

Date Collected: 10/02/20 08:40 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	2540G nt ID: NOEQUIP		1			333628	10/15/20 18:23	TAM	TAL PIT
Total/NA	Analysis Instrumer	SM 2540G at ID: NOEQUIP		1			334115	10/15/20 18:23	РМН	TAL PIT

Client Sample ID: DW201SS

Date Collected: 10/02/20 08:40 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-7 Matrix: Solid

Percent Solids: 74.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.5 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E nt ID: CH71		1	1 mL	1 mL	333708	10/16/20 22:33	VVP	TAL PIT
Total/NA	Prep	8290			9.71 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 10D5		1			423671	10/21/20 00:59	AS	TAL SAC
Total/NA	Prep	8290	RA		9.71 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 11D2	RA	1			424664	10/23/20 03:46	SMA	TAL SAC

Client Sample ID: KD251SS

Date Collected: 10/02/20 10:33 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-8

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis Instrumer	Batch Method 2540G at ID: NOEQUIP	Run	Pactor 1	Initial Amount	Final Amount	Batch Number 333628	Prepared or Analyzed 10/15/20 18:23	Analyst TAM	Lab TAL PIT
Total/NA	Analysis Instrumer	SM 2540G at ID: NOEQUIP		1			334115	10/15/20 18:23	PMH	TAL PIT

Client Sample ID: KD251SS

Date Collected: 10/02/20 10:33 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-8 Matrix: Solid

Percent Solids: 84.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.2 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 22:59	VVP	TAL PIT
Total/NA	Prep	8290			10.36 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis	8290A		1			423671	10/21/20 01:44	AS	TAL SAC
	Instrumer	nt ID: 10D5								

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD275SS

Date Collected: 10/02/20 12:01 Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-9

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	2540G nt ID: NOEQUIP		1			333628	10/15/20 18:23	TAM	TAL PIT
Total/NA	Analysis Instrumer	SM 2540G at ID: NOEQUIP		1			334115	10/15/20 18:23	РМН	TAL PIT

Client Sample ID: KD275SS

Date Collected: 10/02/20 12:01 Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-9

Matrix: Solid Percent Solids: 78.7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 23:24	VVP	TAL PIT
Total/NA	Prep	8290			9.82 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 10D5		1			423671	10/21/20 02:29	AS	TAL SAC
Total/NA	Prep	8290	RA		9.82 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A it ID: 11D2	RA	1			424664	10/23/20 04:24	SMA	TAL SAC

Client Sample ID: KD297SS

Date Collected: 10/02/20 14:29 Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-10

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis Instrumer	Batch Method 2540G at ID: NOEQUIP	Run	Pactor 1	Initial Amount	Final Amount	Batch Number 333628	Prepared or Analyzed 10/15/20 18:23	Analyst TAM	Lab TAL PIT
Total/NA	Analysis Instrumer	SM 2540G at ID: NOEQUIP		1			334115	10/15/20 18:23	PMH	TAL PIT

Client Sample ID: KD297SS

Date Collected: 10/02/20 14:29

Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-10 **Matrix: Solid** Percent Solids: 80.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.3 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333708	10/16/20 16:07	VVP	TAL PIT
Total/NA	Prep	8290			9.97 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 10D5		1			423671	10/21/20 03:14	AS	TAL SAC
Total/NA	Prep	8290	RA		9.97 g	20 uL	419758	10/08/20 04:37	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1	-		424664	10/23/20 05:02	SMA	TAL SAC

Eurofins TestAmerica, Pittsburgh

10/27/2020

Lab Chronicle

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD010SS-EB

Lab Sample ID: 180-111805-11

Date Collected: 09/30/20 17:50 **Matrix: Water** Date Received: 10/03/20 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			270 mL	2.5 mL	332595	10/07/20 10:36	BJT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E nt ID: CHMSD7		1	1 mL	1 mL	333722	10/16/20 21:37	VVP	TAL PIT
Total/NA	Prep	8290			1035 mL	20.0 uL	419525	10/07/20 14:02	NR	TAL SAC
Total/NA	Analysis	8290A		1			420486	10/10/20 13:02	ALM	TAL SAC
	Instrumer	nt ID: 3D5								

Client Sample ID: KD297SS-EB

Lab Sample ID: 180-111805-12 Date Collected: 10/02/20 15:20 **Matrix: Water**

Date Received: 10/03/20 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			250 mL	2.5 mL	332595	10/07/20 10:36	BJT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CHMSD7		1	1 mL	1 mL	333722	10/16/20 22:04	VVP	TAL PIT
Total/NA	Prep	8290			1008.5 mL	20.0 uL	419525	10/07/20 14:02	NR	TAL SAC
Total/NA	Analysis	8290A		1			420486	10/10/20 13:50	ALM	TAL SAC
	Instrumer	nt ID: 3D5								

Client Sample ID: KD225WSS-EB Lab Sample ID: 180-111805-13

Date Collected: 10/01/20 17:35 **Matrix: Water** Date Received: 10/03/20 09:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			230 mL	2.5 mL	332595	10/07/20 10:36	BJT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CHMSD7		1	1 mL	1 mL	333722	10/16/20 22:30	VVP	TAL PIT
Total/NA	Prep	8290			1037.1 mL	20.0 uL	419525	10/07/20 14:02	NR	TAL SAC
Total/NA	Analysis	8290A		1			420486	10/10/20 14:37	ALM	TAL SAC
	Instrumer	nt ID: 3D5								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Pittsburgh

Lab Chronicle

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Analyst References:

Lab: TAL PIT

Batch Type: Prep

BJT = Bill Trout

CSC = Chayce Cockroft

Batch Type: Analysis

PMH = Paloma Hoelzle

TAM = Tessa Mastalski

VVP = Vincent Piccolino

Lab: TAL SAC

Batch Type: Prep

FC = Fue Chang

NR = Noe Ruiz

Batch Type: Analysis

ALM = Adrian Messecar

AS = Ajay Sharda

SMA = Saleh Arghestani

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Terphenyl-d14 (Surr)

Client Sample ID: KD029SS

Lab Sample ID: 180-111805-1

Date Collected: 09/30/20 17:23 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 79.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		84	24	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 19:59	1
Acenaphthylene	61	J	84	18	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Anthracene	81	J	84	22	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Benzo[a]anthracene	120		84	38	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Benzo[b]fluoranthene	210		84	21	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Benzo[k]fluoranthene	78	J	84	25	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Benzo[g,h,i]perylene	87		84	18	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Benzo[a]pyrene	98		84	36	ug/Kg	☼	10/14/20 08:24	10/16/20 19:59	1
Chrysene	180		84	46	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Dibenz(a,h)anthracene	92		84	53	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Fluoranthene	200		84	22	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Fluorene	ND		84	16	ug/Kg	☼	10/14/20 08:24	10/16/20 19:59	1
Indeno[1,2,3-cd]pyrene	82	J	84	42	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Naphthalene	51	J	84	16	ug/Kg	₩	10/14/20 08:24	10/16/20 19:59	1
Phenanthrene	100		84	22	ug/Kg	☼	10/14/20 08:24	10/16/20 19:59	1
Pyrene	260		84	20	ug/Kg	☼	10/14/20 08:24	10/16/20 19:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		45 - 105				10/14/20 08:24	10/16/20 19:59	1
2-Fluorophenol (Surr)	83		42 - 105				10/14/20 08:24	10/16/20 19:59	1
2,4,6-Tribromophenol (Surr)	68		31 - 105				10/14/20 08:24	10/16/20 19:59	1
Nitrobenzene-d5 (Surr)	81		53 - 105				10/14/20 08:24	10/16/20 19:59	1
Phenol-d5 (Surr)	73		47 - 105				10/14/20 08:24	10/16/20 19:59	1

46 - 105

87

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.40	J q	1.3	0.16	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
Total TCDD	12	q	1.3	0.16	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
1,2,3,7,8-PeCDD	4.1	J	6.4	0.51	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
Total PeCDD	57		6.4	0.51	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
1,2,3,4,7,8-HxCDD	13		6.4	0.47	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
1,2,3,6,7,8-HxCDD	37		6.4	0.42	pg/g	≎	10/08/20 04:37	10/20/20 14:34	1
1,2,3,7,8,9-HxCDD	19		6.4	0.40	pg/g	≎	10/08/20 04:37	10/20/20 14:34	1
Total HxCDD	370		6.4	0.43	pg/g	≎	10/08/20 04:37	10/20/20 14:34	1
1,2,3,4,6,7,8-HpCDD	1100	G	11	11	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1
Total HpCDD	3000	G	11	11	pg/g	≎	10/08/20 04:37	10/20/20 14:34	1
OCDD	11000	EB	13	4.7	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1
Total TCDF	20	q	1.3	0.20	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1
1,2,3,7,8-PeCDF	3.3	J	6.4	0.32	pg/g	≎	10/08/20 04:37	10/20/20 14:34	1
2,3,4,7,8-PeCDF	3.1	J	6.4	0.33	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1
Total PeCDF	47	q	6.4	0.33	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1
1,2,3,4,7,8-HxCDF	10		6.4	1.6	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1
1,2,3,6,7,8-HxCDF	10		6.4	1.5	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
2,3,4,6,7,8-HxCDF	7.0		6.4	1.6	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1
1,2,3,7,8,9-HxCDF	ND		6.4	1.7	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
Total HxCDF	200	q	6.4	1.6	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
1,2,3,4,6,7,8-HpCDF	230	В	6.4	3.3	pg/g	☼	10/08/20 04:37	10/20/20 14:34	1
1,2,3,4,7,8,9-HpCDF	21		6.4	3.8	pg/g	₩	10/08/20 04:37	10/20/20 14:34	1
Total HpCDF	700	В	6.4	3.6	pg/g	₽	10/08/20 04:37	10/20/20 14:34	1

Eurofins TestAmerica, Pittsburgh

10/14/20 08:24 10/16/20 19:59

Page 17 of 58

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

2-Fluorophenol (Surr)

Client Sample ID: KD029SS Lab Sample ID: 180-111805-1

Date Collected: 09/30/20 17:23

Matrix: Solid

Date Received: 10/03/20 09:30

Percent Solids: 79.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	870	В	13	0.37	pg/g	☼	10/08/20 04:37	10/20/20 14:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	71		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-1,2,3,7,8-PeCDD	64		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-1,2,3,6,7,8-HxCDD	72		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-1,2,3,4,6,7,8-HpCDD	73		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-OCDD	78		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-2,3,7,8-TCDF	85		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-1,2,3,7,8-PeCDF	78		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-1,2,3,4,7,8-HxCDF	93		40 - 135				10/08/20 04:37	10/20/20 14:34	1
13C-1,2,3,4,6,7,8-HpCDF	78		40 - 135				10/08/20 04:37	10/20/20 14:34	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.4		1.3	0.12	pg/g	₩	10/08/20 04:37	10/23/20 01:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	86		40 - 135				10/08/20 04:37	10/23/20 01:12	1

Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.1	0.1	0.1	%			10/15/20 18:23	1
Percent Solids	79.9	0.1	0.1	%			10/15/20 18:23	1
Total Solids	80	0.50	0.50	%			10/15/20 18:23	1

 Client Sample ID: KD045SS
 Lab Sample ID: 180-111805-2

 Date Collected: 10/01/20 09:23
 Matrix: Solid

 Date Received: 10/03/20 09:30
 Percent Solids: 79.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		84	24	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 20:25	1
Acenaphthylene	110		84	18	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Anthracene	130		84	22	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Benzo[a]anthracene	180		84	38	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Benzo[b]fluoranthene	490		84	20	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Benzo[k]fluoranthene	190		84	25	ug/Kg	☼	10/14/20 08:24	10/16/20 20:25	1
Benzo[g,h,i]perylene	430		84	18	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Benzo[a]pyrene	210		84	36	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Chrysene	210		84	46	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Dibenz(a,h)anthracene	160		84	53	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Fluoranthene	210		84	22	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Fluorene	16	J	84	16	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Indeno[1,2,3-cd]pyrene	310		84	41	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Naphthalene	59	J	84	16	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Phenanthrene	100		84	22	ug/Kg	₽	10/14/20 08:24	10/16/20 20:25	1
Pyrene	240		84	20	ug/Kg	₩	10/14/20 08:24	10/16/20 20:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		45 - 105				10/14/20 08:24	10/16/20 20:25	1

 ${\bf Eurofins\ TestAmerica,\ Pittsburgh}$

10/14/20 08:24 10/16/20 20:25

Page 18 of 58

42 - 105

77

2

3

5

7

9

11

13

14

H

_

10/27/2020

Project/Site: Grenada, Mississippi

Client Sample ID: KD045SS

Lab Sample ID: 180-111805-2

Date Collected: 10/01/20 09:23 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 79.6

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2,4,6-Tribromophenol (Surr)	60		31 - 105	10/14/20 08:24	10/16/20 20:25	1
İ	Nitrobenzene-d5 (Surr)	78		53 - 105	10/14/20 08:24	10/16/20 20:25	1
	Phenol-d5 (Surr)	69		47 - 105	10/14/20 08:24	10/16/20 20:25	1
	Terphenyl-d14 (Surr)	77		46 - 105	10/14/20 08:24	10/16/20 20:25	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.20	Jq	1.2	0.17	pg/g	-	10/08/20 04:37	10/20/20 15:19	1
Total TCDD	7.1	q	1.2	0.17	pg/g	₽	10/08/20 04:37	10/20/20 15:19	1
1,2,3,7,8-PeCDD	2.2	J	6.0	0.35	pg/g	₽	10/08/20 04:37	10/20/20 15:19	1
Total PeCDD	26		6.0	0.35	pg/g	₽	10/08/20 04:37	10/20/20 15:19	1
1,2,3,4,7,8-HxCDD	7.2		6.0	0.31	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
1,2,3,6,7,8-HxCDD	23		6.0	0.28	pg/g	₽	10/08/20 04:37	10/20/20 15:19	1
1,2,3,7,8,9-HxCDD	12		6.0	0.26	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
Total HxCDD	210		6.0	0.28	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
1,2,3,4,6,7,8-HpCDD	790	G	8.6	8.6	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
Total HpCDD	2000	G	8.6	8.6	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
OCDD	7900	EB	12	4.1	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
Total TCDF	13		1.2	0.17	pg/g	₽	10/08/20 04:37	10/20/20 15:19	1
1,2,3,7,8-PeCDF	1.1	J	6.0	0.20	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
2,3,4,7,8-PeCDF	1.4	J	6.0	0.21	pg/g	₽	10/08/20 04:37	10/20/20 15:19	1
Total PeCDF	21	q	6.0	0.21	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
1,2,3,4,7,8-HxCDF	5.1	J	6.0	1.2	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
1,2,3,6,7,8-HxCDF	3.4	J	6.0	1.1	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
2,3,4,6,7,8-HxCDF	3.0	J	6.0	1.2	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
1,2,3,7,8,9-HxCDF	ND		6.0	1.3	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
Total HxCDF	110		6.0	1.2	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
1,2,3,4,6,7,8-HpCDF	140	В	6.0	1.8	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
1,2,3,4,7,8,9-HpCDF	7.7		6.0	2.0	pg/g	₩	10/08/20 04:37	10/20/20 15:19	1
Total HpCDF	480	В	6.0	1.9	pg/g	☼	10/08/20 04:37	10/20/20 15:19	1
OCDF	570	В	12	0.29	pg/g	₽	10/08/20 04:37	10/20/20 15:19	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	65	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-1,2,3,7,8-PeCDD	60	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-1,2,3,6,7,8-HxCDD	68	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-1,2,3,4,6,7,8-HpCDD	68	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-OCDD	73	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-2,3,7,8-TCDF	78	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-1,2,3,7,8-PeCDF	72	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-1,2,3,4,7,8-HxCDF	90	40 - 135	10/08/20 04:37	10/20/20 15:19	1
13C-1,2,3,4,6,7,8-HpCDF	76	40 - 135	10/08/20 04:37	10/20/20 15:19	1

Method: 8290A - Dioxins and Furans	(HRGC/HRMS) - RA
------------------------------------	------------	--------

Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.69	J	1.2	0.12	pg/g		10/08/20 04:37	10/23/20 01:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	81		40 - 135				10/08/20 04:37	10/23/20 01:51	1

Eurofins TestAmerica, Pittsburgh

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Trojectione: Cremada, Micologippi

Client Sample ID: KD045SS Lab Sample ID: 180-111805-2

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.4		0.1	0.1	%			10/15/20 18:23	1
Percent Solids	79.6		0.1	0.1	%			10/15/20 18:23	1
Total Solids	80		0.50	0.50	%			10/15/20 18:23	1

Client Sample ID: KD123SS

Lab Sample ID: 180-111805-3

Date Collected: 10/01/20 11:16

Matrix: Solid
Date Received: 10/03/20 09:30

Percent Solids: 76.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		86	25	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 20:50	1
Acenaphthylene	51	J	86	19	ug/Kg	≎	10/14/20 08:24	10/16/20 20:50	1
Anthracene	74	J	86	22	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Benzo[a]anthracene	150		86	39	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Benzo[b]fluoranthene	190		86	21	ug/Kg	≎	10/14/20 08:24	10/16/20 20:50	1
Benzo[k]fluoranthene	86		86	26	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Benzo[g,h,i]perylene	100		86	19	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Benzo[a]pyrene	130		86	37	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Chrysene	150		86	48	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Dibenz(a,h)anthracene	96		86	55	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Fluoranthene	170		86	23	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Fluorene	ND		86	17	ug/Kg	≎	10/14/20 08:24	10/16/20 20:50	1
Indeno[1,2,3-cd]pyrene	88		86	43	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Naphthalene	49	J	86	17	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Phenanthrene	58	J	86	23	ug/Kg	₽	10/14/20 08:24	10/16/20 20:50	1
Pyrene	200		86	20	ug/Kg	☼	10/14/20 08:24	10/16/20 20:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		45 - 105				10/14/20 08:24	10/16/20 20:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		45 - 105	10/14/20 08:24	10/16/20 20:50	1
2-Fluorophenol (Surr)	84		42 - 105	10/14/20 08:24	10/16/20 20:50	1
2,4,6-Tribromophenol (Surr)	62		31 - 105	10/14/20 08:24	10/16/20 20:50	1
Nitrobenzene-d5 (Surr)	82		53 - 105	10/14/20 08:24	10/16/20 20:50	1
Phenol-d5 (Surr)	73		47 - 105	10/14/20 08:24	10/16/20 20:50	1
Terphenyl-d14 (Surr)	82		46 - 105	10/14/20 08:24	10/16/20 20:50	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.25	Jq	1.3	0.14	pg/g	<u></u>	10/08/20 04:37	10/20/20 16:04	1
Total TCDD	3.7	q	1.3	0.14	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
1,2,3,7,8-PeCDD	2.4	J	6.4	0.28	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
Total PeCDD	18	q	6.4	0.28	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
1,2,3,4,7,8-HxCDD	9.1		6.4	0.49	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
1,2,3,6,7,8-HxCDD	27		6.4	0.44	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
1,2,3,7,8,9-HxCDD	12		6.4	0.42	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
Total HxCDD	170		6.4	0.45	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
1,2,3,4,6,7,8-HpCDD	860	G	7.1	7.1	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
Total HpCDD	1500	G	7.1	7.1	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
OCDD	6500	EB	13	3.8	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
2,3,7,8-TCDF	0.79	J	1.3	0.096	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
Total TCDF	5.5	q	1.3	0.096	pg/g		10/08/20 04:37	10/20/20 16:04	1

Eurofins TestAmerica, Pittsburgh

2

3

5

7

8

10

12

1 A

14

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD123SS

Lab Sample ID: 180-111805-3 Date Collected: 10/01/20 11:16 **Matrix: Solid**

Date Received: 10/03/20 09:30 Percent Solids: 76.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8-PeCDF	0.80	J	6.4	0.20	pg/g	*	10/08/20 04:37	10/20/20 16:04	1
2,3,4,7,8-PeCDF	0.71	Jq	6.4	0.21	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
Total PeCDF	14	q	6.4	0.21	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
1,2,3,4,7,8-HxCDF	4.2	J	6.4	1.3	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
1,2,3,6,7,8-HxCDF	4.1	J	6.4	1.2	pg/g	₽	10/08/20 04:37	10/20/20 16:04	1
2,3,4,6,7,8-HxCDF	2.9	J	6.4	1.3	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
1,2,3,7,8,9-HxCDF	ND		6.4	1.3	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
Total HxCDF	120		6.4	1.3	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
1,2,3,4,6,7,8-HpCDF	190	В	6.4	2.5	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
1,2,3,4,7,8,9-HpCDF	9.2		6.4	2.8	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
Total HpCDF	530	В	6.4	2.7	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
OCDF	620	В	13	0.32	pg/g	₩	10/08/20 04:37	10/20/20 16:04	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	71		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-1,2,3,7,8-PeCDD	65		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-1,2,3,6,7,8-HxCDD	73		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-1,2,3,4,6,7,8-HpCDD	70		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-OCDD	75		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-2,3,7,8-TCDF	87		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-1,2,3,7,8-PeCDF	76		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-1,2,3,4,7,8-HxCDF	91		40 - 135				10/08/20 04:37	10/20/20 16:04	1
13C-1,2,3,4,6,7,8-HpCDF	78		40 - 135				10/08/20 04:37	10/20/20 16:04	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	24.0		0.1	0.1	%			10/15/20 18:23	1
Percent Solids	76.0		0.1	0.1	%			10/15/20 18:23	1
Total Solids	76		0.50	0.50	%			10/15/20 18:23	1

Client Sample ID: KD149SS Lab Sample ID: 180-111805-4 Date Collected: 10/01/20 13:42 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 78.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		82	24	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 21:16	1
Acenaphthylene	65	J	82	18	ug/Kg	☼	10/14/20 08:24	10/16/20 21:16	1
Anthracene	77	J	82	21	ug/Kg	☼	10/14/20 08:24	10/16/20 21:16	1
Benzo[a]anthracene	120		82	37	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Benzo[b]fluoranthene	200		82	20	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Benzo[k]fluoranthene	84		82	25	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Benzo[g,h,i]perylene	100		82	18	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Benzo[a]pyrene	110		82	36	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Chrysene	160		82	46	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Dibenz(a,h)anthracene	96		82	53	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Fluoranthene	200		82	22	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Fluorene	ND		82	16	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Indeno[1,2,3-cd]pyrene	98		82	41	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Naphthalene	74	J	82	16	ug/Kg	₩	10/14/20 08:24	10/16/20 21:16	1
Phenanthrene	120		82	22	ug/Kg	☼	10/14/20 08:24	10/16/20 21:16	1

Eurofins TestAmerica, Pittsburgh

Page 21 of 58

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Analyte

Client Sample ID: KD149SS Lab Sample ID: 180-111805-4

Date Collected: 10/01/20 13:42

Matrix: Solid
Date Received: 10/03/20 09:30

Percent Solids: 78.7

MDL Unit

D

Prepared

Analyzed

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

Allalyte	Result	Qualifier	KL	MDL	Ullit	ט	Frepareu	Allalyzeu	DII Fac
Pyrene	210		82	19	ug/Kg		10/14/20 08:24	10/16/20 21:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl			45 - 105				10/14/20 08:24	10/16/20 21:16	1
2-Fluorophenol (Surr)	82		42 - 105				10/14/20 08:24	10/16/20 21:16	1
2,4,6-Tribromophenol (Surr)	70		31 - 105				10/14/20 08:24	10/16/20 21:16	1
Nitrobenzene-d5 (Surr)	83		53 - 105				10/14/20 08:24	10/16/20 21:16	1
Phenol-d5 (Surr)	72		47 - 105				10/14/20 08:24	10/16/20 21:16	1
Terphenyl-d14 (Surr)	92		46 - 105				10/14/20 08:24	10/16/20 21:16	1
- Method: 8290A - Dioxins a	nd Furans (HR	GC/HRMS)							
Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.36	Jq	1.3	0.12	pg/g	-	10/08/20 04:37	10/20/20 16:49	1
Total TCDD	5.8	q	1.3	0.12	pg/g	₩	10/08/20 04:37	10/20/20 16:49	1
1,2,3,7,8-PeCDD	3.0	Ĵ	6.5	0.33	pg/g	₩	10/08/20 04:37	10/20/20 16:49	1
Total PeCDD	24	q	6.5	0.33	pg/g	≎	10/08/20 04:37	10/20/20 16:49	1
1,2,3,4,7,8-HxCDD	11	•	6.5	0.37	pg/g	₩	10/08/20 04:37	10/20/20 16:49	1
1,2,3,6,7,8-HxCDD	39		6.5	0.33	pg/g	₩	10/08/20 04:37	10/20/20 16:49	1
1,2,3,7,8,9-HxCDD	14		6.5		pg/g	≎	10/08/20 04:37	10/20/20 16:49	1
Total HxCDD	250		6.5		pg/g	₽	10/08/20 04:37	10/20/20 16:49	1
1,2,3,4,6,7,8-HpCDD	1300	G	13		pg/g	₽	10/08/20 04:37	10/20/20 16:49	1
Total HpCDD	2700		13		pg/g	₩	10/08/20 04:37	10/20/20 16:49	1
OCDD	11000		13		pg/g	₩	10/08/20 04:37	10/20/20 16:49	1
Total TCDF	13		1.3		pg/g	₩	10/08/20 04:37	10/20/20 16:49	1
1,2,3,7,8-PeCDF	1.3		6.5		pg/g		10/08/20 04:37	10/20/20 16:49	1
2,3,4,7,8-PeCDF	1.7		6.5		pg/g	☆		10/20/20 16:49	1
Total PeCDF	27		6.5		pg/g	₩		10/20/20 16:49	1
1,2,3,4,7,8-HxCDF	4.6	5	6.5		pg/g			10/20/20 16:49	1
1,2,3,6,7,8-HxCDF	4.2		6.5		pg/g	☆		10/20/20 16:49	1
2,3,4,6,7,8-HxCDF	4.6		6.5		pg/g	☆		10/20/20 16:49	1
1,2,3,7,8,9-HxCDF	ND		6.5		pg/g			10/20/20 16:49	
Total HxCDF	210		6.5		pg/g	₩		10/20/20 16:49	1
1,2,3,4,6,7,8-HpCDF	290	R	6.5		pg/g			10/20/20 16:49	1
1,2,3,4,7,8,9-HpCDF	11		6.5		pg/g			10/20/20 16:49	· · · · · · · · · · · · · · · · · · ·
Total HpCDF	1000	R	6.5		pg/g	₩		10/20/20 16:49	1
OCDF	1100		13		pg/g	₽		10/20/20 16:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	76		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-1,2,3,7,8-PeCDD	72		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-1,2,3,6,7,8-HxCDD	76		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-1,2,3,4,6,7,8-HpCDD	76		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-OCDD	84		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-2,3,7,8-TCDF	92		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-1,2,3,7,8-PeCDF	83		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-1,2,3,4,7,8-HxCDF	101		40 - 135				10/08/20 04:37	10/20/20 16:49	1
13C-1,2,3,4,6,7,8-HpCDF	85		40 - 135				10/08/20 04:37	10/20/20 16:49	1
- Method: 8290A - Dioxins a	nd Furans (HR	GC/HRMS)	- RA						
Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.86		1.3	0.12	pg/g		10/08/20 04:37	10/23/20 02:29	

Eurofins TestAmerica, Pittsburgh

10/27/2020

Page 22 of 58

2

3

5

Dil Fac

7

9

11 12

13

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD149SS Lab Sample ID: 180-111805-4

Date Collected: 10/01/20 13:42

Date Received: 10/03/20 09:30

Matrix: Solid
Percent Solids: 78.7

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	89	40 - 135	10/08/20 04:37	10/23/20 02:29	1

General Chemistry Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21.3	0.1	0.1	%			10/15/20 18:23	1
Percent Solids	78.7	0.1	0.1	%			10/15/20 18:23	1
Total Solids	79	0.50	0.50	%			10/15/20 18:23	1

Client Sample ID: KD225ESS Lab Sample ID: 180-111805-5

 Date Collected: 10/01/20 15:09
 Matrix: Solid

 Date Received: 10/03/20 09:30
 Percent Solids: 75.2

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		88	25	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Acenaphthylene	270		88	19	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Anthracene	420		88	23	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Benzo[a]anthracene	670		88	40	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Benzo[b]fluoranthene	1300		88	22	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Benzo[k]fluoranthene	420		88	26	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Benzo[g,h,i]perylene	460		88	19	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Benzo[a]pyrene	540		88	38	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Chrysene	850		88	49	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Dibenz(a,h)anthracene	200		88	56	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Fluoranthene	940		88	23	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Fluorene	24 、	J	88	17	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Indeno[1,2,3-cd]pyrene	450		88	44	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Naphthalene	170		88	17	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Phenanthrene	410		88	23	ug/Kg	₩	10/14/20 08:24	10/16/20 21:42	1
Pyrene	990		88	21	ug/Kg	₽	10/14/20 08:24	10/16/20 21:42	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74	45 - 105	10/14/20 08:24	10/16/20 21:42	1
2-Fluorophenol (Surr)	77	42 - 105	10/14/20 08:24	10/16/20 21:42	1
2,4,6-Tribromophenol (Surr)	60	31 - 105	10/14/20 08:24	10/16/20 21:42	1
Nitrobenzene-d5 (Surr)	84	53 - 105	10/14/20 08:24	10/16/20 21:42	1
Phenol-d5 (Surr)	69	47 - 105	10/14/20 08:24	10/16/20 21:42	1
Terphenyl-d14 (Surr)	84	46 - 105	10/14/20 08:24	10/16/20 21:42	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.34	J q	1.3	0.12	pg/g		10/08/20 04:37	10/20/20 17:34	1
Total TCDD	3.5	q	1.3	0.12	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
1,2,3,7,8-PeCDD	2.2	J	6.6	0.23	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
Total PeCDD	19	q	6.6	0.23	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
1,2,3,4,7,8-HxCDD	6.9		6.6	0.29	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
1,2,3,6,7,8-HxCDD	18		6.6	0.26	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
1,2,3,7,8,9-HxCDD	9.6		6.6	0.24	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
Total HxCDD	150		6.6	0.26	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
1,2,3,4,6,7,8-HpCDD	590		6.6	5.6	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
Total HpCDD	1400		6.6	5.6	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
OCDD	7700	EB	13	2.9	pg/g	☆	10/08/20 04:37	10/20/20 17:34	1

Eurofins TestAmerica, Pittsburgh

Page 23 of 58 10/27/2020

4

6

7

10

40

13

14

Client: Tetra Tech GEO

Percent Solids

Total Solids

Project/Site: Grenada, Mississippi

Lab Sample ID: 180-111805-5

Matrix: Solid Percent Solids: 75.2

Job ID: 180-111805-1

Client Sample ID: KD225ESS	
Data Callacted: 10/01/20 15:00	

Date Collected: 10/01/20 15:09 Date Received: 10/03/20 09:30

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.0	J	1.3	0.11	pg/g	-	10/08/20 04:37	10/20/20 17:34	1
Total TCDF	6.9	q	1.3	0.11	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
1,2,3,7,8-PeCDF	0.94	J	6.6	0.21	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
2,3,4,7,8-PeCDF	1.2	J	6.6	0.21	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
Total PeCDF	15	q	6.6	0.21	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
1,2,3,4,7,8-HxCDF	4.3	J	6.6	0.71	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
1,2,3,6,7,8-HxCDF	2.7	J	6.6	0.65	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
2,3,4,6,7,8-HxCDF	2.3	J	6.6	0.68	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
1,2,3,7,8,9-HxCDF	ND		6.6	0.72	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
Total HxCDF	85		6.6	0.69	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
1,2,3,4,6,7,8-HpCDF	100	В	6.6	1.1	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
1,2,3,4,7,8,9-HpCDF	5.9	J	6.6	1.3	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
Total HpCDF	340	В	6.6	1.2	pg/g	₽	10/08/20 04:37	10/20/20 17:34	1
OCDF	410	В	13	0.26	pg/g	₩	10/08/20 04:37	10/20/20 17:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78	-	40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-1,2,3,7,8-PeCDD	73		40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-1,2,3,6,7,8-HxCDD	80		40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-1,2,3,4,6,7,8-HpCDD	79		40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-OCDD	84		40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-2,3,7,8-TCDF	96		40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-1,2,3,7,8-PeCDF	88		40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-1,2,3,4,7,8-HxCDF	106		40 - 135				10/08/20 04:37	10/20/20 17:34	1
13C-1,2,3,4,6,7,8-HpCDF	88		40 - 135				10/08/20 04:37	10/20/20 17:34	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: KD225WSS Lab Sample ID: 180-111805-6 Date Collected: 10/01/20 16:50 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 75.2

0.1

0.50

0.1 %

0.50 %

75.2

75

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	170	50	ug/Kg	— -	10/14/20 08:24	10/16/20 22:07	2
Acenaphthylene	300	170	38	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2
Anthracene	290	170	45	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2
Benzo[a]anthracene	650	170	78	ug/Kg	₩	10/14/20 08:24	10/16/20 22:07	2
Benzo[b]fluoranthene	1100	170	43	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2
Benzo[k]fluoranthene	410	170	52	ug/Kg	☼	10/14/20 08:24	10/16/20 22:07	2
Benzo[g,h,i]perylene	460	170	38	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2
Benzo[a]pyrene	620	170	75	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2
Chrysene	760	170	96	ug/Kg	₩	10/14/20 08:24	10/16/20 22:07	2
Dibenz(a,h)anthracene	270	170	110	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2
Fluoranthene	770	170	46	ug/Kg	₩	10/14/20 08:24	10/16/20 22:07	2
Fluorene	ND	170	34	ug/Kg	₩	10/14/20 08:24	10/16/20 22:07	2
Indeno[1,2,3-cd]pyrene	460	170	87	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2

Eurofins TestAmerica, Pittsburgh

10/15/20 18:23

10/15/20 18:23

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD225WSS Lab Sample ID: 180-111805-6

Date Collected: 10/01/20 16:50 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 75.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	140	J	170	34	ug/Kg	-	10/14/20 08:24	10/16/20 22:07	2
Phenanthrene	380		170	47	ug/Kg	₽	10/14/20 08:24	10/16/20 22:07	2
Pyrene	920		170	41	ug/Kg	₩	10/14/20 08:24	10/16/20 22:07	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		45 - 105				10/14/20 08:24	10/16/20 22:07	2
2-Fluorophenol (Surr)	86		42 - 105				10/14/20 08:24	10/16/20 22:07	2
2,4,6-Tribromophenol (Surr)	72		31 - 105				10/14/20 08:24	10/16/20 22:07	2
Nitrobenzene-d5 (Surr)	84		53 - 105				10/14/20 08:24	10/16/20 22:07	2
Phenol-d5 (Surr)	78		47 - 105				10/14/20 08:24	10/16/20 22:07	2
Terphenyl-d14 (Surr)	89		46 - 105				10/14/20 08:24	10/16/20 22:07	2
Method: 8290A - Dioxins a	nd Furans (HR	GC/HRMS))						
Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	1.1	J	1.3	0.12	pg/g	-	10/08/20 04:37	10/20/20 18:19	1
Total TCDD	5.9	q	1.3	0.12	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
1,2,3,7,8-PeCDD	4.4	J	6.7	0.41	pg/g	≎	10/08/20 04:37	10/20/20 18:19	1
Total PeCDD	33	q	6.7	0.41	pg/g	₩	10/08/20 04:37	10/20/20 18:19	1
1,2,3,4,7,8-HxCDD	11		6.7	0.30	pg/g	☼	10/08/20 04:37	10/20/20 18:19	1
1,2,3,6,7,8-HxCDD	38		6.7	0.27	pg/g	☼	10/08/20 04:37	10/20/20 18:19	1
1,2,3,7,8,9-HxCDD	18		6.7	0.25	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
Total HxCDD	280		6.7	0.28	pg/g	≎	10/08/20 04:37	10/20/20 18:19	1
1,2,3,4,6,7,8-HpCDD	870	G	8.8	8.8	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
Total HpCDD	2100	G	8.8	8.8	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
OCDD	8400	EB	13	3.0	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
Total TCDF	6.9		1.3	0.13	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
1,2,3,7,8-PeCDF	1.5	J	6.7	0.29	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
2,3,4,7,8-PeCDF	2.2	J	6.7	0.30	pg/g	≎	10/08/20 04:37	10/20/20 18:19	1
Total PeCDF	34	q	6.7	0.29	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
1,2,3,4,7,8-HxCDF	8.1		6.7	2.0	pg/g	₩	10/08/20 04:37	10/20/20 18:19	1
1,2,3,6,7,8-HxCDF	6.1	J	6.7	1.8	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
2,3,4,6,7,8-HxCDF	7.1		6.7	1.9	pg/g	≎	10/08/20 04:37	10/20/20 18:19	1
1,2,3,7,8,9-HxCDF	ND		6.7	2.0	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
Total HxCDF	330		6.7	1.9	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
1,2,3,4,6,7,8-HpCDF	670	В	6.7	2.4	pg/g	≎	10/08/20 04:37	10/20/20 18:19	1
1,2,3,4,7,8,9-HpCDF	9.1		6.7	2.8	pg/g	₽	10/08/20 04:37	10/20/20 18:19	1
Total HpCDF	1300	В	6.7	2.6	pg/g	≎	10/08/20 04:37	10/20/20 18:19	1
OCDF	650	В	13	0.28	pg/g	☼	10/08/20 04:37	10/20/20 18:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	DII Fac
13C-2,3,7,8-TCDD	83	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-1,2,3,7,8-PeCDD	78	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-1,2,3,6,7,8-HxCDD	82	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-1,2,3,4,6,7,8-HpCDD	79	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-OCDD	84	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-2,3,7,8-TCDF	100	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-1,2,3,7,8-PeCDF	91	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-1,2,3,4,7,8-HxCDF	109	40 - 135	10/08/20 04:37	10/20/20 18:19	1
13C-1,2,3,4,6,7,8-HpCDF	90	40 - 135	10/08/20 04:37	10/20/20 18:19	1

Eurofins TestAmerica, Pittsburgh

Page 25 of 58

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD225WSS

Lab Sample ID: 180-111805-6

Date Collected: 10/01/20 16:50 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 75.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.63	J	1.3	0.12	pg/g	<u></u>	10/08/20 04:37	10/23/20 03:07	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	104	-	40 - 135				10/08/20 04:37	10/23/20 03:07	1

General Chemistry Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	24.8	0.1	0.1	%			10/15/20 18:23	1
Percent Solids	75.2	0.1	0.1	%			10/15/20 18:23	1
Total Solids	75	0.50	0.50	%			10/15/20 18:23	1

Client Sample ID: DW201SS Lab Sample ID: 180-111805-7 Date Collected: 10/02/20 08:40 **Matrix: Solid**

Date Received: 10/03/20 09:30 Percent Solids: 74.1

Analyte	Result Q	ualifier l	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	37 J		88 25	ug/Kg	₩	10/14/20 08:24	10/16/20 22:33	1
Acenaphthylene	450		88 19	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Anthracene	630		88 23	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Benzo[a]anthracene	1000		39	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Benzo[b]fluoranthene	1800		88 21	ug/Kg	☼	10/14/20 08:24	10/16/20 22:33	1
Benzo[k]fluoranthene	730		88 26	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Benzo[g,h,i]perylene	690		88 19	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Benzo[a]pyrene	880		38	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Chrysene	1400		88 48	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Dibenz(a,h)anthracene	280		88 56	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Fluoranthene	1800		88 23	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Fluorene	44 J		88 17	ug/Kg	≎	10/14/20 08:24	10/16/20 22:33	1
Indeno[1,2,3-cd]pyrene	720		88 43	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Naphthalene	510		88 17	ug/Kg	₽	10/14/20 08:24	10/16/20 22:33	1
Phenanthrene	860		88 23	ug/Kg	≎	10/14/20 08:24	10/16/20 22:33	1
Pyrene	1700		88 21	ug/Kg		10/14/20 08:24	10/16/20 22:33	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67	45 - 105	10/14/20 08:24	10/16/20 22:33	1
2-Fluorophenol (Surr)	75	42 - 105	10/14/20 08:24	10/16/20 22:33	1
2,4,6-Tribromophenol (Surr)	56	31 - 105	10/14/20 08:24	10/16/20 22:33	1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/14/20 08:24	10/16/20 22:33	1
Phenol-d5 (Surr)	67	47 - 105	10/14/20 08:24	10/16/20 22:33	1
Terphenyl-d14 (Surr)	71	46 - 105	10/14/20 08:24	10/16/20 22:33	1

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	1.4	0.23	pg/g	*	10/08/20 04:37	10/21/20 00:59	1
Total TCDD	9.7 q	1.4	0.23	pg/g	₩	10/08/20 04:37	10/21/20 00:59	1
1,2,3,7,8-PeCDD	5.1 J q	7.0	0.65	pg/g	₩	10/08/20 04:37	10/21/20 00:59	1
Total PeCDD	46 q	7.0	0.65	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
1,2,3,4,7,8-HxCDD	20	7.0	0.78	pg/g	₩	10/08/20 04:37	10/21/20 00:59	1
1,2,3,6,7,8-HxCDD	62	7.0	0.70	pg/g	₩	10/08/20 04:37	10/21/20 00:59	1
1,2,3,7,8,9-HxCDD	30	7.0	0.66	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1

Eurofins TestAmerica, Pittsburgh

Page 26 of 58

10/27/2020

Project/Site: Grenada, Mississippi

Client Sample ID: DW201SS

Date Collected: 10/02/20 08:40 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-7

Matrix: Solid

Percent Solids: 74.1

Job ID: 180-111805-1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	460		7.0	0.72	pg/g		10/08/20 04:37	10/21/20 00:59	1
1,2,3,4,6,7,8-HpCDD	2100	G	10	10	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
Total HpCDD	4600	G	10	10	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
OCDD	22000	EB	14	7.1	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
Total TCDF	20		1.4	0.37	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
1,2,3,7,8-PeCDF	1.6	Jq	7.0	0.54	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
2,3,4,7,8-PeCDF	2.6	J	7.0	0.56	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
Total PeCDF	64	q	7.0	0.55	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
1,2,3,4,7,8-HxCDF	13		7.0	3.4	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
1,2,3,6,7,8-HxCDF	12		7.0	3.1	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
2,3,4,6,7,8-HxCDF	7.4		7.0	3.3	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
1,2,3,7,8,9-HxCDF	ND		7.0	3.5	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
Total HxCDF	400		7.0	3.3	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
1,2,3,4,6,7,8-HpCDF	390	В	7.0	4.3	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
1,2,3,4,7,8,9-HpCDF	35		7.0	4.9	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
Total HpCDF	1700	В	7.0	4.6	pg/g	₽	10/08/20 04:37	10/21/20 00:59	1
OCDF	1800	В	14	0.48	pg/g	₩	10/08/20 04:37	10/21/20 00:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	64		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-1,2,3,7,8-PeCDD	68		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-1,2,3,6,7,8-HxCDD	64		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-1,2,3,4,6,7,8-HpCDD	64		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-OCDD	66		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-2,3,7,8-TCDF	78		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-1,2,3,7,8-PeCDF	78		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-1,2,3,4,7,8-HxCDF	85		40 - 135				10/08/20 04:37	10/21/20 00:59	1
13C-1,2,3,4,6,7,8-HpCDF	67		40 - 135				10/08/20 04:37	10/21/20 00:59	1

Method: 8290A - Dioxin	s and Furans (HR	GC/HRMS)) - RA						
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.70	J	1.4	0.19	pg/g	*	10/08/20 04:37	10/23/20 03:46	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	76		40 - 135				10/08/20 04:37	10/23/20 03:46	1
_									

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	25.9		0.1	0.1	%			10/15/20 18:23	1
Percent Solids	74.1		0.1	0.1	%			10/15/20 18:23	1
Total Solids	74		0.50	0.50	%			10/15/20 18:23	1

 Client Sample ID: KD251SS
 Lab Sample ID: 180-111805-8

 Date Collected: 10/02/20 10:33
 Matrix: Solid

 Date Received: 10/03/20 09:30
 Percent Solids: 84.6

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	78	22	ug/Kg	-	10/14/20 08:24	10/16/20 22:59	1
Acenaphthylene	ND	78	17	ug/Kg	₽	10/14/20 08:24	10/16/20 22:59	1
Anthracene	ND	78	20	ug/Kg	₩	10/14/20 08:24	10/16/20 22:59	1
Benzo[a]anthracene	ND	78	35	ug/Kg	₽	10/14/20 08:24	10/16/20 22:59	1

Eurofins TestAmerica, Pittsburgh

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD251SS Lab Sample ID: 180-111805-8

Date Collected: 10/02/20 10:33

Matrix: Solid

Date Received: 10/03/20 09:30

Percent Solids: 84.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	48	J	78	19	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 22:59	1
Benzo[k]fluoranthene	ND		78	23	ug/Kg	₩	10/14/20 08:24	10/16/20 22:59	1
Benzo[g,h,i]perylene	29	J	78	17	ug/Kg	₽	10/14/20 08:24	10/16/20 22:59	1
Benzo[a]pyrene	ND		78	34	ug/Kg	☼	10/14/20 08:24	10/16/20 22:59	1
Chrysene	ND		78	43	ug/Kg	☼	10/14/20 08:24	10/16/20 22:59	1
Dibenz(a,h)anthracene	ND		78	50	ug/Kg	⊅	10/14/20 08:24	10/16/20 22:59	1
Fluoranthene	51	J	78	21	ug/Kg	₩	10/14/20 08:24	10/16/20 22:59	1
Fluorene	ND		78	15	ug/Kg	₩	10/14/20 08:24	10/16/20 22:59	1
Indeno[1,2,3-cd]pyrene	ND		78	39	ug/Kg	⊅	10/14/20 08:24	10/16/20 22:59	1
Naphthalene	ND		78	15	ug/Kg	☼	10/14/20 08:24	10/16/20 22:59	1
Phenanthrene	ND		78	21	ug/Kg	☼	10/14/20 08:24	10/16/20 22:59	1
Pyrene	51	J	78	18	ug/Kg	☼	10/14/20 08:24	10/16/20 22:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	65		45 - 105				10/14/20 08:24	10/16/20 22:59	1
2-Fluorophenol (Surr)	68		42 - 105				10/14/20 08:24	10/16/20 22:59	1
2,4,6-Tribromophenol (Surr)	50		31 - 105				10/14/20 08:24	10/16/20 22:59	1
Nitrobenzene-d5 (Surr)	74		53 - 105				10/14/20 08:24	10/16/20 22:59	1
Phenol-d5 (Surr)	60		47 - 105				10/14/20 08:24	10/16/20 22:59	1
Terphenyl-d14 (Surr)	73		46 - 105				10/14/20 08:24	10/16/20 22:59	1

Method: 8290A - Dioxins Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.1	0.11	pg/g	\	10/08/20 04:37	10/21/20 01:44	1
Total TCDD	1.3	q	1.1	0.11	pg/g	₩	10/08/20 04:37	10/21/20 01:44	1
1,2,3,7,8-PeCDD	0.77	Jq	5.7	0.18	pg/g	₩	10/08/20 04:37	10/21/20 01:44	1
Total PeCDD	4.2	Jq	5.7	0.18	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
1,2,3,4,7,8-HxCDD	3.1	J q	5.7	0.19	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
1,2,3,6,7,8-HxCDD	7.7	q	5.7	0.17	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
1,2,3,7,8,9-HxCDD	5.7		5.7	0.16	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
Total HxCDD	66	q	5.7	0.18	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
1,2,3,4,6,7,8-HpCDD	260		5.7	2.6	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
Total HpCDD	510		5.7	2.6	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
OCDD	3700	В	11	1.9	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
2,3,7,8-TCDF	0.65	Jq	1.1	0.094	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
Total TCDF	4.1	q	1.1	0.094	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
1,2,3,7,8-PeCDF	0.47	Jq	5.7	0.12	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
2,3,4,7,8-PeCDF	0.40	J q	5.7	0.12	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
Total PeCDF	5.9	q	5.7	0.12	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
1,2,3,4,7,8-HxCDF	2.0	J q	5.7	0.38	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
1,2,3,6,7,8-HxCDF	ND		5.7	0.35	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
2,3,4,6,7,8-HxCDF	1.1	J	5.7	0.36	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
1,2,3,7,8,9-HxCDF	ND		5.7	0.38	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
Total HxCDF	36	q	5.7	0.37	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
1,2,3,4,6,7,8-HpCDF	45	В	5.7	0.66	pg/g	≎	10/08/20 04:37	10/21/20 01:44	1
1,2,3,4,7,8,9-HpCDF	3.0	J	5.7	0.76	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
Total HpCDF	140	В	5.7	0.71	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
OCDF	180	В	11	0.19	pg/g	₽	10/08/20 04:37	10/21/20 01:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	74		40 - 135				10/08/20 04:37	10/21/20 01:44	1

Eurofins TestAmerica, Pittsburgh

Page 28 of 58

2

3

5

8

10

12

13

14

10/27/2020

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD251SS

Lab Sample ID: 180-111805-8

Date Collected: 10/02/20 10:33 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 84.6

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,7,8-PeCDD	70	40 - 135	10/08/20 04:37	10/21/20 01:44	1
13C-1,2,3,6,7,8-HxCDD	61	40 - 135	10/08/20 04:37	10/21/20 01:44	1
13C-1,2,3,4,6,7,8-HpCDD	72	40 - 135	10/08/20 04:37	10/21/20 01:44	1
13C-OCDD	76	40 - 135	10/08/20 04:37	10/21/20 01:44	1
13C-2,3,7,8-TCDF	89	40 - 135	10/08/20 04:37	10/21/20 01:44	1
13C-1,2,3,7,8-PeCDF	81	40 - 135	10/08/20 04:37	10/21/20 01:44	1
13C-1,2,3,4,7,8-HxCDF	96	40 - 135	10/08/20 04:37	10/21/20 01:44	1
13C-1,2,3,4,6,7,8-HpCDF	79	40 - 135	10/08/20 04:37	10/21/20 01:44	1

General Chemistry								
Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.4	0.1	0.1	%			10/15/20 18:23	1
Percent Solids	84.6	0.1	0.1	%			10/15/20 18:23	1
Total Solids	85	0.50	0.50	%			10/15/20 18:23	1
_								

Client Sample ID: KD275SS Lab Sample ID: 180-111805-9 Date Collected: 10/02/20 12:01 **Matrix: Solid** Date Received: 10/03/20 09:30 Percent Solids: 78.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		85	24	ug/Kg	☆	10/14/20 08:24	10/16/20 23:24	1
Acenaphthylene	36	J	85	18	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Anthracene	44	J	85	22	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Benzo[a]anthracene	110		85	38	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Benzo[b]fluoranthene	150		85	21	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Benzo[k]fluoranthene	62	J	85	25	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Benzo[g,h,i]perylene	66	J	85	18	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Benzo[a]pyrene	83	J	85	36	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Chrysene	130		85	47	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Dibenz(a,h)anthracene	91		85	54	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Fluoranthene	150		85	22	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Fluorene	ND		85	17	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Indeno[1,2,3-cd]pyrene	60	J	85	42	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Naphthalene	64	J	85	16	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Phenanthrene	89		85	23	ug/Kg	₩	10/14/20 08:24	10/16/20 23:24	1
Pyrene	150		85	20	ug/Kg	₽	10/14/20 08:24	10/16/20 23:24	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67	45 - 105	10/14/20 08:24	10/16/20 23:24	1
2-Fluorophenol (Surr)	72	42 - 105	10/14/20 08:24	10/16/20 23:24	1
2,4,6-Tribromophenol (Surr)	57	31 - 105	10/14/20 08:24	10/16/20 23:24	1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/14/20 08:24	10/16/20 23:24	1
Phenol-d5 (Surr)	63	47 - 105	10/14/20 08:24	10/16/20 23:24	1
Terphenyl-d14 (Surr)	77	46 - 105	10/14/20 08:24	10/16/20 23:24	1

Method: 8290A - Dioxins	s and Furans (HRG	C/HRMS)							
Analyte	Result C	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.3	0.93	pg/g	*	10/08/20 04:37	10/21/20 02:29	1
Total TCDD	ND		1.3	0.93	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
1,2,3,7,8-PeCDD	ND		6.5	1.6	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1

Eurofins TestAmerica, Pittsburgh

Page 29 of 58

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: KD275SS

Date Collected: 10/02/20 12:01 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-9

Matrix: Solid

Percent Solids: 78.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total PeCDD		q	6.5	1.6	pg/g		10/08/20 04:37	10/21/20 02:29	1
1,2,3,4,7,8-HxCDD	4.3	J	6.5	1.3	pg/g	₽	10/08/20 04:37	10/21/20 02:29	1
1,2,3,6,7,8-HxCDD	8.9		6.5	1.1	pg/g	₽	10/08/20 04:37	10/21/20 02:29	1
1,2,3,7,8,9-HxCDD	6.2	J	6.5	1.1	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
Total HxCDD	65		6.5	1.2	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
1,2,3,4,6,7,8-HpCDD	260		6.5	2.9	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
Total HpCDD	550		6.5	2.9	pg/g		10/08/20 04:37	10/21/20 02:29	1
OCDD	3400	В	13	7.6	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
Total TCDF	6.1	q	1.3	0.66	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
1,2,3,7,8-PeCDF	ND		6.5	0.88	pg/g		10/08/20 04:37	10/21/20 02:29	1
2,3,4,7,8-PeCDF	ND		6.5	0.91	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
Total PeCDF	2.7	Jq	6.5	0.89	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
1,2,3,4,7,8-HxCDF	ND		6.5		pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
1,2,3,6,7,8-HxCDF	ND		6.5		pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
2,3,4,6,7,8-HxCDF	2.1	J	6.5		pg/g	☆	10/08/20 04:37	10/21/20 02:29	1
1,2,3,7,8,9-HxCDF	ND		6.5	1.7	pg/g		10/08/20 04:37	10/21/20 02:29	1
Total HxCDF	36	q	6.5	1.7		≎	10/08/20 04:37	10/21/20 02:29	1
1,2,3,4,6,7,8-HpCDF	47	Bq	6.5	2.3	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
1,2,3,4,7,8,9-HpCDF	2.7		6.5		pg/g		10/08/20 04:37	10/21/20 02:29	1
Total HpCDF	130	Bq	6.5		pg/g	≎	10/08/20 04:37	10/21/20 02:29	1
OCDF	140	В	13	1.0	pg/g	₩	10/08/20 04:37	10/21/20 02:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-1,2,3,7,8-PeCDD	71		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-1,2,3,6,7,8-HxCDD	77		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-1,2,3,4,6,7,8-HpCDD	75		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-OCDD	74		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-2,3,7,8-TCDF	93		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-1,2,3,7,8-PeCDF	82		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-1,2,3,4,7,8-HxCDF	101		40 - 135				10/08/20 04:37	10/21/20 02:29	1
13C-1,2,3,4,6,7,8-HpCDF	84		40 - 135				10/08/20 04:37	10/21/20 02:29	1
Method: 8290A - Dioxins	and Europe (UD	CC/UDMC) DA						
Analyte		Qualifier) - KA RL	FDI	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.94		1.3		pg/g			10/23/20 04:24	1
Isotope Dilution	%Recovery		Limits		, , ,		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	84		40 - 135					10/23/20 04:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac
			0.1	0.1		=		10/15/20 18:23	1
Percent Moisture	21.3		U. I	U. I	70			10/10/20 10.20	
Percent Moisture Percent Solids	21.3 78.7		0.1	0.1				10/15/20 18:23	1

Lab Sample ID: 180-111805-10

Client Sample ID: KD297SS Date Collected: 10/02/20 14:29 **Matrix: Solid** Date Received: 10/03/20 09:30

Percent Solids: 80.0

Job ID: 180-111805-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		82	24	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 16:07	1
Acenaphthylene	ND		82	18	ug/Kg	₩	10/14/20 08:24	10/16/20 16:07	1
Anthracene	ND		82	21	ug/Kg	₩	10/14/20 08:24	10/16/20 16:07	1
Benzo[a]anthracene	ND		82	37	ug/Kg	₽	10/14/20 08:24	10/16/20 16:07	1
Benzo[b]fluoranthene	32	J	82	20	ug/Kg	₩	10/14/20 08:24	10/16/20 16:07	1
Benzo[k]fluoranthene	ND		82	25	ug/Kg	₽	10/14/20 08:24	10/16/20 16:07	1
Benzo[g,h,i]perylene	ND		82	18	ug/Kg	⊅	10/14/20 08:24	10/16/20 16:07	1
Benzo[a]pyrene	ND		82	35	ug/Kg	₩	10/14/20 08:24	10/16/20 16:07	1
Chrysene	ND		82	45	ug/Kg	≎	10/14/20 08:24	10/16/20 16:07	1
Dibenz(a,h)anthracene	ND		82	52	ug/Kg	₽	10/14/20 08:24	10/16/20 16:07	1
Fluoranthene	34	J	82	22	ug/Kg	≎	10/14/20 08:24	10/16/20 16:07	1
Fluorene	ND		82	16	ug/Kg	≎	10/14/20 08:24	10/16/20 16:07	1
Indeno[1,2,3-cd]pyrene	ND		82	41	ug/Kg	₽	10/14/20 08:24	10/16/20 16:07	1
Naphthalene	28	J	82	16	ug/Kg	≎	10/14/20 08:24	10/16/20 16:07	1
Phenanthrene	27	J	82	22	ug/Kg	₽	10/14/20 08:24	10/16/20 16:07	1
Pyrene	40	J	82	19	ug/Kg	₩	10/14/20 08:24	10/16/20 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	67		45 - 105				10/14/20 08:24	10/16/20 16:07	1
2-Fluorophenol (Surr)	68		42 - 105				10/14/20 08:24	10/16/20 16:07	1
2,4,6-Tribromophenol (Surr)	44		31 - 105				10/14/20 08:24	10/16/20 16:07	1
Nitrobenzene-d5 (Surr)	76		53 - 105				10/14/20 08:24	10/16/20 16:07	1
Phenol-d5 (Surr)	62		47 - 105				10/14/20 08:24	10/16/20 16:07	1
Terphenyl-d14 (Surr)	79		46 - 105				10/14/20 08:24	10/16/20 16:07	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.41	Jq	1.3	0.13	pg/g		10/08/20 04:37	10/21/20 03:14	1
Total TCDD	5.2	q	1.3	0.13	pg/g	☼	10/08/20 04:37	10/21/20 03:14	1
1,2,3,7,8-PeCDD	1.2	J	6.3	0.22	pg/g	☼	10/08/20 04:37	10/21/20 03:14	1
Total PeCDD	13	q	6.3	0.22	pg/g	₩	10/08/20 04:37	10/21/20 03:14	1
1,2,3,4,7,8-HxCDD	3.0	J	6.3	0.25	pg/g	☼	10/08/20 04:37	10/21/20 03:14	1
1,2,3,6,7,8-HxCDD	6.2	J	6.3	0.22	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
1,2,3,7,8,9-HxCDD	5.5	J	6.3	0.21	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
Total HxCDD	64	q	6.3	0.23	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
1,2,3,4,6,7,8-HpCDD	240		6.3	2.1	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
Total HpCDD	510		6.3	2.1	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
OCDD	3700	В	13	1.7	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
Total TCDF	11	q	1.3	0.12	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
1,2,3,7,8-PeCDF	0.55	Jq	6.3	0.17	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
2,3,4,7,8-PeCDF	0.79	J	6.3	0.17	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
Total PeCDF	9.7	q	6.3	0.17	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
1,2,3,4,7,8-HxCDF	2.3	J	6.3	0.36	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
1,2,3,6,7,8-HxCDF	1.5	J	6.3	0.33	pg/g	☼	10/08/20 04:37	10/21/20 03:14	1
2,3,4,6,7,8-HxCDF	1.2	J	6.3	0.34	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
1,2,3,7,8,9-HxCDF	ND		6.3	0.36	pg/g	₩	10/08/20 04:37	10/21/20 03:14	1
Total HxCDF	33	q	6.3	0.35	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
1,2,3,4,6,7,8-HpCDF	39	В	6.3	0.52	pg/g	≎	10/08/20 04:37	10/21/20 03:14	1
1,2,3,4,7,8,9-HpCDF	2.3	J	6.3	0.60	pg/g	₽	10/08/20 04:37	10/21/20 03:14	1
Total HpCDF	100	В	6.3	0.56	pg/g	☆	10/08/20 04:37	10/21/20 03:14	1

Eurofins TestAmerica, Pittsburgh

Project/Site: Grenada, Mississippi

Client Sample ID: KD297SS

Lab Sample ID: 180-111805-10 Date Collected: 10/02/20 14:29 **Matrix: Solid**

Date Received: 10/03/20 09:30 Percent Solids: 80.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	130	В	13	0.14	pg/g	₩	10/08/20 04:37	10/21/20 03:14	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-1,2,3,7,8-PeCDD	72		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-1,2,3,6,7,8-HxCDD	77		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-1,2,3,4,6,7,8-HpCDD	76		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-OCDD	81		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-2,3,7,8-TCDF	92		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-1,2,3,7,8-PeCDF	84		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-1,2,3,4,7,8-HxCDF	101		40 - 135				10/08/20 04:37	10/21/20 03:14	1
13C-1,2,3,4,6,7,8-HpCDF	85		40 - 135				10/08/20 04:37	10/21/20 03:14	1

Method: 8290A - Dioxins and	Furans (HR	GC/HRMS)	- RA						
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.75	J	1.3	0.12	pg/g	*	10/08/20 04:37	10/23/20 05:02	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	91		40 - 135				10/08/20 04:37	10/23/20 05:02	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.0		0.1	0.1	%			10/15/20 18:23	1
Percent Solids	80.0		0.1	0.1	%			10/15/20 18:23	1
Total Solids	80		0.50	0.50	%			10/15/20 18:23	1

Lab Sample ID: 180-111805-11 **Client Sample ID: KD010SS-EB** Date Collected: 09/30/20 17:50 **Matrix: Water** Date Received: 10/03/20 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.8	0.60	ug/L		10/07/20 10:36	10/16/20 21:37	1
Acenaphthylene	ND		1.8	0.60	ug/L		10/07/20 10:36	10/16/20 21:37	1
Anthracene	ND		1.8	0.45	ug/L		10/07/20 10:36	10/16/20 21:37	1
Benzo[a]anthracene	ND		1.8	0.69	ug/L		10/07/20 10:36	10/16/20 21:37	1
Benzo[b]fluoranthene	ND		1.8	0.90	ug/L		10/07/20 10:36	10/16/20 21:37	1
Benzo[k]fluoranthene	ND		1.8	0.81	ug/L		10/07/20 10:36	10/16/20 21:37	1
Benzo[g,h,i]perylene	ND		1.8	0.64	ug/L		10/07/20 10:36	10/16/20 21:37	1
Benzo[a]pyrene	ND		1.8	0.49	ug/L		10/07/20 10:36	10/16/20 21:37	1
Chrysene	ND		1.8	0.75	ug/L		10/07/20 10:36	10/16/20 21:37	1
Dibenz(a,h)anthracene	ND		1.8	0.67	ug/L		10/07/20 10:36	10/16/20 21:37	1
Fluoranthene	ND		1.8	0.56	ug/L		10/07/20 10:36	10/16/20 21:37	1
Fluorene	ND		1.8	0.64	ug/L		10/07/20 10:36	10/16/20 21:37	1
Indeno[1,2,3-cd]pyrene	ND		1.8	0.79	ug/L		10/07/20 10:36	10/16/20 21:37	1
Naphthalene	ND		1.8	0.55	ug/L		10/07/20 10:36	10/16/20 21:37	1
Phenanthrene	ND		1.8	0.51	ug/L		10/07/20 10:36	10/16/20 21:37	1
Pyrene	ND		1.8	0.50	ug/L		10/07/20 10:36	10/16/20 21:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	78		44 - 105				10/07/20 10:36	10/16/20 21:37	1
2-Fluorophenol (Surr)	74		38 - 105				10/07/20 10:36	10/16/20 21:37	1

Eurofins TestAmerica, Pittsburgh

Page 32 of 58

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Client Sample ID: KD010SS-EB

Lab Sample ID: 180-111805-11

Date Collected: 09/30/20 17:50 **Matrix: Water** Date Received: 10/03/20 09:30

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery Qualify	ier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	76	38 - 111	10/07/20 10:36	10/16/20 21:37	1
Nitrobenzene-d5 (Surr)	81	45 - 108	10/07/20 10:36	10/16/20 21:37	1
Phenol-d5 (Surr)	83	40 - 105	10/07/20 10:36	10/16/20 21:37	1
Terphenyl-d14 (Surr)	71	20 - 128	10/07/20 10:36	10/16/20 21:37	1

Method: 8290A - Dioxins a	•	•							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		9.7	0.39	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total TCDD	ND		9.7	0.39	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,7,8-PeCDD	ND		48	0.51	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total PeCDD	ND		48	0.51	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,4,7,8-HxCDD	ND		48	0.84	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,6,7,8-HxCDD	ND		48	0.83	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,7,8,9-HxCDD	ND		48	0.76	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total HxCDD	ND		48	0.84	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,4,6,7,8-HpCDD	0.73	JB	48	0.24	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total HpCDD	1.6	JqB	48	0.24	pg/L		10/07/20 14:02	10/10/20 13:02	1
OCDD	2.1	JqB	97	0.27	pg/L		10/07/20 14:02	10/10/20 13:02	1
2,3,7,8-TCDF	0.67	JqB	9.7	0.35	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total TCDF	0.67	JqB	9.7	0.35	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,7,8-PeCDF	ND		48	0.40	pg/L		10/07/20 14:02	10/10/20 13:02	1
2,3,4,7,8-PeCDF	ND		48	0.41	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total PeCDF	ND		48	0.41	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,4,7,8-HxCDF	ND		48	0.43	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,6,7,8-HxCDF	ND		48	0.41	pg/L		10/07/20 14:02	10/10/20 13:02	1
2,3,4,6,7,8-HxCDF	ND	*1	48	0.44	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,7,8,9-HxCDF	ND		48	0.44	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total HxCDF	ND		48	0.44	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,4,6,7,8-HpCDF	ND		48	0.18	pg/L		10/07/20 14:02	10/10/20 13:02	1
1,2,3,4,7,8,9-HpCDF	ND		48	0.21	pg/L		10/07/20 14:02	10/10/20 13:02	1
Total HpCDF	ND		48	0.21	pg/L		10/07/20 14:02	10/10/20 13:02	1
OCDF	0.62	Jq	97	0.29	pg/L		10/07/20 14:02	10/10/20 13:02	1

Isotope Dilution	%Recovery Qualifi	er Limits	Prepared Analyze	d Dil Fac
13C-2,3,7,8-TCDD	87	40 - 135	10/07/20 14:02 10/10/20 13	3:02 1
13C-1,2,3,7,8-PeCDD	75	40 - 135	10/07/20 14:02 10/10/20 1	3:02 1
13C-1,2,3,6,7,8-HxCDD	92	40 - 135	10/07/20 14:02 10/10/20 1:	3:02 1
13C-1,2,3,4,6,7,8-HpCDD	88	40 - 135	10/07/20 14:02 10/10/20 1	3:02 1
13C-OCDD	97	40 - 135	10/07/20 14:02 10/10/20 1:	3:02 1
13C-2,3,7,8-TCDF	85	40 - 135	10/07/20 14:02 10/10/20 13	3:02 1
13C-1,2,3,7,8-PeCDF	74	40 - 135	10/07/20 14:02 10/10/20 1	3:02 1
13C-1,2,3,4,7,8-HxCDF	89	40 - 135	10/07/20 14:02 10/10/20 13	3:02 1
13C-1,2,3,4,6,7,8-HpCDF	88	40 - 135	10/07/20 14:02 10/10/20 13	3:02 1

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi

rioject/Site. Grenada, Mississippi

Client Sample ID: KD297SS-EB

Date Collected: 10/02/20 15:20 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.9	0.65	ug/L		10/07/20 10:36	10/16/20 22:04	1
Acenaphthylene	ND		1.9	0.65	ug/L		10/07/20 10:36	10/16/20 22:04	1
Anthracene	ND		1.9	0.49	ug/L		10/07/20 10:36	10/16/20 22:04	1
Benzo[a]anthracene	ND		1.9	0.75	ug/L		10/07/20 10:36	10/16/20 22:04	1
Benzo[b]fluoranthene	ND		1.9	0.97	ug/L		10/07/20 10:36	10/16/20 22:04	1
Benzo[k]fluoranthene	ND		1.9	0.88	ug/L		10/07/20 10:36	10/16/20 22:04	1
Benzo[g,h,i]perylene	ND		1.9	0.69	ug/L		10/07/20 10:36	10/16/20 22:04	1
Benzo[a]pyrene	ND		1.9	0.53	ug/L		10/07/20 10:36	10/16/20 22:04	1
Chrysene	ND		1.9	0.81	ug/L		10/07/20 10:36	10/16/20 22:04	1
Dibenz(a,h)anthracene	ND		1.9	0.72	ug/L		10/07/20 10:36	10/16/20 22:04	1
Fluoranthene	ND		1.9	0.60	ug/L		10/07/20 10:36	10/16/20 22:04	1
Fluorene	ND		1.9	0.69	ug/L		10/07/20 10:36	10/16/20 22:04	1
Indeno[1,2,3-cd]pyrene	ND		1.9	0.85	ug/L		10/07/20 10:36	10/16/20 22:04	1
Naphthalene	ND		1.9	0.59	ug/L		10/07/20 10:36	10/16/20 22:04	1
Phenanthrene	ND		1.9	0.55	ug/L		10/07/20 10:36	10/16/20 22:04	1
Pyrene	ND		1.9	0.54	ug/L		10/07/20 10:36	10/16/20 22:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	84		44 - 105				10/07/20 10:36	10/16/20 22:04	1
2-Fluorophenol (Surr)	82		38 - 105				10/07/20 10:36	10/16/20 22:04	1
2,4,6-Tribromophenol (Surr)	82		38 - 111				10/07/20 10:36	10/16/20 22:04	1
Nitrobenzene-d5 (Surr)	88		45 - 108				10/07/20 10:36	10/16/20 22:04	1
Phenol-d5 (Surr)	91		40 - 105				10/07/20 10:36	10/16/20 22:04	1
Terphenyl-d14 (Surr)	78		20 - 128				10/07/20 10:36	10/16/20 22:04	1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.86	Jq	9.9	0.36	pg/L		10/07/20 14:02	10/10/20 13:50	1
Total TCDD	0.86	J q	9.9	0.36	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,7,8-PeCDD	ND		50	0.48	pg/L		10/07/20 14:02	10/10/20 13:50	1
Total PeCDD	ND		50	0.48	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,4,7,8-HxCDD	1.8	J	50	0.84	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,6,7,8-HxCDD	ND		50	0.84	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,7,8,9-HxCDD	ND		50	0.77	pg/L		10/07/20 14:02	10/10/20 13:50	1
Total HxCDD	1.8	J	50	0.82	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,4,6,7,8-HpCDD	0.62	JB	50	0.30	pg/L		10/07/20 14:02	10/10/20 13:50	1
Total HpCDD	1.9	JB	50	0.30	pg/L		10/07/20 14:02	10/10/20 13:50	1
OCDD	3.2	JqB	99	0.30	pg/L		10/07/20 14:02	10/10/20 13:50	1
2,3,7,8-TCDF	1.0	JB	9.9	0.36	pg/L		10/07/20 14:02	10/10/20 13:50	1
Total TCDF	1.0	JB	9.9	0.36	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,7,8-PeCDF	ND		50	0.37	pg/L		10/07/20 14:02	10/10/20 13:50	1
2,3,4,7,8-PeCDF	ND		50	0.38	pg/L		10/07/20 14:02	10/10/20 13:50	1
Total PeCDF	ND		50	0.38	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,4,7,8-HxCDF	ND		50	0.46	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,6,7,8-HxCDF	ND		50	0.44	pg/L		10/07/20 14:02	10/10/20 13:50	1
2,3,4,6,7,8-HxCDF	ND	*1	50	0.47	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,7,8,9-HxCDF	ND		50	0.46	pg/L		10/07/20 14:02	10/10/20 13:50	1
Total HxCDF	ND		50	0.47	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,4,6,7,8-HpCDF	ND		50	0.17	pg/L		10/07/20 14:02	10/10/20 13:50	1
1,2,3,4,7,8,9-HpCDF	ND		50	0.20	pg/L		10/07/20 14:02	10/10/20 13:50	1

Eurofins TestAmerica, Pittsburgh

Page 34 of 58

2

3

5

6

0

10

12

13

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Client Sample ID: KD297SS-EB

Date Collected: 10/02/20 15:20 Date Received: 10/03/20 09:30 Lab Sample ID: 180-111805-12

Matrix: Water

Method: 8290A - Dioxins and Furans	(HRGC/HRMS) (Continued)
------------------------------------	-------------------------

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDF	ND		50	0.20	pg/L		10/07/20 14:02	10/10/20 13:50	1
OCDF	0.68	Jq	99	0.39	pg/L		10/07/20 14:02	10/10/20 13:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	87		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-1,2,3,7,8-PeCDD	78		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-1,2,3,6,7,8-HxCDD	88		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-1,2,3,4,6,7,8-HpCDD	87		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-OCDD	100		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-2,3,7,8-TCDF	83		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-1,2,3,7,8-PeCDF	73		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-1,2,3,4,7,8-HxCDF	92		40 - 135				10/07/20 14:02	10/10/20 13:50	1
13C-1,2,3,4,6,7,8-HpCDF	88		40 - 135				10/07/20 14:02	10/10/20 13:50	1

Client Sample ID: KD225WSS-EB

Date Collected: 10/01/20 17:35

Date Received: 10/03/20 09:30

Lab Sample ID: 180-111805-13

Matrix: Water

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		2.1	0.71	ug/L		10/07/20 10:36	10/16/20 22:30	1
Acenaphthylene	ND		2.1	0.71	ug/L		10/07/20 10:36	10/16/20 22:30	1
Anthracene	ND		2.1	0.53	ug/L		10/07/20 10:36	10/16/20 22:30	1
Benzo[a]anthracene	ND		2.1	0.82	ug/L		10/07/20 10:36	10/16/20 22:30	1
Benzo[b]fluoranthene	ND		2.1	1.1	ug/L		10/07/20 10:36	10/16/20 22:30	1
Benzo[k]fluoranthene	ND		2.1	0.96	ug/L		10/07/20 10:36	10/16/20 22:30	1
Benzo[g,h,i]perylene	ND		2.1	0.75	ug/L		10/07/20 10:36	10/16/20 22:30	1
Benzo[a]pyrene	ND		2.1	0.58	ug/L		10/07/20 10:36	10/16/20 22:30	1
Chrysene	ND		2.1	0.88	ug/L		10/07/20 10:36	10/16/20 22:30	1
Dibenz(a,h)anthracene	ND		2.1	0.78	ug/L		10/07/20 10:36	10/16/20 22:30	1
Fluoranthene	ND		2.1	0.65	ug/L		10/07/20 10:36	10/16/20 22:30	1
Fluorene	ND		2.1	0.75	ug/L		10/07/20 10:36	10/16/20 22:30	1
Indeno[1,2,3-cd]pyrene	ND		2.1	0.92	ug/L		10/07/20 10:36	10/16/20 22:30	1
Naphthalene	ND		2.1	0.64	ug/L		10/07/20 10:36	10/16/20 22:30	1
Phenanthrene	ND		2.1	0.60	ug/L		10/07/20 10:36	10/16/20 22:30	1
Pyrene	ND		2.1	0.59	ug/L		10/07/20 10:36	10/16/20 22:30	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	86	44 - 105	10/07/20 10:36	10/16/20 22:30	1
2-Fluorophenol (Surr)	81	38 - 105	10/07/20 10:36	10/16/20 22:30	1
2,4,6-Tribromophenol (Surr)	84	38 - 111	10/07/20 10:36	10/16/20 22:30	1
Nitrobenzene-d5 (Surr)	90	45 - 108	10/07/20 10:36	10/16/20 22:30	1
Phenol-d5 (Surr)	89	40 - 105	10/07/20 10:36	10/16/20 22:30	1
Terphenyl-d14 (Surr)	84	20 - 128	10/07/20 10:36	10/16/20 22:30	1

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Michiga. 0200A Dioxilio	ana i arans (intee	<i>7</i> 11 (11(0)						
Analyte	Result Qu	ualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	9.6	0.37	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total TCDD	ND	9.6	0.37	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,7,8-PeCDD	ND	48	0.50	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total PeCDD	ND	48	0.50	pg/L		10/07/20 14:02	10/10/20 14:37	1

Eurofins TestAmerica, Pittsburgh

Page 35 of 58

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Date Received: 10/03/20 09:30

13C-1,2,3,4,6,7,8-HpCDD

13C-OCDD

13C-2,3,7,8-TCDF

13C-1,2,3,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

Client Sample ID: KD225WSS-EB

Date Collected: 10/01/20 17:35

90

100

86

73

88

89

Lab Sample ID: 180-111805-13

Matrix: Water

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8-HxCDD	1.0	Jq	48	0.95	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,6,7,8-HxCDD	ND		48	0.94	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,7,8,9-HxCDD	ND		48	0.87	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total HxCDD	1.0	Jq	48	0.92	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,4,6,7,8-HpCDD	1.1	JB	48	0.22	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total HpCDD	2.8	JB	48	0.22	pg/L		10/07/20 14:02	10/10/20 14:37	1
OCDD	3.5	JB	96	0.33	pg/L		10/07/20 14:02	10/10/20 14:37	1
2,3,7,8-TCDF	ND		9.6	0.28	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total TCDF	ND		9.6	0.28	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,7,8-PeCDF	ND		48	0.33	pg/L		10/07/20 14:02	10/10/20 14:37	1
2,3,4,7,8-PeCDF	ND		48	0.34	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total PeCDF	ND		48	0.34	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,4,7,8-HxCDF	ND		48	0.42	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,6,7,8-HxCDF	ND		48	0.40	pg/L		10/07/20 14:02	10/10/20 14:37	1
2,3,4,6,7,8-HxCDF	ND	*1	48	0.43	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,7,8,9-HxCDF	ND		48	0.42	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total HxCDF	ND		48	0.43	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,4,6,7,8-HpCDF	ND		48	0.19	pg/L		10/07/20 14:02	10/10/20 14:37	1
1,2,3,4,7,8,9-HpCDF	ND		48	0.22	pg/L		10/07/20 14:02	10/10/20 14:37	1
Total HpCDF	ND		48	0.22	pg/L		10/07/20 14:02	10/10/20 14:37	1
OCDF	ND		96	0.33	pg/L		10/07/20 14:02	10/10/20 14:37	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	89		40 - 135				10/07/20 14:02	10/10/20 14:37	1
13C-1,2,3,7,8-PeCDD	80		40 - 135				10/07/20 14:02	10/10/20 14:37	1
13C-1,2,3,6,7,8-HxCDD	93		40 - 135				10/07/20 14:02	10/10/20 14:37	1

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135

8

40

11

13

14

10/07/20 14:02 10/10/20 14:37

10/07/20 14:02 10/10/20 14:37 10/07/20 14:02 10/10/20 14:37

10/07/20 14:02 10/10/20 14:37

10/07/20 14:02 10/10/20 14:37

10/07/20 14:02 10/10/20 14:37

Signify Takes Take CCO

Client: Tetra Tech GEO

Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 180-332595/1-A

Matrix: Water

Analysis Batch: 333722

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 332595

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.9	0.65	ug/L		10/07/20 10:29	10/16/20 15:23	1
Acenaphthylene	ND		1.9	0.65	ug/L		10/07/20 10:29	10/16/20 15:23	1
Anthracene	ND		1.9	0.49	ug/L		10/07/20 10:29	10/16/20 15:23	1
Benzo[a]anthracene	ND		1.9	0.75	ug/L		10/07/20 10:29	10/16/20 15:23	1
Benzo[b]fluoranthene	ND		1.9	0.97	ug/L		10/07/20 10:29	10/16/20 15:23	1
Benzo[k]fluoranthene	ND		1.9	0.88	ug/L		10/07/20 10:29	10/16/20 15:23	1
Benzo[g,h,i]perylene	ND		1.9	0.69	ug/L		10/07/20 10:29	10/16/20 15:23	1
Benzo[a]pyrene	ND		1.9	0.53	ug/L		10/07/20 10:29	10/16/20 15:23	1
Chrysene	ND		1.9	0.81	ug/L		10/07/20 10:29	10/16/20 15:23	1
Dibenz(a,h)anthracene	ND		1.9	0.72	ug/L		10/07/20 10:29	10/16/20 15:23	1
Fluoranthene	ND		1.9	0.60	ug/L		10/07/20 10:29	10/16/20 15:23	1
Fluorene	ND		1.9	0.69	ug/L		10/07/20 10:29	10/16/20 15:23	1
Indeno[1,2,3-cd]pyrene	ND		1.9	0.85	ug/L		10/07/20 10:29	10/16/20 15:23	1
Naphthalene	ND		1.9	0.59	ug/L		10/07/20 10:29	10/16/20 15:23	1
Phenanthrene	ND		1.9	0.55	ug/L		10/07/20 10:29	10/16/20 15:23	1
Pyrene	ND		1.9	0.54	ug/L		10/07/20 10:29	10/16/20 15:23	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	61		44 - 105	10/07/20 10:29	10/16/20 15:23	1
2-Fluorophenol (Surr)	68		38 - 105	10/07/20 10:29	10/16/20 15:23	1
2,4,6-Tribromophenol (Surr)	58		38 - 111	10/07/20 10:29	10/16/20 15:23	1
Nitrobenzene-d5 (Surr)	67		45 - 108	10/07/20 10:29	10/16/20 15:23	1
Phenol-d5 (Surr)	71		40 - 105	10/07/20 10:29	10/16/20 15:23	1
Terphenyl-d14 (Surr)	64		20 - 128	10/07/20 10:29	10/16/20 15:23	1

Lab Sample ID: LCS 180-332595/2-A

Matrix: Water

Analysis Batch: 333722

Client Sample ID): Lab (Contro	I Sample
	Prep	Type:	Total/NA

Prep Batch: 332595

Analysis Baton. 300722	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	200	135		ug/L		67	51 - 100
Acenaphthylene	200	143		ug/L		71	47 - 100
Anthracene	200	149		ug/L		74	51 - 100
Benzo[a]anthracene	200	155		ug/L		78	49 - 100
Benzo[b]fluoranthene	200	125		ug/L		63	47 - 100
Benzo[k]fluoranthene	200	137		ug/L		69	47 - 100
Benzo[g,h,i]perylene	200	158		ug/L		79	50 - 100
Benzo[a]pyrene	200	143		ug/L		72	49 - 100
Chrysene	200	155		ug/L		78	49 - 100
Dibenz(a,h)anthracene	200	157		ug/L		78	50 - 100
Fluoranthene	200	164		ug/L		82	52 - 100
Fluorene	200	140		ug/L		70	52 - 100
Indeno[1,2,3-cd]pyrene	200	156		ug/L		78	51 - 100
Naphthalene	200	140		ug/L		70	53 - 100
Phenanthrene	200	140		ug/L		70	49 - 100
Pyrene	200	137		ug/L		68	45 - 100

2

3

4

6

8

10

11 10

13

Ш

Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-332595/2-A

Matrix: Water

Client: Tetra Tech GEO

Analysis Batch: 333722

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 332595

LCS LCS %Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 65 44 - 105 2-Fluorophenol (Surr) 77 38 - 105 2,4,6-Tribromophenol (Surr) 69 38 - 111 Nitrobenzene-d5 (Surr) 74 45 - 108 Phenol-d5 (Surr) 82 40 - 105

Lab Sample ID: MB 180-333372/1-A Client Sample ID: Method Blank

20 - 128

Matrix: Solid

Terphenyl-d14 (Surr)

Analysis Batch: 333708

Prep Type: Total/NA

Prep Batch: 333372

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		67	19	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Acenaphthylene	ND		67	15	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Anthracene	ND		67	17	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]anthracene	ND		67	30	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[b]fluoranthene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[k]fluoranthene	ND		67	20	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[g,h,i]perylene	ND		67	14	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]pyrene	ND		67	29	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Chrysene	ND		67	37	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Dibenz(a,h)anthracene	ND		67	43	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Fluoranthene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Fluorene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Indeno[1,2,3-cd]pyrene	ND		67	33	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Naphthalene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Phenanthrene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Pyrene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64		45 - 105	10/14/20 08:24	10/16/20 12:16	1
2-Fluorophenol (Surr)	64		42 - 105	10/14/20 08:24	10/16/20 12:16	1
2,4,6-Tribromophenol (Surr)	39		31 - 105	10/14/20 08:24	10/16/20 12:16	1
Nitrobenzene-d5 (Surr)	70		53 - 105	10/14/20 08:24	10/16/20 12:16	1
Phenol-d5 (Surr)	61		47 - 105	10/14/20 08:24	10/16/20 12:16	1
Terphenyl-d14 (Surr)	70		46 - 105	10/14/20 08:24	10/16/20 12:16	1

Lab Sample ID: LCS 180-333372/2-A

Matrix: Solid

Analysis Batch: 333708

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 333372

	Бріке	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	6670	5160		ug/Kg		77	49 - 107	
Acenaphthylene	6670	5240		ug/Kg		79	46 - 110	
Anthracene	6670	5380		ug/Kg		81	47 - 116	
Benzo[a]anthracene	6670	4840		ug/Kg		73	48 - 101	
Benzo[b]fluoranthene	6670	4630		ug/Kg		69	46 - 100	
Benzo[k]fluoranthene	6670	4660		ug/Kg		70	43 - 114	

Chiles

Eurofins TestAmerica, Pittsburgh

Page 38 of 58

6

3

4

6

8

10

12

4 4

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-333372/2-A **Matrix: Solid**

Analysis Batch: 333708

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 333372

Job ID: 180-111805-1

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Benzo[g,h,i]perylene 6670 4500 ug/Kg 68 49 - 111 ug/Kg Benzo[a]pyrene 6670 4770 72 46 - 114 6670 4350 Chrysene ug/Kg 65 49 - 100 Dibenz(a,h)anthracene 6670 4320 ug/Kg 65 49 - 112 Fluoranthene 6670 5050 76 54 - 105 ug/Kg Fluorene 6670 5240 ug/Kg 79 50 - 106 Indeno[1,2,3-cd]pyrene 6670 5010 ug/Kg 75 49 - 112 4820 72 Naphthalene 6670 ug/Kg 53 - 100 5130 77 46 - 111 Phenanthrene 6670 ug/Kg 6670 4880 73 49 - 100 Pyrene ug/Kg

LCS LCS %Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 80 45 - 105 90 42 - 105 2-Fluorophenol (Surr) 80 31 - 105 2,4,6-Tribromophenol (Surr) Nitrobenzene-d5 (Surr) 88 53 - 105 Phenol-d5 (Surr) 78 47 - 105 Terphenyl-d14 (Surr) 85 46 - 105

Lab Sample ID: 180-111805-10 MS

Matrix: Solid

Terphenyl-d14 (Surr)

Analysis Batch: 333708

Client Sample ID: KD297SS Prep Type: Total/NA Prep Batch: 333372

Sample Sample Spike MS MS %Rec. Analyte **Result Qualifier** Added Result Qualifier Unit D %Rec Limits ND 8340 5710 68 49 - 107 Acenaphthene ug/Kg ₩ 8340 70 Acenaphthylene ND 5810 ug/Kg ₩ 46 - 110 Anthracene ND 8340 5740 69 ug/Kg ₩ 47 - 116ND 8340 5210 62 Benzo[a]anthracene ug/Kg Ö 48 - 101 4830 58 Benzo[b]fluoranthene 32 8340 ug/Kg Ö 46 - 100 Benzo[k]fluoranthene ND 8340 4880 ug/Kg ₩ 59 43 - 114 ND 67 Benzo[g,h,i]perylene 8340 5620 ∜ 49 - 111 ug/Kg Benzo[a]pyrene ND 8340 5020 ₩ 60 46 - 114 ug/Kg ND 8340 4550 55 Chrysene ug/Kg ∜ 49 - 100 Dibenz(a,h)anthracene ND 8340 5200 ₩ 62 49 - 112 ug/Kg Fluoranthene 8340 5470 ₩ 65 54 - 105 34 ug/Kg 8340 5740 69 Fluorene ND ug/Kg ☼ 50 - 106 Indeno[1,2,3-cd]pyrene ND 8340 6200 ug/Kg ₩ 74 49 - 112 Naphthalene 28 J 8340 5480 65 53 - 100 ug/Kg ₩ Phenanthrene 27 8340 5560 ug/Kg ₩ 66 46 - 111 8340 74 Pyrene 40 6210 ug/Kg 49 - 100

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	71		45 - 105
2-Fluorophenol (Surr)	79		42 - 105
2,4,6-Tribromophenol (Surr)	63		31 - 105
Nitrobenzene-d5 (Surr)	80		53 - 105
Phenol-d5 (Surr)	69		47 - 105

MS MS

70

Eurofins TestAmerica, Pittsburgh

Page 39 of 58

46 - 105

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: 180-111805-10 MSD

Matrix: Solid

Analysis Batch: 333809

Client Sample ID: KD297SS

Prep Type: Total/NA Prep Batch: 333372

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	ND		8390	5710		ug/Kg	<u></u>	68	49 - 107	0	20
Acenaphthylene	ND		8390	5750		ug/Kg	☆	69	46 - 110	1	20
Anthracene	ND		8390	5520		ug/Kg	☆	66	47 - 116	4	20
Benzo[a]anthracene	ND		8390	5200		ug/Kg	☆	62	48 - 101	0	21
Benzo[b]fluoranthene	32	J	8390	4780		ug/Kg	☆	57	46 - 100	1	20
Benzo[k]fluoranthene	ND		8390	4780		ug/Kg	☆	57	43 - 114	2	20
Benzo[g,h,i]perylene	ND		8390	4580	F2	ug/Kg	☆	55	49 - 111	20	19
Benzo[a]pyrene	ND		8390	4780		ug/Kg	≎	57	46 - 114	5	20
Chrysene	ND		8390	4540		ug/Kg	☆	54	49 - 100	0	20
Dibenz(a,h)anthracene	ND		8390	4400		ug/Kg	☆	52	49 - 112	17	21
Fluoranthene	34	J	8390	5130		ug/Kg	≎	61	54 - 105	6	20
Fluorene	ND		8390	5590		ug/Kg	☆	67	50 - 106	3	19
Indeno[1,2,3-cd]pyrene	ND		8390	5190		ug/Kg	≎	62	49 - 112	18	19
Naphthalene	28	J	8390	5530		ug/Kg	≎	66	53 - 100	1	20
Phenanthrene	27	J	8390	5380		ug/Kg	☆	64	46 - 111	3	20
Pyrene	40	J	8390	5170		ug/Kg		61	49 - 100	18	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	68		45 - 105
2-Fluorophenol (Surr)	76		42 - 105
2,4,6-Tribromophenol (Surr)	63		31 - 105
Nitrobenzene-d5 (Surr)	75		53 - 105
Phenol-d5 (Surr)	67		47 - 105
Terphenyl-d14 (Surr)	68		46 - 105

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-419525/1-A

Matrix: Water

Analysis Batch: 420486

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 419525

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10	0.61	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total TCDD	ND		10	0.61	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8-PeCDD	ND		50	0.62	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total PeCDD	ND		50	0.62	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,7,8-HxCDD	ND		50	0.99	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,6,7,8-HxCDD	ND		50	0.98	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8,9-HxCDD	ND		50	0.90	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HxCDD	ND		50	0.99	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,6,7,8-HpCDD	0.630	J q	50	0.35	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HpCDD	0.630	Jq	50	0.35	pg/L		10/07/20 11:35	10/10/20 09:04	1
OCDD	2.16	J	100	0.41	pg/L		10/07/20 11:35	10/10/20 09:04	1
2,3,7,8-TCDF	1.00	J q	10	0.54	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total TCDF	1.00	Jq	10	0.54	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8-PeCDF	ND		50	0.48	pg/L		10/07/20 11:35	10/10/20 09:04	1
2,3,4,7,8-PeCDF	ND		50	0.50	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total PeCDF	ND		50	0.50	pg/L		10/07/20 11:35	10/10/20 09:04	1

Eurofins TestAmerica, Pittsburgh

Page 40 of 58

2

3

_

6

8

10

12

13

Ш

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-419525/1-A Matrix: Water

Analysis Batch: 420486

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 419525

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8-HxCDF	ND		50	0.49	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,6,7,8-HxCDF	ND		50	0.47	pg/L		10/07/20 11:35	10/10/20 09:04	1
2,3,4,6,7,8-HxCDF	ND		50	0.50	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,7,8,9-HxCDF	ND		50	0.49	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HxCDF	ND		50	0.50	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,6,7,8-HpCDF	0.569	J	50	0.31	pg/L		10/07/20 11:35	10/10/20 09:04	1
1,2,3,4,7,8,9-HpCDF	ND		50	0.35	pg/L		10/07/20 11:35	10/10/20 09:04	1
Total HpCDF	0.569	J	50	0.33	pg/L		10/07/20 11:35	10/10/20 09:04	1
OCDF	ND		100	0.41	pg/L		10/07/20 11:35	10/10/20 09:04	1

MB MB

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	98	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,7,8-PeCDD	95	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,6,7,8-HxCDD	91	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,4,6,7,8-HpCDD	85	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-OCDD	98	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-2,3,7,8-TCDF	100	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,7,8-PeCDF	90	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,4,7,8-HxCDF	100	40 - 135	10/07/20 11:35	10/10/20 09:04	1
13C-1,2,3,4,6,7,8-HpCDF	80	40 - 135	10/07/20 11:35	10/10/20 09:04	1

Lab Sample ID: LCS 320-419525/2-A

Matrix: Water

Analysis Batch: 420486

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 419525

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 2,3,7,8-TCDD 200 212 pg/L 106 64 - 142 1,2,3,7,8-PeCDD 1000 940 94 71 - 140 pg/L 1,2,3,4,7,8-HxCDD 1000 886 89 56 - 146 pg/L 1,2,3,6,7,8-HxCDD 1000 897 pg/L 90 73 - 144 1,2,3,7,8,9-HxCDD 1000 868 87 71 - 151 pg/L 1000 890 89 78 - 139 1,2,3,4,6,7,8-HpCDD pg/L OCDD 2000 1730 pg/L 87 80 - 132 2,3,7,8-TCDF 200 212 pg/L 106 71 - 142 1,2,3,7,8-PeCDF 1000 973 pg/L 97 76 - 135 1000 988 2,3,4,7,8-PeCDF 99 74 - 137 pg/L 1000 972 97 75 - 131 1,2,3,4,7,8-HxCDF pg/L 1000 1030 103 1,2,3,6,7,8-HxCDF 76 - 133 pg/L pg/L 2,3,4,6,7,8-HxCDF 1000 917 92 80 - 137 1000 946 95 77 - 142 1,2,3,7,8,9-HxCDF pg/L 1,2,3,4,6,7,8-HpCDF 1000 936 pg/L 94 79 - 133 1,2,3,4,7,8,9-HpCDF 1000 913 pg/L 91 83 - 130 **OCDF** 2000 2040 pg/L 102 72 - 140

Isotope Dilution	%Recovery Qualific	er Limits
13C-2,3,7,8-TCDD	87	40 - 135
13C-1,2,3,7,8-PeCDD	84	40 - 135
13C-1,2,3,6,7,8-HxCDD	102	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	79	40 - 135

Eurofins TestAmerica, Pittsburgh

Page 41 of 58

2

3

6

g Q

9 10

11

12

. .

14

Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-419525/2-A

Matrix: Water

Client: Tetra Tech GEO

Analysis Batch: 420486

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 419525

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-OCDD	92		40 - 135
13C-2,3,7,8-TCDF	99		40 - 135
13C-1,2,3,7,8-PeCDF	77		40 - 135
13C-1,2,3,4,7,8-HxCDF	89		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	94		40 - 135

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 320-419525/3-A **Matrix: Water**

Analysis Batch: 421505

Prep Type: Total/NA

Prep Batch: 419525

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	200	205		pg/L		102	64 - 142	4	20
1,2,3,7,8-PeCDD	1000	988		pg/L		99	71 - 140	5	20
1,2,3,4,7,8-HxCDD	1000	982		pg/L		98	56 - 146	10	20
1,2,3,6,7,8-HxCDD	1000	1000		pg/L		100	73 - 144	11	20
1,2,3,7,8,9-HxCDD	1000	1010		pg/L		101	71 - 151	15	20
1,2,3,4,6,7,8-HpCDD	1000	946		pg/L		95	78 - 139	6	20
OCDD	2000	1880		pg/L		94	80 - 132	8	20
2,3,7,8-TCDF	200	212		pg/L		106	71 - 142	0	20
1,2,3,7,8-PeCDF	1000	1010		pg/L		101	76 - 135	4	20
2,3,4,7,8-PeCDF	1000	961		pg/L		96	74 - 137	3	20
1,2,3,4,7,8-HxCDF	1000	1040		pg/L		104	75 - 131	6	20
1,2,3,6,7,8-HxCDF	1000	1100		pg/L		110	76 - 133	7	20
2,3,4,6,7,8-HxCDF	1000	1140	*1	pg/L		114	80 - 137	22	20
1,2,3,7,8,9-HxCDF	1000	1090		pg/L		109	77 - 142	14	20
1,2,3,4,6,7,8-HpCDF	1000	970		pg/L		97	79 - 133	4	20
1,2,3,4,7,8,9-HpCDF	1000	988		pg/L		99	83 - 130	8	20
OCDF	2000	2050		pg/L		103	72 - 140	1	20

LCSD LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	88		40 - 135
13C-1,2,3,7,8-PeCDD	80		40 - 135
13C-1,2,3,6,7,8-HxCDD	92		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	92		40 - 135
13C-OCDD	103		40 - 135
13C-2,3,7,8-TCDF	96		40 - 135
13C-1,2,3,7,8-PeCDF	85		40 - 135
13C-1,2,3,4,7,8-HxCDF	94		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	96		40 - 135

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 419758

Matrix: Solid Analysis Batch: 423668

Lab Sample ID: MB 320-419758/1-A

мв мв

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0	0.13	pg/g		10/08/20 04:37	10/20/20 12:19	1
Total TCDD	ND		1.0	0.13	pg/g		10/08/20 04:37	10/20/20 12:19	1
1,2,3,7,8-PeCDD	ND		5.0	0.16	pg/g		10/08/20 04:37	10/20/20 12:19	1
Total PeCDD	ND		5.0	0.16	pg/g		10/08/20 04:37	10/20/20 12:19	1

Eurofins TestAmerica, Pittsburgh

Page 42 of 58

10

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

MB MB

Lab Sample ID: MB 320-419758/1-A

Matrix: Solid

Analysis Batch: 423668

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 419758

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8-HxCDD	ND		5.0	0.15	pg/g		10/08/20 04:37	10/20/20 12:19	
1,2,3,6,7,8-HxCDD	ND		5.0	0.13	pg/g		10/08/20 04:37	10/20/20 12:19	•
1,2,3,7,8,9-HxCDD	ND		5.0	0.12	pg/g		10/08/20 04:37	10/20/20 12:19	
Total HxCDD	ND		5.0	0.15	pg/g		10/08/20 04:37	10/20/20 12:19	•
1,2,3,4,6,7,8-HpCDD	ND		5.0	0.13	pg/g		10/08/20 04:37	10/20/20 12:19	•
Total HpCDD	ND		5.0	0.13	pg/g		10/08/20 04:37	10/20/20 12:19	
OCDD	2.17	J	10	0.14	pg/g		10/08/20 04:37	10/20/20 12:19	•
2,3,7,8-TCDF	ND		1.0	0.070	pg/g		10/08/20 04:37	10/20/20 12:19	•
Total TCDF	ND		1.0	0.070	pg/g		10/08/20 04:37	10/20/20 12:19	
1,2,3,7,8-PeCDF	ND		5.0	0.094	pg/g		10/08/20 04:37	10/20/20 12:19	•
2,3,4,7,8-PeCDF	ND		5.0	0.097	pg/g		10/08/20 04:37	10/20/20 12:19	•
Total PeCDF	ND		5.0	0.097	pg/g		10/08/20 04:37	10/20/20 12:19	
1,2,3,4,7,8-HxCDF	ND		5.0	0.13	pg/g		10/08/20 04:37	10/20/20 12:19	•
1,2,3,6,7,8-HxCDF	ND		5.0	0.12	pg/g		10/08/20 04:37	10/20/20 12:19	•
2,3,4,6,7,8-HxCDF	ND		5.0	0.13	pg/g		10/08/20 04:37	10/20/20 12:19	
1,2,3,7,8,9-HxCDF	ND		5.0	0.14	pg/g		10/08/20 04:37	10/20/20 12:19	•
Total HxCDF	ND		5.0	0.14	pg/g		10/08/20 04:37	10/20/20 12:19	•
1,2,3,4,6,7,8-HpCDF	0.0984	Jq	5.0	0.049	pg/g		10/08/20 04:37	10/20/20 12:19	
1,2,3,4,7,8,9-HpCDF	ND		5.0	0.057	pg/g		10/08/20 04:37	10/20/20 12:19	•
Total HpCDF	0.0984	Jq	5.0	0.053	pg/g		10/08/20 04:37	10/20/20 12:19	
OCDF	1.19	J	10	0.16	pg/g		10/08/20 04:37	10/20/20 12:19	

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	70		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-1,2,3,7,8-PeCDD	66		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-1,2,3,6,7,8-HxCDD	72		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-1,2,3,4,6,7,8-HpCDD	68		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-OCDD	65		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-2,3,7,8-TCDF	85		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-1,2,3,7,8-PeCDF	78		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-1,2,3,4,7,8-HxCDF	91		40 - 135	10/08/20 04:37	10/20/20 12:19	1
13C-1,2,3,4,6,7,8-HpCDF	80		40 - 135	10/08/20 04:37	10/20/20 12:19	1

Lab Sample ID: LCS 320-419758/2-A

Matrix: Solid

Analysis Batch: 423668

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 419758

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	22.2		pg/g		111	77 - 130	
1,2,3,7,8-PeCDD	100	105		pg/g		105	79 - 134	
1,2,3,4,7,8-HxCDD	100	111		pg/g		111	65 - 144	
1,2,3,6,7,8-HxCDD	100	110		pg/g		110	73 - 147	
1,2,3,7,8,9-HxCDD	100	109		pg/g		109	80 - 143	
1,2,3,4,6,7,8-HpCDD	100	107		pg/g		107	86 - 134	
OCDD	200	201		pg/g		101	80 - 137	
2,3,7,8-TCDF	20.0	22.1		pg/g		111	79 - 137	
1,2,3,7,8-PeCDF	100	113		pg/g		113	81 - 134	
2,3,4,7,8-PeCDF	100	113		pg/g		113	76 - 132	
1,2,3,4,7,8-HxCDF	100	111		pg/g		111	72 - 140	

Eurofins TestAmerica, Pittsburgh

Page 43 of 58

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-419758/2-A

Matrix: Solid

Analysis Batch: 423668

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 419758**

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,6,7,8-HxCDF	100	105		pg/g		105	63 - 152	
2,3,4,6,7,8-HxCDF	100	113		pg/g		113	72 - 151	
1,2,3,7,8,9-HxCDF	100	108		pg/g		108	72 - 152	
1,2,3,4,6,7,8-HpCDF	100	109		pg/g		109	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	103		pg/g		103	79 - 139	
OCDF	200	211		pg/g		106	75 - 141	

211 200 pg/g LCS LCS

Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 67 40 - 135 13C-1,2,3,7,8-PeCDD 64 40 - 135 72 40 - 135 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 64 40 - 135 13C-OCDD 62 40 - 135 40 - 135 13C-2,3,7,8-TCDF 83 13C-1,2,3,7,8-PeCDF 75 40 - 135 40 - 135 13C-1,2,3,4,7,8-HxCDF 91 13C-1,2,3,4,6,7,8-HpCDF 76 40 - 135

Lab Sample ID: 180-111805-10 MS

Matrix: Solid

Analysis Ratch: 423671

Client Sample ID: KD297SS

Prep Type: Total/NA Pren Batch: 419758

Analysis Batch: 4236/1	Sample	Sample	Spike	MS	MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
2,3,7,8-TCDD	0.41	J q	25.5	29.4		pg/g	<u></u>	114	77 - 130
1,2,3,7,8-PeCDD	1.2	J	127	135		pg/g	₩	105	79 - 134
1,2,3,4,7,8-HxCDD	3.0	J	127	151		pg/g	₩	116	65 - 144
1,2,3,6,7,8-HxCDD	6.2	J	127	153		pg/g	₽	115	73 - 147
1,2,3,7,8,9-HxCDD	5.5	J	127	146		pg/g	₩	110	80 - 143
1,2,3,4,6,7,8-HpCDD	240		127	370		pg/g	₩	101	86 - 134
OCDD	3700	В	255	3940	4	pg/g	₽	102	80 - 137
1,2,3,7,8-PeCDF	0.55	Jq	127	148		pg/g	₩	116	81 - 134
2,3,4,7,8-PeCDF	0.79	J	127	146		pg/g	₩	114	76 - 132
1,2,3,4,7,8-HxCDF	2.3	J	127	146		pg/g	₽	113	72 - 140
1,2,3,6,7,8-HxCDF	1.5	J	127	134		pg/g	₩	104	63 - 152
2,3,4,6,7,8-HxCDF	1.2	J	127	146		pg/g	₩	113	72 - 151
1,2,3,7,8,9-HxCDF	ND		127	142		pg/g	₩	111	72 - 152
1,2,3,4,6,7,8-HpCDF	39	В	127	183		pg/g	₩	113	81 - 137
1,2,3,4,7,8,9-HpCDF	2.3	J	127	140		pg/g	₽	108	79 - 139
OCDF	130	В	255	391		pg/g	₩	103	75 - 141
	MS	MS							

	1110	1010	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	78		40 - 135
13C-1,2,3,7,8-PeCDD	73		40 - 135
13C-1,2,3,6,7,8-HxCDD	79		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	76		40 - 135
120 0000	റ		40 42E

13C-OCDD 83 40 - 135 13C-2,3,7,8-TCDF 94 40 - 135 13C-1,2,3,7,8-PeCDF 84 40 - 135 13C-1,2,3,4,7,8-HxCDF 102 40 - 135

Eurofins TestAmerica, Pittsburgh

Page 44 of 58

Project/Site: Grenada, Mississippi

Lab Sample ID: 180-111805-10 MS

Lab Sample ID: 180-111805-10 MSD

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid

Matrix: Solid

1,2,3,7,8,9-HxCDF

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

OCDF

Analysis Batch: 423671

MS MS

Isotope Dilution %Recovery Qualifier Limits 13C-1,2,3,4,6,7,8-HpCDF 87 40 - 135 **Client Sample ID: KD297SS**

Prep Type: Total/NA Prep Batch: 419758

Client Sample ID: KD297SS

Prep Type: Total/NA

0 20 20

20

20

20

Analysis Batch: 423671									Prep Ba	atch: 4	19758
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	0.41	Jq	23.9	27.3		pg/g	<u></u>	112	77 - 130	7	20
1,2,3,7,8-PeCDD	1.2	J	120	129		pg/g	₩	107	79 - 134	4	20
1,2,3,4,7,8-HxCDD	3.0	J	120	144		pg/g	☼	118	65 - 144	5	20
1,2,3,6,7,8-HxCDD	6.2	J	120	144		pg/g	₩	115	73 - 147	6	20
1,2,3,7,8,9-HxCDD	5.5	J	120	140		pg/g	₩	112	80 - 143	4	20
1,2,3,4,6,7,8-HpCDD	240		120	389		pg/g	₩	123	86 - 134	5	20
OCDD	3700	В	239	4080	4	pg/g	₩	168	80 - 137	4	20
1,2,3,7,8-PeCDF	0.55	J q	120	138		pg/g	₩	115	81 - 134	7	20
2,3,4,7,8-PeCDF	0.79	J	120	139		pg/g	₩	115	76 - 132	5	20
1,2,3,4,7,8-HxCDF	2.3	J	120	137		pg/g	₩	113	72 - 140	7	20
1,2,3,6,7,8-HxCDF	1.5	J	120	130		pg/g	₩	108	63 - 152	3	20
2,3,4,6,7,8-HxCDF	1.2	J	120	136		pg/g	₩	113	72 - 151	7	20

120

120

120

239

129

177

134

385

MS MS

27.5

Result Qualifier

Ö

₩

☼

pg/g

pg/g

pg/g

pg/g

Unit

pg/g

108

115

110

108

72 - 152

81 - 137

79 - 139

75 - 141

3

130 B MSD MSD

ND

39 B

2.3 J

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD			40 - 135
13C-1,2,3,7,8-PeCDD	71		40 - 135
13C-1,2,3,6,7,8-HxCDD	76		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	73		40 - 135
13C-OCDD	79		40 - 135
13C-2,3,7,8-TCDF	92		40 - 135
13C-1,2,3,7,8-PeCDF	82		40 - 135
13C-1,2,3,4,7,8-HxCDF	99		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	83		40 - 135

Method: 8290A - Dioxins and Furans (HRGC/HRMS) - RA

Lab Sample ID: 180-111805-10 MS

Matrix: Solid

Analysis Batch: 424664

13C-2,3,7,8-TCDF - RA

Alialysis Datcii. 424004	Sample	Sample	Spike
Analyte	Result	Qualifier	Added
2,3,7,8-TCDF - RA	0.75	J	25.5
	MS	MS	
Isotope Dilution	%Recovery	Qualifier	Limits

Client Sample ID: KD297SS **Prep Type: Total/NA** Prep Batch: 419758

%Rec. Limits

79 - 137

%Rec

105

D

Eurofins TestAmerica, Pittsburgh

40 - 135

QC Sample Results

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) - RA (Continued)

Lab Sample ID: 180-111805-10 MSD Client Sample ID: KD297SS

Matrix: Solid

Analysis Batch: 424664

Prep Type: Total/NA

Prep Batch: 419758 %Rec. **RPD**

Analyte Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Unit D 2,3,7,8-TCDF - RA 0.75 J 23.9 26.6 pg/g 108 79 - 137 3 20

MSD MSD

Spike

MSD MSD

Sample Sample

Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDF - RA 85 40 - 135

Method: 2540G - SM 2540G

Lab Sample ID: 180-111805-9 DU Client Sample ID: KD275SS Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 333628

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Percent Moisture 21.3 21.6 % 10 Percent Solids 78.7 78.4 % 0.4 10

Method: SM 2540G - Total, Fixed, and Volatile Solids

Lab Sample ID: 180-111805-9 DU Client Sample ID: KD275SS Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 334115

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier RPD Limit Unit D Total Solids 78.4 % 0.4 10 79

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Prep Batch: 332595

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-11	KD010SS-EB	Total/NA	Water	3520C	
180-111805-12	KD297SS-EB	Total/NA	Water	3520C	
180-111805-13	KD225WSS-EB	Total/NA	Water	3520C	
MB 180-332595/1-A	Method Blank	Total/NA	Water	3520C	
LCS 180-332595/2-A	Lab Control Sample	Total/NA	Water	3520C	

Prep Batch: 333372

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-1	KD029SS	Total/NA	Solid	3541	
180-111805-2	KD045SS	Total/NA	Solid	3541	
180-111805-3	KD123SS	Total/NA	Solid	3541	
180-111805-4	KD149SS	Total/NA	Solid	3541	
180-111805-5	KD225ESS	Total/NA	Solid	3541	
180-111805-6	KD225WSS	Total/NA	Solid	3541	
180-111805-7	DW201SS	Total/NA	Solid	3541	
180-111805-8	KD251SS	Total/NA	Solid	3541	
180-111805-9	KD275SS	Total/NA	Solid	3541	
180-111805-10	KD297SS	Total/NA	Solid	3541	
MB 180-333372/1-A	Method Blank	Total/NA	Solid	3541	
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	3541	
180-111805-10 MS	KD297SS	Total/NA	Solid	3541	
180-111805-10 MSD	KD297SS	Total/NA	Solid	3541	

Analysis Batch: 333708

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-1	KD029SS	Total/NA	Solid	EPA 8270E	333372
180-111805-2	KD045SS	Total/NA	Solid	EPA 8270E	333372
180-111805-3	KD123SS	Total/NA	Solid	EPA 8270E	333372
180-111805-4	KD149SS	Total/NA	Solid	EPA 8270E	333372
180-111805-5	KD225ESS	Total/NA	Solid	EPA 8270E	333372
180-111805-6	KD225WSS	Total/NA	Solid	EPA 8270E	333372
180-111805-7	DW201SS	Total/NA	Solid	EPA 8270E	333372
180-111805-8	KD251SS	Total/NA	Solid	EPA 8270E	333372
180-111805-9	KD275SS	Total/NA	Solid	EPA 8270E	333372
180-111805-10	KD297SS	Total/NA	Solid	EPA 8270E	333372
MB 180-333372/1-A	Method Blank	Total/NA	Solid	EPA 8270E	333372
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	EPA 8270E	333372
180-111805-10 MS	KD297SS	Total/NA	Solid	EPA 8270E	333372

Analysis Batch: 333722

Lab Sample ID 180-111805-11	Client Sample ID KD010SS-EB	Prep Type Total/NA	Matrix Water	Method EPA 8270E	Prep Batch 332595
180-111805-12	KD297SS-EB	Total/NA	Water	EPA 8270E EPA 8270E	332595
180-111805-13	KD225WSS-EB	Total/NA	Water	EPA 8270E	332595
MB 180-332595/1-A	Method Blank	Total/NA	Water	EPA 8270E	332595
LCS 180-332595/2-A	Lab Control Sample	Total/NA	Water	EPA 8270E	332595

Analysis Batch: 333809

- Datom Cocoo	•				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-10 MSD	KD297SS	Total/NA	Solid	EPA 8270E	333372

Eurofins TestAmerica, Pittsburgh

Page 47 of 58

2

3

6

8

10

<u>''</u>

13

4 /

H

Project/Site: Grenada, Mississippi

Specialty Organics

Prep Batch: 419525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-11	KD010SS-EB	Total/NA	Water	8290	
180-111805-12	KD297SS-EB	Total/NA	Water	8290	
180-111805-13	KD225WSS-EB	Total/NA	Water	8290	
MB 320-419525/1-A	Method Blank	Total/NA	Water	8290	
LCS 320-419525/2-A	Lab Control Sample	Total/NA	Water	8290	
LCSD 320-419525/3-A	Lab Control Sample Dup	Total/NA	Water	8290	

Prep Batch: 419758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-1	KD029SS	Total/NA	Solid	8290	
180-111805-1 - RA	KD029SS	Total/NA	Solid	8290	
180-111805-2	KD045SS	Total/NA	Solid	8290	
180-111805-2 - RA	KD045SS	Total/NA	Solid	8290	
180-111805-3	KD123SS	Total/NA	Solid	8290	
180-111805-4	KD149SS	Total/NA	Solid	8290	
180-111805-4 - RA	KD149SS	Total/NA	Solid	8290	
180-111805-5	KD225ESS	Total/NA	Solid	8290	
180-111805-6	KD225WSS	Total/NA	Solid	8290	
180-111805-6 - RA	KD225WSS	Total/NA	Solid	8290	
180-111805-7	DW201SS	Total/NA	Solid	8290	
180-111805-7 - RA	DW201SS	Total/NA	Solid	8290	
180-111805-8	KD251SS	Total/NA	Solid	8290	
180-111805-9	KD275SS	Total/NA	Solid	8290	
180-111805-9 - RA	KD275SS	Total/NA	Solid	8290	
180-111805-10	KD297SS	Total/NA	Solid	8290	
180-111805-10 - RA	KD297SS	Total/NA	Solid	8290	
MB 320-419758/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-419758/2-A	Lab Control Sample	Total/NA	Solid	8290	
180-111805-10 MS	KD297SS	Total/NA	Solid	8290	
180-111805-10 MS - RA	KD297SS	Total/NA	Solid	8290	
180-111805-10 MSD	KD297SS	Total/NA	Solid	8290	
180-111805-10 MSD - RA	KD297SS	Total/NA	Solid	8290	

Analysis Batch: 420486

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-11	KD010SS-EB	Total/NA	Water	8290A	419525
180-111805-12	KD297SS-EB	Total/NA	Water	8290A	419525
180-111805-13	KD225WSS-EB	Total/NA	Water	8290A	419525
MB 320-419525/1-A	Method Blank	Total/NA	Water	8290A	419525
LCS 320-419525/2-A	Lab Control Sample	Total/NA	Water	8290A	419525

Analysis Batch: 421505

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 320-419525/3-A	Lab Control Sample Dup	Total/NA	Water	8290A	419525

Analysis Batch: 423668

Lab Sample ID 180-111805-1	Client Sample ID KD029SS	Prep Type Total/NA	Matrix Solid	Method 8290A	Prep Batch 419758
180-111805-2	KD045SS	Total/NA	Solid	8290A	419758
180-111805-3	KD123SS	Total/NA	Solid	8290A	419758
180-111805-4	KD149SS	Total/NA	Solid	8290A	419758

Eurofins TestAmerica, Pittsburgh

10/27/2020

Page 48 of 58

2

3

4

6

8

10

<u>''</u>

13

Project/Site: Grenada, Mississippi

Specialty Organics (Continued)

Analysis Batch: 423668 (Continued)

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	180-111805-5	KD225ESS	Total/NA	Solid	8290A	419758
	180-111805-6	KD225WSS	Total/NA	Solid	8290A	419758
İ	MB 320-419758/1-A	Method Blank	Total/NA	Solid	8290A	419758
	LCS 320-419758/2-A	Lab Control Sample	Total/NA	Solid	8290A	419758

Analysis Batch: 423671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-7	DW201SS	Total/NA	Solid	8290A	419758
180-111805-8	KD251SS	Total/NA	Solid	8290A	419758
180-111805-9	KD275SS	Total/NA	Solid	8290A	419758
180-111805-10	KD297SS	Total/NA	Solid	8290A	419758
180-111805-10 MS	KD297SS	Total/NA	Solid	8290A	419758
180-111805-10 MSD	KD297SS	Total/NA	Solid	8290A	419758

Analysis Batch: 424664

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-1 - RA	KD029SS	Total/NA	Solid	8290A	419758
180-111805-2 - RA	KD045SS	Total/NA	Solid	8290A	419758
180-111805-4 - RA	KD149SS	Total/NA	Solid	8290A	419758
180-111805-6 - RA	KD225WSS	Total/NA	Solid	8290A	419758
180-111805-7 - RA	DW201SS	Total/NA	Solid	8290A	419758
180-111805-9 - RA	KD275SS	Total/NA	Solid	8290A	419758
180-111805-10 - RA	KD297SS	Total/NA	Solid	8290A	419758
180-111805-10 MS - RA	KD297SS	Total/NA	Solid	8290A	419758
180-111805-10 MSD - RA	KD297SS	Total/NA	Solid	8290A	419758

General Chemistry

Analysis Batch: 333628

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-1	KD029SS	Total/NA	Solid	2540G	
180-111805-2	KD045SS	Total/NA	Solid	2540G	
180-111805-3	KD123SS	Total/NA	Solid	2540G	
180-111805-4	KD149SS	Total/NA	Solid	2540G	
180-111805-5	KD225ESS	Total/NA	Solid	2540G	
180-111805-6	KD225WSS	Total/NA	Solid	2540G	
180-111805-7	DW201SS	Total/NA	Solid	2540G	
180-111805-8	KD251SS	Total/NA	Solid	2540G	
180-111805-9	KD275SS	Total/NA	Solid	2540G	
180-111805-10	KD297SS	Total/NA	Solid	2540G	
180-111805-9 DU	KD275SS	Total/NA	Solid	2540G	

Analysis Batch: 334115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-1	KD029SS	Total/NA	Solid	SM 2540G	
180-111805-2	KD045SS	Total/NA	Solid	SM 2540G	
180-111805-3	KD123SS	Total/NA	Solid	SM 2540G	
180-111805-4	KD149SS	Total/NA	Solid	SM 2540G	
180-111805-5	KD225ESS	Total/NA	Solid	SM 2540G	
180-111805-6	KD225WSS	Total/NA	Solid	SM 2540G	
180-111805-7	DW201SS	Total/NA	Solid	SM 2540G	

Eurofins TestAmerica, Pittsburgh

10/27/2020

Page 49 of 58

_

3

5

8

9

.

| _

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111805-1

Project/Site: Grenada, Mississippi

General Chemistry (Continued)

Analysis Batch: 334115 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111805-8	KD251SS	Total/NA	Solid	SM 2540G	
180-111805-9	KD275SS	Total/NA	Solid	SM 2540G	
180-111805-10	KD297SS	Total/NA	Solid	SM 2540G	
180-111805-9 DU	KD275SS	Total/NA	Solid	SM 2540G	

4

6

9

11

12

Te

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468

eurofins Environment Testing America

	Sampler:			Lab PM:	M.					Carrier Tr	Carrier Tracking No(s):	s):	COC No	0:			Г
Client Information	Andrew A	-	ballett 1	KALI Borto	Bortot, Veronica	ica							180-6	180-64125-12892.1	392.1		_
Client Contact: Ms. Jennifer Abrahams, P.G.	Phone: 916 - 853		-4526	E-Mail: Veron	E-Mail: Veronica.Bortot@Eurofinset.com	tot@E	urofinse	t.com					Page:	Page: 1016	10 l	2	_
Company: Tetra Tech GEO								Analy	Analysis Requested	nestec	_		Job #:				_
Address: 2969 Prospect Park Drive Suite 100	Due Date Requested:	:pe				⊢							Prese	Preservation Codes	codes:		_
City: Rancho Cordova	TAT Requested (days):	3ys):				_			_				A-HC B-Na	COH Acetate	M - Hexane N - None		
State, Zip: CA, 95670	Standono	Ş							_				D-Nit	D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3		
Phone: 916-853-1800(Tel) 916-853-1860(Fax)	Po #: Purchase Order Requested	Requested			(0				_				F-Me G-An	OH nchlor corbic Acid	R - Na2S2O S - H2SO4 T - TSP Dod	3 acahydrate	
Email: jennifer.abrahams@tetratech.com	WO #:											_		Nater	U - Acetone		_
Project Name: Grenada, Mississippi	Project #: 18010096	/117	7-2201456A	564			_	slats				_	DAMES OF THE OWNER, OR WHEN	A A	W - pH 4-5 Z - other (specify)	ecify)	
Site:	SSOW#:							Ts & To					of con				
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	(W=water, S=solid, O=waste/oll, RT-Thens A=Ab)	Field Filtered Perform MS/M	nosi Tt - A0628	MA9 - 00728	əmosi 71 - 0628					Total Number	Space		_	
	\langle	X	T CO	ion Code:	X	12	z	z					X				200
KD02955	9/30/20	225	3	Solid	Z	×							2				_
(<d04855< td=""><td>10/1/20</td><td>22.60</td><td>9</td><td>Solid</td><td>2</td><td>X</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>Λp</td><td>_</td></d04855<>	10/1/20	22.60	9	Solid	2	X							1			Λp	_
KD12355	10/1/20	9111	U	Solid	2	×							2			ootsu	T
KD14985	10/1/20	1342	2	Solid	2	X							2			O 10 (_
KORRENTS @ KONSESS	10/1/20	1509	J	Solid	2	×							2			nishC	
KD225W55	10/1/20	1650	7	Solid	2	X							2			908	
DW 20155	10/2/20	0180	J	Solid	7	X							2			<u> </u>	
K025155	10/1/10	1033	2	Solid	7 2	X							2			001	
KD23555	10/2/20	1901	7	Solid	7 7	X							۲				
KD 29755	10/1/10	prhi	7	Solid	2	X	607						2				
KO29755- M5/MSD	10/1/10	1429	J	Solid	7	×							7				
ant	□ Poison B □ Unknown		Radiological		San	ple Di	le Disposal (A f Return To Client	(A fee I	nay be	be assessed if sar	d if samp	les are r	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client A Disposal By Lab	ger than	1 month)		_
, III, IV, Other (specify) 54					Spe	cial Ins	truction	s/QC Re	Special Instructions/QC Requirements:	nts:							_
shed by:		Date:			Time:					Me	Method of Shipment:	ment:		l			Т
Relinquished by: Mory-	Date/Time: (10)			Company		Received by:	i by:	10	X	1	Da	Date/Time:	6		Company		Т
Relinquished by:	Date/Time:			Company		Received by:	I by:	1	The	ald	the De	T.W.	50	0	Company	MIT	1
	Date/Time:			Company		Received by	100					Date/Time:	5	36	Company		Т
Custody Seals Intact: Custody Seal No.:						Cooler T	emperatu	re(s) °C a	Cooler Temperature(s) °C and Other Remarks:	emarks:							Т
					1										Ver: 01/16/2019	6102	7

Ver: 01/16/2019

N

Company

1645

Date/Time:

Received by:

Company

164

10/2/10 Date/Time:

Date:

Empty Kit Relinquished by:

elinquished by:

EDD

Method of Shipment

5

Cooler Temperature(s) °C and Other Remarks:

Received by:

Company

Date/Time:

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Environment Testing

💸 eurofins

N - None
O - AsNa02
P - Na204S
Q - Na2S03
R - Na2S03
S - H2S04
T - TSP Dodecahydrate U - Acetone V - MCAA W - pH 4-5 Z - other (specify) Special Instructions/Note: 4 4 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Spisposal By Lab Monti Page: COC No: 180-64125-12892.6 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid I - Ice J - DI Water K - EDTA L - EDA Total Number of containers 7 Carrier Tracking No(s) **Analysis Requested** Special Instructions/QC Requirements: Veronica.Bortot@Eurofinset.com Return To Client X X X X STYOD - PAH by GC/MS Males Horar / Costeft Kull Bortor, Veronica 8270D - PAH by GC/MS 2 2 2 E-Mail: BT=Tissue, A=Air) Preservation Code: (W=water, S=solid, O=waste/oil, Water Matrix Water Water Water Water Water 117-2201456A Radiological Type (C=comp, Sample G=grab) 0 9 0 Phone: 4526 Po #: Purchase Order Requested Sample 1520 2541 1350 Time Unknown TAT Requested (days): Due Date Requested: Standard Sample Date 9/30/10 02/2/01 10/1/10 Project #: 18010096 SSOW#: WO#: Poison B Hamphora Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Pittsburgh, PA 15238 Phone (412) 963-7058 Fax (412) 963-2468 916-853-1800(Tel) 916-853-1860(Fax) 2969 Prospect Park Drive Suite 100 Flammable ennifer.abrahams@tetratech.com KRRZZNSS-EB Possible Hazard Identification KO19755-EB Ms. Jennifer Abrahams, P.G. Client Information Sample Identification D01055-EB Grenada, Mississippi Non-Hazard Rancho Cordova Tetra Tech GEO Client Contact: State, Zip: CA, 95670

nquished by: elinquished by:

Custody Seal No.

Custody Seals Intact:

△ Yes △ No

Ver: 01/16/2019

590

ete

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Shipping/Receiving

West Sacramento

CA. 95605

S - H2SO4 T - TSP Dodecahydrate Local Encretations are subject to change. Eurofins TestAmerica places the ownership of method, analyze & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chan-of-custody. If the laboratory does not currently analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Eurofins pestAmerica attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. U - Acetone V - MCAA W - pH 4-5 Z - other (speaff) Special Instructions/Note: P - Na2O4S O - Na2SO3 R - Na2S2O3 N - None O - AsNaO2 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month Preservation Codes G - Amchlor H - Ascorbic Acid COC No: 180-414047.1 180-111805-1 B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Page 1 of 2 J - Dr Water K - EDTA L - EDA Total Number of containers Carrier Tracking No(s State of Origin Mississippi Analysis Requested Special Instructions/QC Requirements Veronica.Bortot@Eurofinset.com Return To Client S290A/8290 P Sep 17 Isomers & Totals Lab PM: Bortot, Veronica slatoT lw ansmost Tt xo2 q 0es8/A0es8 × × × × × × × × × Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) BT=Tlasue, A=Ab Preservation Code: Matrix Solid Solid Solid Solid Solid Solid Solid Solid Solid (C=comb, G=grab) Sample Type Primary Deliverable Rank: 2 Sample Central 09:23 Central 16:50 Central 10:33 Central 13:42 Central 15:09 Central 08:40 Central 11:16 Central 12:01 Central Time AT Requested (days): Due Date Requested: Sample Date 10/1/20 10/2/20 10/21/2020 10/1/20 10/1/20 10/1/20 10/1/20 10/2/20 9/30/20 10/2/20 18010096 Phone: Client Information (Sub Contract Lab) Deliverable Requested: I, II, III, IV, Other (specify) Sample Identification - Client ID (Lab ID) Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468 916-373-5600(Tel) 916-372-1059(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. KD225WSS (180-111805-6) KD225ESS (180-111805-5) DW201SS (180-111805-7) KD149SS (180-111805-4) KD275SS (180-111805-9) KD251SS (180-111805-8) KD045SS (180-111805-2) KD123SS (180-111805-3) KD029SS (180-111805-1 880 Riverside Parkway

046 3 CO 03 DateTime 3.0 Cooler Temperature(s) ³C and Other Remarks: teceived by: W. Just me: Company ompany 35 0 Date/Time: Custody Seal No.: Empty Kit Relinquished by: Custody Seals Intact:

Grenada, Mississippi

Jnconfirmed

quished by: quished by: rquished by

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238

Phone: 412-963-7058 Fax: 412-963-2468


Sac T - TSP Dodecahydrate Eurofins Ence laboratory accreditations are subject to change. Eurofins TestAmerica places the ownership of method, analyze & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently represent to change analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins. TestAmerica attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Special Instructions/Note: Ver. 01/16/2019 Z - other (specify) Q - Na2S203 R - Na2S203 S - H2S04 N - None O - AsNaO2 P - Na2O4S U - Acetone V - MCAA W - pH 4-5 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
C - Nitric Acid
E - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 0/16 180-414047.2 180-111805-1 Page 2 of 2 I - Ice J - DI Water K - EDTA Archive For Total Number of containers 3 CN N 2 UD 07 30 Carrier Tracking No(s): Disposal By Lab State of Origin Mississippi Analysis Requested coler Temperature(s) "C and Other Remarks: Special Instructions/QC Requirements Veronica.Bortot@Eurofinset.com Return To Client eceived by: 8290A/8290 P. Sep 17 Isomers & Totals × × Lab PM: Bortot, Veronica E-Mail: 8290A/8290 P. Sox 17 Isomers W/ Totals × × × Perform MS/MSD (Yes or No) BT=Tissue, A=Air Preservation Code: Company Matrix Solid Water Water Water Solid Solid ompany (C=comb, G=grab) Sample Type MSD MS 35 Primary Deliverable Rank: 2 Central 15:20 Sample Central 14:29 17:50 Central 17:35 Time Central 2 (AT Requested (days) Due Date Requested Sample Date 10/2/20 10/2/20 9/30/20 10/2/20 10/1/20 10/21/2020 10/2/20 18010096 Date/Time WO # eliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Custody Seal No. Sample Identification - Client ID (Lab ID) 916-373-5600(Tel) 916-372-1059(Fax) KD225WSS-EB (180-111805-13) Possible Hazard Identification KD297SS (180-111805-10MSD) KD010SS-EB (180-111805-11) KD297SS-EB (180-111805-12) TestAmerica Laboratories, Inc. KD297SS (180-111805-10MS) (D297SS (180-111805-10) Empty Kit Relinquished by: Custody Seals Intact: 880 Riverside Parkway, Grenada, Mississippi Shipping/Receiving City. West Sacramento iquished by: quished by: nconfirmed CA, 95605

Sacramento Sample Receiving Notes

5 6 7

CDO / Courier

Environment Testing TestAmerica

Tracking #:
()
SO //PO// FO / SAT / 2-Day / Ground / UPS /

180-111805 Field Sheet GSO / OnTrac / Goldstreak / USPS / Other_ Job: Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations. File in the job folder with the COC. Therm. ID: _____ Corr. Factor: (+/-) ___ Wet Gel Other Cooler Custody Seal: _____ Cooler ID: Temp Observed: ______C Corrected: From: Temp Blank D Sample D Opening/Processing The Shipment NA Cooler compromised/tampered with? Cooler Temperature is acceptable? Initials: MAN Date: Unpacking/Labeling The Samples No NA CoC is complete w/o discrepancies? Samples compromised/tampered with? D D Sample containers have legible labels? D D D Ø Sample custody seal? Containers are not broken or leaking? D D Sample date/times are provided? Ø D Trizma Lot #(s): ____ Appropriate containers are used? Sample bottles are completely filled? Sample preservatives verified? P Samples w/o discrepancies? D Zero headspace?* Login Completion NA Ø Alkalinity has no headspace? Receipt Temperature on COC? Perchlorate has headspace? Samples received within hold time? Ø (Methods 314, 331, 6850) NCM Filed? B Multiphasic samples are not present? D Log Release checked in TALS? Ø *Containers requiring zero headspace have no headspace, or bubble < 6 mm (1/4*) Date: 10 07 Initials:

INTACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTIFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Client: Tetra Tech GEO Job Number: 180-111805-1

Login Number: 111805 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

Grouter: Mateon, Bessie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Tetra Tech GEO Job Number: 180-111805-1

Login Number: 111805
List Source: Eurofins TestAmerica, Sacramento
List Number: 2
List Creation: 10/07/20 11:31 AM

Creator: Saephan, Kae C

Creator: Saepnan, Kae C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 3.0c corr: 3.0c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-111869-1

Client Project/Site: Grenada, Mississippi

For:

Tetra Tech GEO 2969 Prospect Park Drive Suite 100 Rancho Cordova, California 95670

Attn: Ms. Jennifer Abrahams, P.G.

Munical for rologs

Authorized for release by: 10/23/2020 11:17:17 AM

Veronica Bortot, Senior Project Manager (412)963-2435

Veronica.Bortot@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi Laboratory Job ID: 180-111869-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	5
Certification Summary	7
Sample Summary	9
Method Summary	10
Lab Chronicle	11
Client Sample Results	17
QC Sample Results	34
QC Association Summary	45
Chain of Custody	49
Field Data Sheets	53
Receipt Checklists	54

3

4

6

0

9

10

12

13

Case Narrative

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111869-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-111869-1

Comments

No additional comments.

Receipt

The samples were received on 10/6/2020 9:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.4° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. There is no relinquished by time listed on the COC.

GC/MS Semi VOA

Method 8270E: The following samples were diluted due to the nature of the sample matrix: DW204SS, DW205SS, DW207SS and DW208SS. Elevated reporting limits (RLs) are provided.

Method 8270E: The following sample was diluted due to the nature of the sample matrix: DW206SS. As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method 8270E: The following sample was diluted due to the nature of the sample matrix: DW202SS. Elevated reporting limits (RLs) are provided.

Method 8270E: Surrogate recovery for the following sample was outside control limits: DW202SS. Evidence of matrix interference is present and client only requesting PAH's in which all of the BN surrogates were within criteria; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Dioxin

Method 8290A: The bracketing continuing calibration verification (CCV) associated with batch 320-421141 has 1,2,3,6,7,8-HxCDF with percent difference value that is between the method criteria of 20% to 25% deviation from the initial calibration curve. Per method guidelines, an average relative response factor (RRF) is calculated from the bracketing CCV and is used to quantitate any positive results in the associated samples for the affected analytes.

Method 8290A: The concentration of one or more analytes associated with the following samples exceeded the instrument calibration range: DW202SS, DW203SS, DW204SS, DW205SS, DW206SS and DW207SS. These analytes have been qualified; however, the peak(s) did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): DW202SS, DW203SS, DW204SS, DW205SS, DW206SS and DW207SS. The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The matrix spike (MS) recovery for 1,2,3,7,8,9-HxCDD in preparation batch 320-420127 and analytical batch 320-423056 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8290A: The concentration of one or more analytes associated with the following sample exceeded the instrument calibration range: DW208SS. These analytes have been qualified; however, the peaks did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Job ID: 180-111869-1

Case Narrative

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111869-1

Job ID: 180-111869-1 (Continued)

Laboratory: Eurofins TestAmerica, Pittsburgh (Continued)

Method 8290A: The following sample exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): DW208SS. The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method Moisture: The sample duplicate precision for the following sample associated with analytical batch 180-333139 was outside control limits: DW206SS and 180-111869-A-5 DU. While the relative percent difference (RPD) between the sample and its duplicate was above 10% for percent moisture, it was still within 20%.

Method SM 2540G: The sample duplicate (DUP) precision for analytical batch 180-333912 was outside control limits. While the relative percent difference (RPD) for the sample and its duplicate was above 10%, it was still within 20% for percent moisture.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

9

7

8

9

11

12

13

Definitions/Glossary

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Qualifiers

GC/I	-	<u> </u>	 _
	W 👟	Som	

Qualifier	Qualifier Description	
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a	
	dilution may be flagged with a D.	

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

X Surrogate recovery exceeds control limits

Dioxin

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
В	Compound was found in the blank and sample.
E	Result exceeded calibration range.
F1	MS and/or MSD recovery exceeds control limits.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference

General Chemistry

Qualifier	Qualifier Description
F3	Duplicate RPD exceeds the control limit

Glossary Abbreviation

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

These commonly used abbreviations may or may not be present in this report.

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Eurofins TestAmerica, Pittsburgh

Page 5 of 55 10/23/2020

3

4

6

9

10

12

13

Definitions/Glossary

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

4

5

7

_

10

13

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20 *
Florida	NELAP	E871008	06-30-21
Georgia	State	PA 02-00416	04-30-21
Illinois	NELAP	004375	06-30-21
Kansas	NELAP	E-10350	01-31-21
Kentucky (UST)	State	162013	04-30-21
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-21
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-21
New Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-21
New York	NELAP	11182	04-01-21
North Carolina (WW/SW)	State	434	01-01-21
North Dakota	State	R-227	04-30-21
Oregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-21
Texas	NELAP	T104704528	03-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-21
Virginia	NELAP	10043	09-14-21
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-21

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

4

5

9

10

12

13

14

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Lab Sample ID **Client Sample ID** Matrix Collected Received Asset ID 180-111869-1 DW202SS 10/03/20 08:42 10/06/20 09:00 Solid 180-111869-2 **DW203SS** Solid 10/03/20 09:10 10/06/20 09:00 180-111869-3 **DW204SS** Solid 10/03/20 09:45 10/06/20 09:00 180-111869-4 **DW205SS** Solid 10/03/20 10:10 10/06/20 09:00 180-111869-5 **DW206SS** Solid 10/03/20 11:05 10/06/20 09:00 Solid 180-111869-6 **DW207SS** 10/03/20 11:35 10/06/20 09:00 180-111869-7 **KD321SS** Solid 10/03/20 14:49 10/06/20 09:00 180-111869-8 **DW208SS** Solid 10/03/20 12:30 10/06/20 09:00 180-111869-9 **DW209SS** Solid 10/03/20 15:34 10/06/20 09:00 180-111869-10 **DW210SS** Solid 10/03/20 16:10 10/06/20 09:00 180-111869-11 DW210SS-EB Water 10/03/20 17:50 10/06/20 09:00

Job ID: 180-111869-1

3

4

7

8

10

11

13

12

Method Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111869-1

Method	Method Description	Protocol	Laboratory
EPA 8270E	Semivolatile Organic Compounds (GC/MS)	SW846	TAL PIT
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
2540G	SM 2540G	SM22	TAL PIT
SM 2540G	Total, Fixed, and Volatile Solids	SM	TAL PIT
3520C	Liquid-Liquid Extraction (Continuous)	SW846	TAL PIT
3541	Automated Soxhlet Extraction	SW846	TAL PIT
8290	Separatory Funnel (Liquid-Liquid) Extraction of Dioxins and Furans	SW846	TAL SAC
8290	Soxhlet Extraction of Dioxins and Furans	SW846	TAL SAC

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM22 = Standard Methods For The Examination Of Water And Wastewater, 22nd Edition

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: Tetra Tech GEO

Client Sample ID: DW202SS Lab Sample ID: 180-111869-1

Date Collected: 10/03/20 08:42 **Matrix: Solid** Date Received: 10/06/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	2540G nt ID: NOEQUIP		1			333139	10/12/20 21:23	PMH	TAL PIT
Total/NA	Analysis Instrumer	SM 2540G at ID: NOEQUIP		1			333912	10/12/20 21:23	PMH	TAL PIT

Client Sample ID: DW202SS Lab Sample ID: 180-111869-1

Date Collected: 10/03/20 08:42 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 78.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		5	1 mL	1 mL	333708	10/16/20 17:25	VVP	TAL PIT
Total/NA	Prep	8290			10.44 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 10D5		1			423056	10/19/20 05:34	AS	TAL SAC
Total/NA	Prep	8290	RA		10.44 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1			422248	10/15/20 10:21	KSS	TAL SAC

Client Sample ID: DW203SS Lab Sample ID: 180-111869-2

Date Collected: 10/03/20 09:10 **Matrix: Solid** Date Received: 10/06/20 09:00

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method 2540G at ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333139	Prepared or Analyzed 10/12/20 21:23	Analyst PMH	Lab TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			333912	10/12/20 21:23	PMH	TAL PIT

Client Sample ID: DW203SS Lab Sample ID: 180-111869-2 Date Collected: 10/03/20 09:10 **Matrix: Solid**

Date Received: 10/06/20 09:00 Percent Solids: 75.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.2 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333407	10/14/20 23:43	VVP	TAL PIT
Total/NA	Prep	8290			10.49 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis	8290A		1			423056	10/19/20 07:49	AS	TAL SAC
	Instrumer	nt ID: 10D5								

Lab Sample ID: 180-111869-3 **Client Sample ID: DW204SS**

Date Collected: 10/03/20 09:45 **Matrix: Solid** Date Received: 10/06/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	2540G at ID: NOEQUIP		1			333139	10/12/20 21:23	PMH	TAL PIT
Total/NA	Analysis Instrumer	SM 2540G at ID: NOEQUIP		1			333912	10/12/20 21:23	PMH	TAL PIT

Client Sample ID: DW204SS Lab Sample ID: 180-111869-3

Date Collected: 10/03/20 09:45 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 75.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			14.8 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis	EPA 8270E		3	1 mL	1 mL	333544	10/15/20 12:15	VVP	TAL PIT
	Instrumer	nt ID: CH71								
Total/NA	Prep	8290			10.53 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis	8290A		1			423056	10/19/20 08:34	AS	TAL SAC
	Instrumer	nt ID: 10D5								
Total/NA	Prep	8290	RA		10.53 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis	8290A	RA	1			422248	10/15/20 12:55	KSS	TAL SAC
	Instrumer	nt ID: 11D2								

Client Sample ID: DW205SS Lab Sample ID: 180-111869-4

Date Collected: 10/03/20 10:10 **Matrix: Solid** Date Received: 10/06/20 09:00

Prep Type Total/NA	Batch Type Analysis Instrumer	Batch Method 2540G at ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333139	Prepared or Analyzed 10/12/20 21:23	Analyst PMH	Lab TAL PIT
Total/NA	Analysis Instrumer	SM 2540G		1			333912	10/12/20 21:23	РМН	TAL PIT

Client Sample ID: DW205SS Lab Sample ID: 180-111869-4 Date Collected: 10/03/20 10:10 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 83.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.3 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH71		5	1 mL	1 mL	333544	10/15/20 12:41	VVP	TAL PIT
Total/NA	Prep	8290			9.82 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 10D5		1			423056	10/19/20 09:19	AS	TAL SAC
Total/NA	Prep	8290	RA		9.82 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A it ID: 11D2	RA	1			422248	10/15/20 13:33	KSS	TAL SAC

Eurofins TestAmerica, Pittsburgh

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: DW206SS Date Collected: 10/03/20 11:05

Lab Sample ID: 180-111869-5

Matrix: Solid

Date Received: 10/06/20 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G at ID: NOEQUIP		1			333139	10/12/20 21:23	PMH	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			333912	10/12/20 21:23	PMH	TAL PIT

Client Sample ID: DW206SS

Lab Sample ID: 180-111869-5 Date Collected: 10/03/20 11:05 Date Received: 10/06/20 09:00

Matrix: Solid

Percent Solids: 84.1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.5 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E nt ID: CH71		40	1 mL	1 mL	333544	10/15/20 13:07	VVP	TAL PIT
Total/NA	Prep	8290			9.85 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 10D5		1			423056	10/19/20 10:08	AS	TAL SAC

Client Sample ID: DW207SS

Date Collected: 10/03/20 11:35 Date Received: 10/06/20 09:00

Lab Sample ID: 180-111869-6

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis	Batch Method 2540G	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333139	Prepared or Analyzed 10/12/20 21:23	Analyst PMH	Lab TAL PIT
Total/NA	Analysis	SM 2540G at ID: NOEQUIP		1			333912	10/12/20 21:23	РМН	TAL PIT

Client Sample ID: DW207SS

Date Collected: 10/03/20 11:35

Date Received: 10/06/20 09:00

Lab Sample ID: 180-111869-6 **Matrix: Solid**

Percent Solids: 80.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.4 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		5	1 mL	1 mL	333544	10/15/20 13:33	VVP	TAL PIT
Total/NA	Prep	8290			9.97 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 10D5		1			423056	10/19/20 10:53	AS	TAL SAC
Total/NA	Prep	8290	RA		9.97 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1			422248	10/15/20 14:50	KSS	TAL SAC

Project/Site: Grenada, Mississippi

Client Sample ID: KD321SS

Date Collected: 10/03/20 14:49 Date Received: 10/06/20 09:00 Lab Sample ID: 180-111869-7

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G at ID: NOEQUIP		1			333139	10/12/20 21:23	PMH	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			333912	10/12/20 21:23	PMH	TAL PIT

Client Sample ID: KD321SS Lab Sample ID: 180-111869-7

Matrix: Solid

Date Collected: 10/03/20 14:49 Date Received: 10/06/20 09:00 Percent Solids: 79.2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E nt ID: CH71		1	1 mL	1 mL	333544	10/15/20 13:59	VVP	TAL PIT
Total/NA	Prep	8290			10.28 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis	8290A		1			423058	10/19/20 19:44	ALM	TAL SAC
	Instrumer	nt ID: 10D5								

Client Sample ID: DW208SS Lab Sample ID: 180-111869-8

Date Collected: 10/03/20 12:30 **Matrix: Solid**

Date Received: 10/06/20 09:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G at ID: NOEQUIP		1			333139	10/12/20 21:23	PMH	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G		1			333912	10/12/20 21:23	PMH	TAL PIT

Lab Sample ID: 180-111869-8 **Client Sample ID: DW208SS** Date Collected: 10/03/20 12:30 **Matrix: Solid**

Date Received: 10/06/20 09:00 Percent Solids: 81.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			14.8 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH71		4	1 mL	1 mL	333544	10/15/20 14:25	VVP	TAL PIT
Total/NA	Prep	8290			10.31 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 10D5		1			423058	10/19/20 20:29	ALM	TAL SAC
Total/NA	Prep	8290	RA		10.31 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 11D2	RA	1			422248	10/15/20 16:07	KSS	TAL SAC

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: DW209SS

Date Collected: 10/03/20 15:34 Date Received: 10/06/20 09:00

Lab Sample ID: 180-111869-9

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method 2540G It ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333139	Prepared or Analyzed 10/12/20 21:23	Analyst PMH	Lab TAL PIT
Total/NA	Analysis Instrumen	SM 2540G		1			333912	10/12/20 21:23	РМН	TAL PIT

Client Sample ID: DW209SS Lab Sample ID: 180-111869-9

Date Collected: 10/03/20 15:34 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 73.9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.0 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E nt ID: CH71		1	1 mL	1 mL	333544	10/15/20 14:51	VVP	TAL PIT
Total/NA	Prep	8290			10.47 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 10D5		1			423058	10/19/20 21:14	ALM	TAL SAC
Total/NA	Prep	8290	RA		10.47 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 11D2	RA	1			422248	10/15/20 16:45	KSS	TAL SAC

Lab Sample ID: 180-111869-10 **Client Sample ID: DW210SS**

Date Collected: 10/03/20 16:10 Date Received: 10/06/20 09:00

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method 2540G at ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 333139	Prepared or Analyzed 10/12/20 21:23	Analyst PMH	Lab TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			333912	10/12/20 21:23	PMH	TAL PIT

Lab Sample ID: 180-111869-10 **Client Sample ID: DW210SS**

Date Collected: 10/03/20 16:10 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 69.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.0 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH71		1	1 mL	1 mL	333544	10/15/20 15:17	VVP	TAL PIT
Total/NA	Prep	8290			9.77 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 10D5		1			423058	10/19/20 21:59	ALM	TAL SAC
Total/NA	Prep	8290	RA		9.77 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A it ID: 11D2	RA	1			422248	10/15/20 17:24	KSS	TAL SAC

Eurofins TestAmerica, Pittsburgh

Matrix: Solid

Lab Chronicle

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Client Sample ID: DW210SS-EB Lab Sample ID: 180-111869-11

Date Collected: 10/03/20 17:50 **Matrix: Water** Date Received: 10/06/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			240 mL	2.5 mL	332720	10/08/20 10:44	BJT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH732		1	1 mL	1 mL	333370	10/14/20 18:17	VVP	TAL PIT
Total/NA	Prep	8290			1025.9 mL	20 uL	420196	10/09/20 09:46	RDR	TAL SAC
Total/NA	Analysis	8290A		1			423518	10/20/20 06:01	AS	TAL SAC
	Instrumer	nt ID: 10D5								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Analyst References:

Lab: TAL PIT

Batch Type: Prep

BJT = Bill Trout

CSC = Chayce Cockroft

SAT = Stephen Tallam

Batch Type: Analysis

PMH = Paloma Hoelzle

VVP = Vincent Piccolino

Lab: TAL SAC

Batch Type: Prep

FC = Fue Chang

RDR = Robert Royce

Batch Type: Analysis

ALM = Adrian Messecar

AS = Ajay Sharda

KSS = Kyle Stephens

Eurofins TestAmerica, Pittsburgh

Lab Sample ID: 180-111869-1

Matrix: Solid

Percent Solids: 78.5

Job ID: 180-111869-1

Client Sample	ID: DW202SS
----------------------	--------------------

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Date Collected: 10/03/20 08:42 Date Received: 10/06/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		420	120	ug/Kg	<u></u>	10/14/20 08:24	10/16/20 17:25	5
Acenaphthylene	1100		420	92	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Anthracene	1300		420	110	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Benzo[a]anthracene	2200		420	190	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Benzo[b]fluoranthene	4200		420	100	ug/Kg	☼	10/14/20 08:24	10/16/20 17:25	5
Benzo[k]fluoranthene	1500		420	130	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Benzo[g,h,i]perylene	1700		420	91	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Benzo[a]pyrene	2100		420	180	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Chrysene	2900		420	230	ug/Kg	☼	10/14/20 08:24	10/16/20 17:25	5
Dibenz(a,h)anthracene	870		420	270	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Fluoranthene	3500		420	110	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Fluorene	100	J	420	83	ug/Kg	☼	10/14/20 08:24	10/16/20 17:25	5
Indeno[1,2,3-cd]pyrene	1700		420	210	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Naphthalene	770		420	82	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Phenanthrene	1700		420	110	ug/Kg	₩	10/14/20 08:24	10/16/20 17:25	5
Pyrene	3600		420	100	ug/Kg	☼	10/14/20 08:24	10/16/20 17:25	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		45 - 105				10/14/20 08:24	10/16/20 17:25	5
2-Eluorophenol (Surr)	77		12 105				10/11/20 08:21	10/16/20 17:25	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	69		45 - 105	10/14/20 08:24	10/16/20 17:25	5
2-Fluorophenol (Surr)	77		42 - 105	10/14/20 08:24	10/16/20 17:25	5
2,4,6-Tribromophenol (Surr)	28	Χ	31 - 105	10/14/20 08:24	10/16/20 17:25	5
Nitrobenzene-d5 (Surr)	77		53 - 105	10/14/20 08:24	10/16/20 17:25	5
Phenol-d5 (Surr)	70		47 - 105	10/14/20 08:24	10/16/20 17:25	5
Terphenyl-d14 (Surr)	76		46 - 105	10/14/20 08:24	10/16/20 17:25	5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	1.8		1.2	0.16	pg/g	— <u></u>	10/09/20 05:11	10/19/20 05:34	
Total TCDD	11	q	1.2	0.16	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
1,2,3,7,8-PeCDD	19		6.1	2.2	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
Total PeCDD	68		6.1	2.2	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
1,2,3,4,7,8-HxCDD	74	В	6.1	2.0	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
1,2,3,6,7,8-HxCDD	150		6.1	1.8	pg/g	₩	10/09/20 05:11	10/19/20 05:34	
1,2,3,7,8,9-HxCDD	140	F1	6.1	1.7	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
Total HxCDD	1100	В	6.1	1.8	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
1,2,3,4,6,7,8-HpCDD	5100	EBG	27	27	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
Total HpCDD	9200	BG	27	27	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
OCDD	54000	EBG	13	13	pg/g	₩	10/09/20 05:11	10/19/20 05:34	
Total TCDF	21	q	1.2	0.32	pg/g	₽	10/09/20 05:11	10/19/20 05:34	
4 0 0 7 0 D-ODE			G 1	0.07			10/00/20 05:11	10/10/20 05:24	

Iotal ICDF	21	q	1.2	0.32	pg/g	Ω÷	10/09/20 05:11	10/19/20 05:34	
1,2,3,7,8-PeCDF	2.1	J	6.1	0.87	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
2,3,4,7,8-PeCDF	ND		6.1	0.90	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
Total PeCDF	110	q	6.1	0.89	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
1,2,3,4,7,8-HxCDF	21	q G	8.3	8.3	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
1,2,3,6,7,8-HxCDF	23	G	7.6	7.6	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
2,3,4,6,7,8-HxCDF	23	G	8.0	8.0	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
1,2,3,7,8,9-HxCDF	ND	G	8.5	8.5	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
Total HxCDF	900	q G	8.1	8.1	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
1,2,3,4,6,7,8-HpCDF	990	G	11	11	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
1,2,3,4,7,8,9-HpCDF	81	G	12	12	pg/g	≎	10/09/20 05:11	10/19/20 05:34	
Total HpCDF	3300	G	12	12	pg/g	₩	10/09/20 05:11	10/19/20 05:34	

Eurofins TestAmerica, Pittsburgh

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

2-Fluorophenol (Surr)

Client Sample ID: DW202SS Lab Sample ID: 180-111869-1

Date Collected: 10/03/20 08:42 **Matrix: Solid**

Date Received: 10/06/20 09:00 Percent Solids: 78.5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	4300	В	12	0.68	pg/g	₩	10/09/20 05:11	10/19/20 05:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	80		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-1,2,3,7,8-PeCDD	75		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-1,2,3,6,7,8-HxCDD	62		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-1,2,3,4,6,7,8-HpCDD	76		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-OCDD	87		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-2,3,7,8-TCDF	94		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-1,2,3,7,8-PeCDF	89		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-1,2,3,4,7,8-HxCDF	89		40 - 135				10/09/20 05:11	10/19/20 05:34	1
13C-1,2,3,4,6,7,8-HpCDF	79		40 - 135				10/09/20 05:11	10/19/20 05:34	1

Method: 8290A - Dioxins and	Furans (HR	GC/HRMS)	- RA						
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.58	J	1.2	0.22	pg/g	*	10/09/20 05:11	10/15/20 10:21	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	78		40 - 135				10/09/20 05:11	10/15/20 10:21	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	21.5		0.1	0.1	%			10/12/20 21:23	1
Percent Solids	78.5		0.1	0.1	%			10/12/20 21:23	1
Total Solids	78		0.50	0.50	%			10/12/20 21:23	1

Lab Sample ID: 180-111869-2 **Client Sample ID: DW203SS** Date Collected: 10/03/20 09:10 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 75.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		88	25	ug/Kg	— <u>~</u>	10/13/20 08:11	10/14/20 23:43	1
Acenaphthylene	140		88	19	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Anthracene	180		88	23	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Benzo[a]anthracene	330		88	40	ug/Kg	₩	10/13/20 08:11	10/14/20 23:43	1
Benzo[b]fluoranthene	630		88	22	ug/Kg	₩	10/13/20 08:11	10/14/20 23:43	1
Benzo[k]fluoranthene	210		88	26	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Benzo[g,h,i]perylene	230		88	19	ug/Kg	₽	10/13/20 08:11	10/14/20 23:43	1
Benzo[a]pyrene	290		88	38	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Chrysene	440		88	49	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Dibenz(a,h)anthracene	140		88	56	ug/Kg	₽	10/13/20 08:11	10/14/20 23:43	1
Fluoranthene	460		88	23	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Fluorene	ND		88	17	ug/Kg	₩	10/13/20 08:11	10/14/20 23:43	1
Indeno[1,2,3-cd]pyrene	230		88	44	ug/Kg	≎	10/13/20 08:11	10/14/20 23:43	1
Naphthalene	81	J	88	17	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Phenanthrene	200		88	24	ug/Kg	☼	10/13/20 08:11	10/14/20 23:43	1
Pyrene	490		88	21	ug/Kg	₩	10/13/20 08:11	10/14/20 23:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	66		45 - 105				10/13/20 08:11	10/14/20 23:43	1

Eurofins TestAmerica, Pittsburgh

10/13/20 08:11 10/14/20 23:43

Page 18 of 55

42 - 105

76

Project/Site: Grenada, Mississippi

Client Sample ID: DW203SS

Lab Sample ID: 180-111869-2

Date Collected: 10/03/20 09:10 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 75.1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	55	31 - 105	10/13/20 08:11 10/14/20 23:43	3 1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/13/20 08:11 10/14/20 23:43	3 1
Phenol-d5 (Surr)	66	47 - 105	10/13/20 08:11 10/14/20 23:43	3 1
Terphenyl-d14 (Surr)	81	46 - 105	10/13/20 08:11 10/14/20 23:43	3 1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.29	Jq	1.3	0.13	pg/g	<u></u>	10/09/20 05:11	10/19/20 07:49	1
Total TCDD	4.7	q	1.3	0.13	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,7,8-PeCDD	3.6	J	6.3	0.38	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
Total PeCDD	29	q	6.3	0.38	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,4,7,8-HxCDD	13	В	6.3	0.37	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,6,7,8-HxCDD	35		6.3	0.33	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,7,8,9-HxCDD	22		6.3	0.31	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
Total HxCDD	300	В	6.3	0.33	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,4,6,7,8-HpCDD	1300	BG	14	14	pg/g	☼	10/09/20 05:11	10/19/20 07:49	1
Total HpCDD	3000	BG	14	14	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
OCDD	17000	EB	13	13	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
2,3,7,8-TCDF	0.65	J	1.3	0.095	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
Total TCDF	4.1	q	1.3	0.095	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,7,8-PeCDF	0.72	Jq	6.3	0.40	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
2,3,4,7,8-PeCDF	1.1	J	6.3	0.41	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
Total PeCDF	29	q	6.3	0.41	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,4,7,8-HxCDF	9.5		6.3	1.2	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,6,7,8-HxCDF	ND		6.3	1.1	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
2,3,4,6,7,8-HxCDF	4.5	J	6.3	1.2	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,7,8,9-HxCDF	ND		6.3	1.3	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
Total HxCDF	210		6.3	1.2	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,4,6,7,8-HpCDF	260	G	6.6	6.6	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
1,2,3,4,7,8,9-HpCDF	21	G	7.6	7.6	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
Total HpCDF	1000	G	7.1	7.1	pg/g	₽	10/09/20 05:11	10/19/20 07:49	1
OCDF	1100	В	13	0.34	pg/g	☼	10/09/20 05:11	10/19/20 07:49	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	77	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-1,2,3,7,8-PeCDD	76	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-1,2,3,6,7,8-HxCDD	<i>75</i>	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-1,2,3,4,6,7,8-HpCDD	78	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-OCDD	95	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-2,3,7,8-TCDF	90	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-1,2,3,7,8-PeCDF	84	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-1,2,3,4,7,8-HxCDF	96	40 - 135	10/09/20 05:11	10/19/20 07:49	1
13C-1,2,3,4,6,7,8-HpCDF	81	40 - 135	10/09/20 05:11	10/19/20 07:49	1

General Chemistry

Analyte	Result	Qualifier	RL	RL	Unit	. D	Prepared	Analyzed	Dil Fac
Percent Moisture	24.9		0.1	0.1	%			10/12/20 21:23	1
Percent Solids	75.1		0.1	0.1	%			10/12/20 21:23	1
Total Solids	75		0.50	0.50	%			10/12/20 21:23	1

Eurofins TestAmerica, Pittsburgh

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi

Terphenyl-d14 (Surr)

Client Sample ID: DW204SS Lab Sample ID: 180-111869-3

Date Collected: 10/03/20 09:45 **Matrix: Solid** Percent Solids: 75.0 Date Received: 10/06/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		270	78	ug/Kg	— <u>~</u>	10/13/20 08:11	10/15/20 12:15	3
Acenaphthylene	550		270	59	ug/Kg	₩	10/13/20 08:11	10/15/20 12:15	3
Anthracene	830		270	70	ug/Kg	₩	10/13/20 08:11	10/15/20 12:15	3
Benzo[a]anthracene	1600		270	120	ug/Kg	₩	10/13/20 08:11	10/15/20 12:15	3
Benzo[b]fluoranthene	2700		270	67	ug/Kg	☼	10/13/20 08:11	10/15/20 12:15	3
Benzo[k]fluoranthene	1300		270	81	ug/Kg	☼	10/13/20 08:11	10/15/20 12:15	3
Benzo[g,h,i]perylene	940		270	58	ug/Kg	₽	10/13/20 08:11	10/15/20 12:15	3
Benzo[a]pyrene	1400		270	120	ug/Kg	₩	10/13/20 08:11	10/15/20 12:15	3
Chrysene	2100		270	150	ug/Kg	☼	10/13/20 08:11	10/15/20 12:15	3
Dibenz(a,h)anthracene	500		270	170	ug/Kg	₽	10/13/20 08:11	10/15/20 12:15	3
Fluoranthene	2400		270	71	ug/Kg	☼	10/13/20 08:11	10/15/20 12:15	3
Fluorene	ND		270	53	ug/Kg	☼	10/13/20 08:11	10/15/20 12:15	3
Indeno[1,2,3-cd]pyrene	960		270	130	ug/Kg	₽	10/13/20 08:11	10/15/20 12:15	3
Naphthalene	520		270	53	ug/Kg	☼	10/13/20 08:11	10/15/20 12:15	3
Phenanthrene	1100		270	73	ug/Kg	₩	10/13/20 08:11	10/15/20 12:15	3
Pyrene	2400		270	64	ug/Kg	₩	10/13/20 08:11	10/15/20 12:15	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	73		45 - 105				10/13/20 08:11	10/15/20 12:15	3
2-Fluorophenol (Surr)	81		42 - 105				10/13/20 08:11	10/15/20 12:15	3
2,4,6-Tribromophenol (Surr)	56		31 - 105				10/13/20 08:11	10/15/20 12:15	3
Nitrobenzene-d5 (Surr)	80		53 - 105				10/13/20 08:11	10/15/20 12:15	3
Phenol-d5 (Surr)	70		47 - 105				10/13/20 08:11	10/15/20 12:15	3

46 - 105

82

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.70	Jq	1.3	0.17	pg/g	<u></u>	10/09/20 05:11	10/19/20 08:34	1
Total TCDD	9.1	q	1.3	0.17	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
1,2,3,7,8-PeCDD	13		6.3	2.2	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
Total PeCDD	66		6.3	2.2	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
1,2,3,4,7,8-HxCDD	45	В	6.3	1.8	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
1,2,3,6,7,8-HxCDD	150		6.3	1.6	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
1,2,3,7,8,9-HxCDD	77		6.3	1.5	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
Total HxCDD	900	В	6.3	1.7	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
1,2,3,4,6,7,8-HpCDD	4700	EBG	21	21	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
Total HpCDD	9900	BG	21	21	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
OCDD	51000	EB	13	13	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
Total TCDF	15	q	1.3	0.32	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
1,2,3,7,8-PeCDF	2.7	J	6.3	0.81	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
2,3,4,7,8-PeCDF	3.5	J	6.3	0.84	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
Total PeCDF	82		6.3	0.82	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
1,2,3,4,7,8-HxCDF	26		6.3	4.5	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
1,2,3,6,7,8-HxCDF	18		6.3	4.1	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
2,3,4,6,7,8-HxCDF	13		6.3	4.3	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
1,2,3,7,8,9-HxCDF	ND		6.3	4.6	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
Total HxCDF	700		6.3	4.4	pg/g	₽	10/09/20 05:11	10/19/20 08:34	1
1,2,3,4,6,7,8-HpCDF	780	G	6.6	6.6	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
1,2,3,4,7,8,9-HpCDF	57	G	7.6	7.6	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1
Total HpCDF	2900	G	7.1	7.1	pg/g	₩	10/09/20 05:11	10/19/20 08:34	1

Eurofins TestAmerica, Pittsburgh

10/13/20 08:11 10/15/20 12:15

Page 20 of 55

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

2-Fluorobiphenyl

2-Fluorophenol (Surr)

Client Sample ID: DW204SS

Lab Sample ID: 180-111869-3 Date Collected: 10/03/20 09:45 Date Received: 10/06/20 09:00

Matrix: Solid Percent Solids: 75.0

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	3100	В	13	1.2	pg/g	-	10/09/20 05:11	10/19/20 08:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	86		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-1,2,3,7,8-PeCDD	83		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-1,2,3,6,7,8-HxCDD	80		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-1,2,3,4,6,7,8-HpCDD	86		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-OCDD	105		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-2,3,7,8-TCDF	102		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-1,2,3,7,8-PeCDF	97		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-1,2,3,4,7,8-HxCDF	103		40 - 135				10/09/20 05:11	10/19/20 08:34	1
13C-1,2,3,4,6,7,8-HpCDF	89		40 - 135				10/09/20 05:11	10/19/20 08:34	1

Method: 8290A - Dioxins	s and Furans (HRGC	HRMS) - RA							
Analyte	Result Qu	ualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.72 J		1.3	0.25	pg/g	*	10/09/20 05:11	10/15/20 12:55	1
Isotope Dilution	%Recovery Qu	ualifier Lim	its				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	90	40 -	135				10/09/20 05:11	10/15/20 12:55	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	25.0		0.1	0.1	%			10/12/20 21:23	1
Percent Solids	75.0		0.1	0.1	%			10/12/20 21:23	1
Total Solids	75		0.50	0.50	%			10/12/20 21:23	1

Client Sample ID: DW205SS Lab Sample ID: 180-111869-4 Date Collected: 10/03/20 10:10 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 83.6

Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	390	110	ug/Kg	-	10/13/20 08:11	10/15/20 12:41	5
Acenaphthylene	1000	390	86	ug/Kg	₩	10/13/20 08:11	10/15/20 12:41	5
Anthracene	1400	390	100	ug/Kg	☼	10/13/20 08:11	10/15/20 12:41	5
Benzo[a]anthracene	2700	390	180	ug/Kg	₩	10/13/20 08:11	10/15/20 12:41	5
Benzo[b]fluoranthene	4700	390	96	ug/Kg	☼	10/13/20 08:11	10/15/20 12:41	5
Benzo[k]fluoranthene	2100	390	120	ug/Kg	₽	10/13/20 08:11	10/15/20 12:41	5
Benzo[g,h,i]perylene	1700	390	84	ug/Kg	₩	10/13/20 08:11	10/15/20 12:41	5
Benzo[a]pyrene	2200	390	170	ug/Kg	☼	10/13/20 08:11	10/15/20 12:41	5
Chrysene	3400	390	220	ug/Kg	₩	10/13/20 08:11	10/15/20 12:41	5
Dibenz(a,h)anthracene	780	390	250	ug/Kg	₽	10/13/20 08:11	10/15/20 12:41	5
Fluoranthene	4100	390	100	ug/Kg	₽	10/13/20 08:11	10/15/20 12:41	5
Fluorene	95 J	390	77	ug/Kg	₽	10/13/20 08:11	10/15/20 12:41	5
Indeno[1,2,3-cd]pyrene	1700	390	190	ug/Kg	₽	10/13/20 08:11	10/15/20 12:41	5
Naphthalene	840	390	76	ug/Kg	₽	10/13/20 08:11	10/15/20 12:41	5
Phenanthrene	1800	390	100	ug/Kg	₩	10/13/20 08:11	10/15/20 12:41	5
Pyrene	4100	390	93	ug/Kg	₩	10/13/20 08:11	10/15/20 12:41	5
Surrogate	%Recovery Qualifi	ier Limits				Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Pittsburgh

10/13/20 08:11 10/15/20 12:41

10/13/20 08:11 10/15/20 12:41

45 - 105

42 - 105

72

77

5

5

Project/Site: Grenada, Mississippi

Client Sample ID: DW205SS Lab Sample ID: 180-111869-4

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	51	31 - 105	10/13/20 08:11	10/15/20 12:41	5
Nitrobenzene-d5 (Surr)	78	53 - 105	10/13/20 08:11	10/15/20 12:41	5
Phenol-d5 (Surr)	68	47 - 105	10/13/20 08:11	10/15/20 12:41	5
Terphenyl-d14 (Surr)	80	46 - 105	10/13/20 08:11	10/15/20 12:41	5

Method: 8290A -	Dioxins and Furans	(HRGC/HRMS)
Analyte	R	esult Qualifier

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.95	Jq	1.2	0.21	pg/g	*	10/09/20 05:11	10/19/20 09:19	1
Total TCDD	15	q	1.2	0.21	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,7,8-PeCDD	15	G	9.5	9.5	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
Total PeCDD	54	G	9.5	9.5	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,4,7,8-HxCDD	68	В	6.1	0.73	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,6,7,8-HxCDD	210		6.1	0.66	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,7,8,9-HxCDD	120		6.1	0.61	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
Total HxCDD	1600	В	6.1	0.67	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
1,2,3,4,6,7,8-HpCDD	6700	EBG	24	24	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
Total HpCDD	15000	BG	24	24	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
OCDD	76000	EBG	26	26	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
Total TCDF	16		1.2	0.39	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,7,8-PeCDF	3.8	J	6.1	0.87	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
2,3,4,7,8-PeCDF	4.8	J	6.1	0.90	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
Total PeCDF	100	q	6.1	0.88	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,4,7,8-HxCDF	28	G	7.0	7.0	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,6,7,8-HxCDF	22	q G	6.5	6.5	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
2,3,4,6,7,8-HxCDF	17	q G	6.8	6.8	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
1,2,3,7,8,9-HxCDF	ND	G	7.2	7.2	pg/g	₽	10/09/20 05:11	10/19/20 09:19	1
Total HxCDF	1100	q G	6.9	6.9	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
1,2,3,4,6,7,8-HpCDF	1300	G	9.9	9.9	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
1,2,3,4,7,8,9-HpCDF	97	G	11	11	pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
Total HpCDF	4800	G	11		pg/g	₩	10/09/20 05:11	10/19/20 09:19	1
OCDE	5800	FB	12		pa/a	₩	10/09/20 05:11	10/19/20 09:19	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	74	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-1,2,3,7,8-PeCDD	72	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-1,2,3,6,7,8-HxCDD	59	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-1,2,3,4,6,7,8-HpCDD	74	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-OCDD	88	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-2,3,7,8-TCDF	89	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-1,2,3,7,8-PeCDF	85	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-1,2,3,4,7,8-HxCDF	84	40 - 135	10/09/20 05:11	10/19/20 09:19	1
13C-1,2,3,4,6,7,8-HpCDF	76	40 - 135	10/09/20 05:11	10/19/20 09:19	1

mourour ozoort zrozino una	,	- · · · · · · · · · · · · · · · · · · ·							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.3		1.2	0.30	pg/g	<u></u>	10/09/20 05:11	10/15/20 13:33	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	76		40 - 135				10/09/20 05:11	10/15/20 13:33	1

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: DW205SS Lab Sample ID: 180-111869-4

Date Collected: 10/03/20 10:10 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 83.6

Result (Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
16.4		0.1	0.1	%			10/12/20 21:23	1
83.6		0.1	0.1	%			10/12/20 21:23	1
84		0.50	0.50	%			10/12/20 21:23	1
	16.4 83.6	83.6	16.4 0.1 83.6 0.1	16.4 0.1 0.1 83.6 0.1 0.1	16.4 0.1 0.1 % 83.6 0.1 0.1 %	16.4 0.1 0.1 % 83.6 0.1 0.1 %	16.4 0.1 0.1 % 83.6 0.1 0.1 %	16.4 0.1 0.1 % 10/12/20 21:23 83.6 0.1 0.1 % 10/12/20 21:23

Lab Sample ID: 180-111869-5 **Client Sample ID: DW206SS** Date Collected: 10/03/20 11:05 **Matrix: Solid** Date Received: 10/06/20 09:00 **Percent Solids: 84.1**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	1300	J	3100	880	ug/Kg	<u></u>	10/13/20 08:11	10/15/20 13:07	40
Acenaphthylene	8400		3100	670	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Anthracene	13000		3100	800	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Benzo[a]anthracene	18000		3100	1400	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Benzo[b]fluoranthene	39000		3100	750	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Benzo[k]fluoranthene	16000		3100	920	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Benzo[g,h,i]perylene	14000		3100	660	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Benzo[a]pyrene	20000		3100	1300	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Chrysene	21000		3100	1700	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Dibenz(a,h)anthracene	7000		3100	2000	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Fluoranthene	32000		3100	810	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Fluorene	1100	J	3100	600	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Indeno[1,2,3-cd]pyrene	15000		3100	1500	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Naphthalene	5900		3100	600	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Phenanthrene	13000		3100	820	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Pyrene	30000		3100	730	ug/Kg	₩	10/13/20 08:11	10/15/20 13:07	40
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		X D	45 - 105				10/13/20 08:11	10/15/20 13:07	40
O. Flore was to be a sel (Occurs)	•	V D	10 105				40/40/00 00:44	40/45/00 42:07	40

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		X D	45 - 105	10/13/20 08:11	10/15/20 13:07	40
2-Fluorophenol (Surr)	0	XD	42 - 105	10/13/20 08:11	10/15/20 13:07	40
2,4,6-Tribromophenol (Surr)	0	XD	31 - 105	10/13/20 08:11	10/15/20 13:07	40
Nitrobenzene-d5 (Surr)	0	ΧD	53 - 105	10/13/20 08:11	10/15/20 13:07	40
Phenol-d5 (Surr)	0	XD	47 - 105	10/13/20 08:11	10/15/20 13:07	40
Terphenyl-d14 (Surr)	0	XD	46 - 105	10/13/20 08:11	10/15/20 13:07	40

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	1.0	J	1.2	0.38	pg/g	— <u></u>	10/09/20 05:11	10/19/20 10:08	1
Total TCDD	3.5	q	1.2	0.38	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
1,2,3,7,8-PeCDD	6.0		6.0	0.53	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
Total PeCDD	31	q	6.0	0.53	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
1,2,3,4,7,8-HxCDD	18	В	6.0	0.32	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
1,2,3,6,7,8-HxCDD	48		6.0	0.28	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
1,2,3,7,8,9-HxCDD	27		6.0	0.26	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
Total HxCDD	380	В	6.0	0.29	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
1,2,3,4,6,7,8-HpCDD	1900	BG	9.5	9.5	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
Total HpCDD	4100	BG	9.5	9.5	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
OCDD	21000	EB	12	3.2	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
2,3,7,8-TCDF	0.97	J	1.2	0.49	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
Total TCDF	7.3		1.2	0.49	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1

Eurofins TestAmerica, Pittsburgh

Page 23 of 55

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: DW206SS Lab Sample ID: 180-111869-5

Date Collected: 10/03/20 11:05 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 84.1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8-PeCDF	1.2	Jq	6.0	0.36	pg/g	<u></u>	10/09/20 05:11	10/19/20 10:08	1
2,3,4,7,8-PeCDF	1.8	J	6.0	0.37	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
Total PeCDF	37	q	6.0	0.37	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
1,2,3,4,7,8-HxCDF	11		6.0	1.9	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
1,2,3,6,7,8-HxCDF	7.6		6.0	1.7	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
2,3,4,6,7,8-HxCDF	5.4	J	6.0	1.8	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
1,2,3,7,8,9-HxCDF	ND		6.0	1.9	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
Total HxCDF	290		6.0	1.8	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
1,2,3,4,6,7,8-HpCDF	350		6.0	3.9	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
1,2,3,4,7,8,9-HpCDF	20		6.0	4.4	pg/g	₽	10/09/20 05:11	10/19/20 10:08	1
Total HpCDF	1300		6.0	4.1	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
OCDF	1700	В	12	1.1	pg/g	₩	10/09/20 05:11	10/19/20 10:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	69		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-1,2,3,7,8-PeCDD	77		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-1,2,3,6,7,8-HxCDD	66		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-1,2,3,4,6,7,8-HpCDD	62		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-OCDD	63		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-2,3,7,8-TCDF	74		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-1,2,3,7,8-PeCDF	81		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-1,2,3,4,7,8-HxCDF	91		40 - 135				10/09/20 05:11	10/19/20 10:08	1
13C-1,2,3,4,6,7,8-HpCDF	67		40 - 135				10/09/20 05:11	10/19/20 10:08	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.9		0.1	0.1	%			10/12/20 21:23	1
Percent Solids	84.1		0.1	0.1	%			10/12/20 21:23	1
Total Solids	84		0.50	0.50	%			10/12/20 21:23	1

Client Sample ID: DW207SS Lab Sample ID: 180-111869-6 Date Collected: 10/03/20 11:35 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 80.3

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND -	410	120	ug/Kg	<u></u>	10/13/20 08:11	10/15/20 13:33	5
Acenaphthylene	910	410	89	ug/Kg	≎	10/13/20 08:11	10/15/20 13:33	5
Anthracene	1300	410	100	ug/Kg	₩	10/13/20 08:11	10/15/20 13:33	5
Benzo[a]anthracene	2200	410	180	ug/Kg	₩	10/13/20 08:11	10/15/20 13:33	5
Benzo[b]fluoranthene	4300	410	99	ug/Kg	≎	10/13/20 08:11	10/15/20 13:33	5
Benzo[k]fluoranthene	1700	410	120	ug/Kg	₩	10/13/20 08:11	10/15/20 13:33	5
Benzo[g,h,i]perylene	1400	410	87	ug/Kg	≎	10/13/20 08:11	10/15/20 13:33	5
Benzo[a]pyrene	2100	410	180	ug/Kg	₩	10/13/20 08:11	10/15/20 13:33	5
Chrysene	3000	410	220	ug/Kg	≎	10/13/20 08:11	10/15/20 13:33	5
Dibenz(a,h)anthracene	760	410	260	ug/Kg	₽	10/13/20 08:11	10/15/20 13:33	5
Fluoranthene	4000	410	110	ug/Kg	≎	10/13/20 08:11	10/15/20 13:33	5
Fluorene	100 J	410	79	ug/Kg	≎	10/13/20 08:11	10/15/20 13:33	5
Indeno[1,2,3-cd]pyrene	1500	410	200	ug/Kg	₽	10/13/20 08:11	10/15/20 13:33	5
Naphthalene	1100	410	79	ug/Kg	₩	10/13/20 08:11	10/15/20 13:33	5
Phenanthrene	1700	410	110	ug/Kg	₩	10/13/20 08:11	10/15/20 13:33	5

Eurofins TestAmerica, Pittsburgh

Page 24 of 55

Project/Site: Grenada, Mississippi

Client Sample ID: DW207SS Lab Sample ID: 180-111869-6

Date Collected: 10/03/20 11:35

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 80.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	3800		410	96	ug/Kg		10/13/20 08:11	10/15/20 13:33	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		45 - 105				10/13/20 08:11	10/15/20 13:33	5
2-Fluorophenol (Surr)	85		42 - 105				10/13/20 08:11	10/15/20 13:33	5
2,4,6-Tribromophenol (Surr)	52		31 - 105				10/13/20 08:11	10/15/20 13:33	5
Nitrobenzene-d5 (Surr)	83		53 - 105				10/13/20 08:11	10/15/20 13:33	5
Phenol-d5 (Surr)	76		47 - 105				10/13/20 08:11	10/15/20 13:33	5
Terphenyl-d14 (Surr)	83		46 - 105				10/13/20 08:11	10/15/20 13:33	5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.83	Jq	1.2	0.35	pg/g		10/09/20 05:11	10/19/20 10:53	1
Total TCDD	22	q	1.2	0.35	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
1,2,3,7,8-PeCDD	13	G	6.5	6.5	pg/g	₩	10/09/20 05:11	10/19/20 10:53	1
Total PeCDD	82	q G	6.5	6.5	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
1,2,3,4,7,8-HxCDD	61	В	6.2	2.8	pg/g	₩	10/09/20 05:11	10/19/20 10:53	1
1,2,3,6,7,8-HxCDD	160		6.2	2.5	pg/g	₩	10/09/20 05:11	10/19/20 10:53	1
1,2,3,7,8,9-HxCDD	97		6.2	2.3	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
Total HxCDD	1500	В	6.2	2.6	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
1,2,3,4,6,7,8-HpCDD	6500	EBG	50	50	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
Total HpCDD	16000	BG	50	50	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
OCDD	72000	EBG	18	18	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
Total TCDF	20	q	1.2	0.62	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
1,2,3,7,8-PeCDF	4.1	J	6.2	0.60	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
2,3,4,7,8-PeCDF	5.0	J	6.2	0.62	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
Total PeCDF	90		6.2	0.61	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
1,2,3,4,7,8-HxCDF	34		6.2	5.2	pg/g	₩	10/09/20 05:11	10/19/20 10:53	1
1,2,3,6,7,8-HxCDF	19		6.2	4.8	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
2,3,4,6,7,8-HxCDF	17		6.2	5.1	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
1,2,3,7,8,9-HxCDF	ND		6.2	5.4	pg/g	₩	10/09/20 05:11	10/19/20 10:53	1
Total HxCDF	940		6.2	5.1	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
1,2,3,4,6,7,8-HpCDF	1100	G	10	10	pg/g	₩	10/09/20 05:11	10/19/20 10:53	1
1,2,3,4,7,8,9-HpCDF	88	G	12	12	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
Total HpCDF	4400	G	11	11	pg/g	₽	10/09/20 05:11	10/19/20 10:53	1
OCDF	6200	EB	12	1.1	pg/g	₩	10/09/20 05:11	10/19/20 10:53	1
In a town a Different and	0/5	0	1				D	A I	D# E

0001	0200			Para	-1-	. 0, 00, 20 00	. 0/ . 0/ 20 . 0.00	•
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	66		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-1,2,3,7,8-PeCDD	72		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-1,2,3,6,7,8-HxCDD	59		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-1,2,3,4,6,7,8-HpCDD	61		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-OCDD	69		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-2,3,7,8-TCDF	71		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-1,2,3,7,8-PeCDF	76		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-1,2,3,4,7,8-HxCDF	86		40 - 135			10/09/20 05:11	10/19/20 10:53	1
13C-1,2,3,4,6,7,8-HpCDF	67		40 - 135			10/09/20 05:11	10/19/20 10:53	1

Method: 8290A - Dioxins and F	Furans (HRC	GC/HRMS) - F	RA						
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.3		1.2	0.40	pg/g		10/09/20 05:11	10/15/20 14:50	1

Eurofins TestAmerica, Pittsburgh

Page 25 of 55

2

3

5

7

10

12

1 3

Project/Site: Grenada, Mississippi

Client Sample ID: DW207SS Lab Sample ID: 180-111869-6

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
13C-2,3,7,8-TCDF	76		40 - 135	10/09/20 05:11 10/15/20 14.	0 1

General Chemistry Analyte	Result Qualif	fier RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19.7	0.1	0.1	%			10/12/20 21:23	1
Percent Solids	80.3	0.1	0.1	%			10/12/20 21:23	1
Total Solids	80	0.50	0.50	%			10/12/20 21:23	1

Client Sample ID: KD321SS Lab Sample ID: 180-111869-7

Date Collected: 10/03/20 14:49

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 79.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		84	24	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Acenaphthylene	36	J	84	18	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Anthracene	40	J	84	22	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Benzo[a]anthracene	120		84	38	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Benzo[b]fluoranthene	190		84	21	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Benzo[k]fluoranthene	76	J	84	25	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Benzo[g,h,i]perylene	72	J	84	18	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Benzo[a]pyrene	93		84	36	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Chrysene	150		84	46	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Dibenz(a,h)anthracene	ND		84	54	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Fluoranthene	170		84	22	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Fluorene	ND		84	16	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Indeno[1,2,3-cd]pyrene	68	J	84	42	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Naphthalene	46	J	84	16	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Phenanthrene	79	J	84	22	ug/Kg	₩	10/13/20 08:11	10/15/20 13:59	1
Pyrene	180		84	20	ug/Kg	₽	10/13/20 08:11	10/15/20 13:59	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	71	45 - 105	10/13/20 08:11	10/15/20 13:59	1
2-Fluorophenol (Surr)	75	42 - 105	10/13/20 08:11	10/15/20 13:59	1
2,4,6-Tribromophenol (Surr)	60	31 - 105	10/13/20 08:11	10/15/20 13:59	1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/13/20 08:11	10/15/20 13:59	1
Phenol-d5 (Surr)	65	47 - 105	10/13/20 08:11	10/15/20 13:59	1
Terphenyl-d14 (Surr)	83	46 - 105	10/13/20 08:11	10/15/20 13:59	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.29	J q	1.2	0.095	pg/g	*	10/09/20 05:11	10/19/20 19:44	1
Total TCDD	2.5	q	1.2	0.095	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
1,2,3,7,8-PeCDD	1.1	J	6.1	0.19	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
Total PeCDD	11	q	6.1	0.19	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
1,2,3,4,7,8-HxCDD	3.4	JB	6.1	0.23	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
1,2,3,6,7,8-HxCDD	6.6		6.1	0.20	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
1,2,3,7,8,9-HxCDD	5.8	J	6.1	0.19	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
Total HxCDD	71	В	6.1	0.21	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
1,2,3,4,6,7,8-HpCDD	240	В	6.1	1.7	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
Total HpCDD	520	В	6.1	1.7	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
OCDD	4000	В	12	1.5	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1

Eurofins TestAmerica, Pittsburgh

10/23/2020

Page 26 of 55

_

4

5

7

10

13

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: KD321SS Lab Sample ID: 180-111869-7

Date Collected: 10/03/20 14:49 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 79.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.80	J	1.2	0.076	pg/g	— <u>—</u>	10/09/20 05:11	10/19/20 19:44	1
Total TCDF	4.1	q	1.2	0.076	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
1,2,3,7,8-PeCDF	0.63	J	6.1	0.11	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
2,3,4,7,8-PeCDF	0.56	J	6.1	0.11	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
Total PeCDF	7.8	q	6.1	0.11	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
1,2,3,4,7,8-HxCDF	1.5	Jq	6.1	0.35	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
1,2,3,6,7,8-HxCDF	1.5	J	6.1	0.32	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
2,3,4,6,7,8-HxCDF	1.4	J	6.1	0.34	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
1,2,3,7,8,9-HxCDF	ND		6.1	0.36	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
Total HxCDF	35	q	6.1	0.34	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
1,2,3,4,6,7,8-HpCDF	40		6.1	0.37	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
1,2,3,4,7,8,9-HpCDF	2.1	J	6.1	0.43	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
Total HpCDF	110		6.1	0.40	pg/g	₩	10/09/20 05:11	10/19/20 19:44	1
OCDF	120	В	12	0.12	pg/g	₽	10/09/20 05:11	10/19/20 19:44	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	71		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-1,2,3,7,8-PeCDD	68		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-1,2,3,6,7,8-HxCDD	71		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-1,2,3,4,6,7,8-HpCDD	66		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-OCDD	74		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-2,3,7,8-TCDF	83		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-1,2,3,7,8-PeCDF	75		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-1,2,3,4,7,8-HxCDF	89		40 - 135				10/09/20 05:11	10/19/20 19:44	1
13C-1,2,3,4,6,7,8-HpCDF	72		40 - 135				10/09/20 05:11	10/19/20 19:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Davaget Malatura	20.0			0.1	0/_			10/12/20 21:22	

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.8		0.1	0.1	%			10/12/20 21:23	1
Percent Solids	79.2		0.1	0.1	%			10/12/20 21:23	1
Total Solids	79		0.50	0.50	%			10/12/20 21:23	1

Client Sample ID: DW208SS Lab Sample ID: 180-111869-8 Date Collected: 10/03/20 12:30 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 81.8

Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	330	95	ug/Kg	<u></u>	10/13/20 08:11	10/15/20 14:25	4
Acenaphthylene	610	330	72	ug/Kg	≎	10/13/20 08:11	10/15/20 14:25	4
Anthracene	760	330	86	ug/Kg	≎	10/13/20 08:11	10/15/20 14:25	4
Benzo[a]anthracene	1100	330	150	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Benzo[b]fluoranthene	2200	330	81	ug/Kg	≎	10/13/20 08:11	10/15/20 14:25	4
Benzo[k]fluoranthene	890	330	99	ug/Kg	≎	10/13/20 08:11	10/15/20 14:25	4
Benzo[g,h,i]perylene	850	330	71	ug/Kg	₽	10/13/20 08:11	10/15/20 14:25	4
Benzo[a]pyrene	1000	330	140	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Chrysene	1500	330	180	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Dibenz(a,h)anthracene	510	330	210	ug/Kg	₽	10/13/20 08:11	10/15/20 14:25	4
Fluoranthene	1900	330	87	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Fluorene	ND	330	65	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Indeno[1,2,3-cd]pyrene	870	330	160	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4

Eurofins TestAmerica, Pittsburgh

Page 27 of 55

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Client Sample ID: DW208SS Lab Sample ID: 180-111869-8

Date Collected: 10/03/20 12:30 Matrix: Solid
Date Received: 10/06/20 09:00 Percent Solids: 81.8

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	680		330	64	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Phenanthrene	1000		330	89	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Pyrene	2100		330	78	ug/Kg	₩	10/13/20 08:11	10/15/20 14:25	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70		45 - 105				10/13/20 08:11	10/15/20 14:25	4
2-Fluorophenol (Surr)	79		42 - 105				10/13/20 08:11	10/15/20 14:25	4
2,4,6-Tribromophenol (Surr)	47		31 - 105				10/13/20 08:11	10/15/20 14:25	4
Nitrobenzene-d5 (Surr)	77		53 - 105				10/13/20 08:11	10/15/20 14:25	4
Phenol-d5 (Surr)	70		47 - 105				10/13/20 08:11	10/15/20 14:25	4
Terphenyl-d14 (Surr)	81		46 - 105				10/13/20 08:11	10/15/20 14:25	4
Method: 8290A - Dioxins a	nd Furans (HR	GC/HRMS)	ı						
Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.89	Jq	1.2	0.25	pg/g		10/09/20 05:11	10/19/20 20:29	1
Total TCDD	31	-	1.2	0.25		₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,7,8-PeCDD	15	•	5.9	1.2	pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
Total PeCDD	120	q	5.9		pg/g		10/09/20 05:11	10/19/20 20:29	1
1,2,3,4,7,8-HxCDD	59		5.9		pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,6,7,8-HxCDD	170		5.9	0.64		₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,7,8,9-HxCDD	95		5.9	0.60			10/09/20 05:11	10/19/20 20:29	1
Total HxCDD	1500	В	5.9	0.65		₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,4,6,7,8-HpCDD	6400	GEB	50		pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
Total HpCDD	16000	GB	50		pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
OCDD	72000	GEB	28		pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
Total TCDF	33		1.2	0.30		₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,7,8-PeCDF	4.5		5.9	0.80		₩	10/09/20 05:11	10/19/20 20:29	1
2,3,4,7,8-PeCDF	5.3	J	5.9	0.82		₩	10/09/20 05:11	10/19/20 20:29	1
Total PeCDF	110		5.9	0.81	pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,4,7,8-HxCDF	21	G	6.0	6.0	pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,6,7,8-HxCDF	23		5.9	5.5	pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
2,3,4,6,7,8-HxCDF	18		5.9	5.8	pg/g	≎	10/09/20 05:11	10/19/20 20:29	1
1,2,3,7,8,9-HxCDF	ND	G	6.1	6.1	pg/g	₽	10/09/20 05:11	10/19/20 20:29	1
Total HxCDF	1000	q	5.9	5.8	pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
1,2,3,4,6,7,8-HpCDF	1100	G	9.5	9.5	pg/g	☼	10/09/20 05:11	10/19/20 20:29	1
1,2,3,4,7,8,9-HpCDF	74	G	11	11	pg/g	☼	10/09/20 05:11	10/19/20 20:29	1
Total HpCDF	4100	G	10	10	pg/g	₩	10/09/20 05:11	10/19/20 20:29	1
OCDF	6000	EB	12	1.2	pg/g	≎	10/09/20 05:11	10/19/20 20:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	76		40 - 135				10/09/20 05:11	10/19/20 20:29	1
13C-1,2,3,7,8-PeCDD	77		40 - 135				10/09/20 05:11	10/19/20 20:29	1
13C-1,2,3,6,7,8-HxCDD	74		40 - 135					10/19/20 20:29	1
13C-1,2,3,4,6,7,8-HpCDD	73		40 - 135					10/19/20 20:29	1
13C-OCDD	74		40 - 135					10/19/20 20:29	1
13C-2,3,7,8-TCDF	89		40 - 135					10/19/20 20:29	1
13C-1,2,3,7,8-PeCDF	89		40 - 135				10/09/20 05:11	10/19/20 20:29	1
13C-1,2,3,4,7,8-HxCDF	94		40 - 135				10/09/20 05:11	10/19/20 20:29	1
13C-1,2,3,4,6,7,8-HpCDF	77		40 - 135				10/09/20 05:11	10/19/20 20:29	1

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: DW208SS

Lab Sample ID: 180-111869-8 Date Collected: 10/03/20 12:30 **Matrix: Solid**

Date Received: 10/06/20 09:00 **Percent Solids: 81.8**

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	2.6	1.2	0.24	pg/g		10/09/20 05:11	10/15/20 16:07	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	81	40 - 135				10/09/20 05:11	10/15/20 16:07	1

General Chemistry Analyte	Result Qualifi	ier RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	18.2	0.1	0.1	%			10/12/20 21:23	1
Percent Solids	81.8	0.1	0.1	%			10/12/20 21:23	1
Total Solids	82	0.50	0.50	%			10/12/20 21:23	1

Client Sample ID: DW209SS Lab Sample ID: 180-111869-9 Date Collected: 10/03/20 15:34 **Matrix: Solid**

Date Received: 10/06/20 09:00 Percent Solids: 73.9

Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	91	26	ug/Kg	☼	10/13/20 08:11	10/15/20 14:51	1
Acenaphthylene	ND	91	20	ug/Kg	☼	10/13/20 08:11	10/15/20 14:51	1
Anthracene	ND	91	23	ug/Kg	₩	10/13/20 08:11	10/15/20 14:51	1
Benzo[a]anthracene	ND	91	41	ug/Kg	₽	10/13/20 08:11	10/15/20 14:51	1
Benzo[b]fluoranthene	41 J	91	22	ug/Kg	☼	10/13/20 08:11	10/15/20 14:51	1
Benzo[k]fluoranthene	ND	91	27	ug/Kg	₩	10/13/20 08:11	10/15/20 14:51	1
Benzo[g,h,i]perylene	ND	91	19	ug/Kg	₩	10/13/20 08:11	10/15/20 14:51	1
Benzo[a]pyrene	ND	91	39	ug/Kg	☼	10/13/20 08:11	10/15/20 14:51	1
Chrysene	ND	91	50	ug/Kg	₩	10/13/20 08:11	10/15/20 14:51	1
Dibenz(a,h)anthracene	ND	91	58	ug/Kg	₩	10/13/20 08:11	10/15/20 14:51	1
Fluoranthene	37 J	91	24	ug/Kg	☼	10/13/20 08:11	10/15/20 14:51	1
Fluorene	ND	91	18	ug/Kg	☼	10/13/20 08:11	10/15/20 14:51	1
Indeno[1,2,3-cd]pyrene	ND	91	45	ug/Kg	₩	10/13/20 08:11	10/15/20 14:51	1
Naphthalene	ND	91	18	ug/Kg	☼	10/13/20 08:11	10/15/20 14:51	1
Phenanthrene	ND	91	24	ug/Kg	₩	10/13/20 08:11	10/15/20 14:51	1
Pyrene	38 J	91	21	ug/Kg	₽	10/13/20 08:11	10/15/20 14:51	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70	45 - 105	10/13/20 08:11	10/15/20 14:51	1
2-Fluorophenol (Surr)	75	42 - 105	10/13/20 08:11	10/15/20 14:51	1
2,4,6-Tribromophenol (Surr)	62	31 - 105	10/13/20 08:11	10/15/20 14:51	1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/13/20 08:11	10/15/20 14:51	1
Phenol-d5 (Surr)	66	47 - 105	10/13/20 08:11	10/15/20 14:51	1
Terphenyl-d14 (Surr)	84	46 - 105	10/13/20 08:11	10/15/20 14:51	1

Method: 8290A - Dioxins Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.29	Jq	1.3	0.11	pg/g	<u></u>	10/09/20 05:11	10/19/20 21:14	1
Total TCDD	6.6	q	1.3	0.11	pg/g	₩	10/09/20 05:11	10/19/20 21:14	1
1,2,3,7,8-PeCDD	1.8	J	6.5	0.29	pg/g	₩	10/09/20 05:11	10/19/20 21:14	1
Total PeCDD	22	q	6.5	0.29	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,4,7,8-HxCDD	5.2	JB	6.5	0.33	pg/g	₩	10/09/20 05:11	10/19/20 21:14	1
1,2,3,6,7,8-HxCDD	12		6.5	0.30	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,7,8,9-HxCDD	6.0	J	6.5	0.28	pg/g	₩	10/09/20 05:11	10/19/20 21:14	1

Eurofins TestAmerica, Pittsburgh

Page 29 of 55

2

Job ID: 180-111869-1

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

Client Sample ID: DW209SS Lab Sample ID: 180-111869-9

Date Collected: 10/03/20 15:34

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 73.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HxCDD	140	В	6.5	0.30	pg/g		10/09/20 05:11	10/19/20 21:14	1
1,2,3,4,6,7,8-HpCDD	360	В	6.5	3.3	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
Total HpCDD	910	В	6.5	3.3	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
OCDD	4600	В	13	2.0	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
Total TCDF	9.5	q	1.3	0.11	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,7,8-PeCDF	1.0	J	6.5	0.16	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
2,3,4,7,8-PeCDF	0.99	J	6.5	0.16	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
Total PeCDF	15	q	6.5	0.16	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,4,7,8-HxCDF	3.0	J	6.5	0.64	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,6,7,8-HxCDF	2.5	J	6.5	0.59	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
2,3,4,6,7,8-HxCDF	2.1	J	6.5	0.62	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,7,8,9-HxCDF	ND		6.5	0.65	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
Total HxCDF	58		6.5	0.63	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,4,6,7,8-HpCDF	65		6.5	0.65	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
1,2,3,4,7,8,9-HpCDF	3.4	J	6.5	0.75	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
Total HpCDF	200		6.5	0.70	pg/g	₽	10/09/20 05:11	10/19/20 21:14	1
OCDF	210	В	13	0.16	pg/g	≎	10/09/20 05:11	10/19/20 21:14	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	76		40 - 135				10/09/20 05:11	10/19/20 21:14	1
13C-1,2,3,7,8-PeCDD	74		40 - 135				10/09/20 05:11	10/19/20 21:14	1
13C-1,2,3,6,7,8-HxCDD	73		40 - 135				10/09/20 05:11	10/19/20 21:14	1
13C-1,2,3,4,6,7,8-HpCDD	73		40 - 135				10/09/20 05:11	10/19/20 21:14	1
13C-OCDD	80		40 - 135				10/09/20 05:11	10/19/20 21:14	1
13C-2,3,7,8-TCDF	90		40 - 135				10/09/20 05:11	10/19/20 21:14	1
13C-1,2,3,7,8-PeCDF	82		40 - 135				10/00/20 05:11	10/19/20 21:14	1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) - RA											
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac		
2,3,7,8-TCDF	0.80	J	1.3	0.21	pg/g	*	10/09/20 05:11	10/15/20 16:45	1		
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
13C-2,3,7,8-TCDF	82		40 - 135				10/09/20 05:11	10/15/20 16:45	1		

40 - 135

40 - 135

92

75

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	26.1		0.1	0.1	%			10/12/20 21:23	1
Percent Solids	73.9		0.1	0.1	%			10/12/20 21:23	1
Total Solids	74		0.50	0.50	%			10/12/20 21:23	1

 Client Sample ID: DW210SS
 Lab Sample ID: 180-111869-10

 Date Collected: 10/03/20 16:10
 Matrix: Solid

 Date Received: 10/06/20 09:00
 Percent Solids: 69.6

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	ND —	96	28	ug/Kg	-	10/13/20 08:11	10/15/20 15:17	1	
Acenaphthylene	ND	96	21	ug/Kg	₩	10/13/20 08:11	10/15/20 15:17	1	
Anthracene	ND	96	25	ug/Kg	₩	10/13/20 08:11	10/15/20 15:17	1	
Benzo[a]anthracene	ND	96	43	ug/Kg	₽	10/13/20 08:11	10/15/20 15:17	1	

Eurofins TestAmerica, Pittsburgh

10/09/20 05:11 10/19/20 21:14

10/09/20 05:11 10/19/20 21:14

Project/Site: Grenada, Mississippi

Client Sample ID: DW210SS

Lab Sample ID: 180-111869-10 Date Collected: 10/03/20 16:10 **Matrix: Solid**

Date Received: 10/06/20 09:00 Percent Solids: 69.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND		96	24	ug/Kg	<u></u>	10/13/20 08:11	10/15/20 15:17	1
Benzo[k]fluoranthene	ND		96	29	ug/Kg	≎	10/13/20 08:11	10/15/20 15:17	1
Benzo[g,h,i]perylene	ND		96	21	ug/Kg	₩	10/13/20 08:11	10/15/20 15:17	1
Benzo[a]pyrene	ND		96	42	ug/Kg	₩	10/13/20 08:11	10/15/20 15:17	1
Chrysene	ND		96	53	ug/Kg	≎	10/13/20 08:11	10/15/20 15:17	1
Dibenz(a,h)anthracene	ND		96	61	ug/Kg	₽	10/13/20 08:11	10/15/20 15:17	1
Fluoranthene	ND		96	25	ug/Kg	₩	10/13/20 08:11	10/15/20 15:17	1
Fluorene	ND		96	19	ug/Kg	₩	10/13/20 08:11	10/15/20 15:17	1
Indeno[1,2,3-cd]pyrene	ND		96	48	ug/Kg	₽	10/13/20 08:11	10/15/20 15:17	1
Naphthalene	ND		96	19	ug/Kg	₩	10/13/20 08:11	10/15/20 15:17	1
Phenanthrene	ND		96	26	ug/Kg	₽	10/13/20 08:11	10/15/20 15:17	1
Pyrene	ND		96	23	ug/Kg	≎	10/13/20 08:11	10/15/20 15:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68		45 - 105				10/13/20 08:11	10/15/20 15:17	
2-Fluorophenol (Surr)	75		42 - 105				10/13/20 08:11	10/15/20 15:17	1
2,4,6-Tribromophenol (Surr)	59		31 - 105				10/13/20 08:11	10/15/20 15:17	1
Nitrobenzene-d5 (Surr)	71		53 - 105				10/13/20 08:11	10/15/20 15:17	
Phenol-d5 (Surr)	65		47 - 105				10/13/20 08:11	10/15/20 15:17	7
Terphenyl-d14 (Surr)	82		46 - 105				10/13/20 08:11	10/15/20 15:17	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.5	0.10	pg/g	<u></u>	10/09/20 05:11	10/19/20 21:59	1
Total TCDD	1.5	q	1.5	0.10	pg/g	₩	10/09/20 05:11	10/19/20 21:59	1
1,2,3,7,8-PeCDD	0.57	J q	7.4	0.21	pg/g	₩	10/09/20 05:11	10/19/20 21:59	1
Total PeCDD	5.9	Jq	7.4	0.21	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
1,2,3,4,7,8-HxCDD	1.8	JB	7.4	0.18	pg/g	☼	10/09/20 05:11	10/19/20 21:59	1
1,2,3,6,7,8-HxCDD	3.1	J	7.4	0.16	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
1,2,3,7,8,9-HxCDD	3.0	J	7.4	0.15	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
Total HxCDD	40	q B	7.4	0.16	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
1,2,3,4,6,7,8-HpCDD	91	В	7.4	0.80	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
Total HpCDD	230	В	7.4	0.80	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
OCDD	1900	В	15	0.88	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
Total TCDF	7.4	q	1.5	0.10	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
1,2,3,7,8-PeCDF	0.72	J	7.4	0.14	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
2,3,4,7,8-PeCDF	0.81	J q	7.4	0.15	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
Total PeCDF	9.3	q	7.4	0.14	pg/g	☼	10/09/20 05:11	10/19/20 21:59	1
1,2,3,4,7,8-HxCDF	3.3	J	7.4	0.35	pg/g	☼	10/09/20 05:11	10/19/20 21:59	1
1,2,3,6,7,8-HxCDF	1.3	J	7.4	0.32	pg/g	☼	10/09/20 05:11	10/19/20 21:59	1
2,3,4,6,7,8-HxCDF	1.5	J	7.4	0.34	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
1,2,3,7,8,9-HxCDF	ND		7.4	0.36	pg/g	☼	10/09/20 05:11	10/19/20 21:59	1
Total HxCDF	24	q	7.4	0.34	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
1,2,3,4,6,7,8-HpCDF	21		7.4	0.37	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
1,2,3,4,7,8,9-HpCDF	1.3	J	7.4	0.43	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
Total HpCDF	60		7.4	0.40	pg/g	₽	10/09/20 05:11	10/19/20 21:59	1
OCDF	65	В	15	0.13	pg/g	☼	10/09/20 05:11	10/19/20 21:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	74		40 - 135				10/09/20 05:11	10/19/20 21:59	1
13C-1,2,3,7,8-PeCDD	74		40 - 135				10/09/20 05:11	10/19/20 21:59	1

Eurofins TestAmerica, Pittsburgh

Page 31 of 55

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: DW210SS

Date Collected: 10/03/20 16:10 Date Received: 10/06/20 09:00 Lab Sample ID: 180-111869-10

Matrix: Solid

Percent Solids: 69.6

Method: 8290A - Dioxins a	and Furans (HRC	SC/HRMS)	(Continued)
		_	

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,6,7,8-HxCDD	73	40 - 135	10/09/20 05:11	10/19/20 21:59	1
13C-1,2,3,4,6,7,8-HpCDD	75	40 - 135	10/09/20 05:11	10/19/20 21:59	1
13C-OCDD	81	40 - 135	10/09/20 05:11	10/19/20 21:59	1
13C-2,3,7,8-TCDF	85	40 - 135	10/09/20 05:11	10/19/20 21:59	1
13C-1,2,3,7,8-PeCDF	81	40 - 135	10/09/20 05:11	10/19/20 21:59	1
13C-1,2,3,4,7,8-HxCDF	95	40 - 135	10/09/20 05:11	10/19/20 21:59	1
13C-1,2,3,4,6,7,8-HpCDF	79	40 - 135	10/09/20 05:11	10/19/20 21:59	1

Method: 8290A - Dioxins and	Furans (HRGC/HRMS) - RA
Analyte	Result Qualifier

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.45	J	1.5	0.18	pg/g		10/09/20 05:11	10/15/20 17:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	80		40 - 135					10/15/20 17:24	

General Chemistry

Analyte	Result Qualifier	RL	RL Uni	nit D	Prepared	Analyzed	Dil Fac
Percent Moisture	30.4	0.1	0.1 %			10/12/20 21:23	1
Percent Solids	69.6	0.1	0.1 %			10/12/20 21:23	1
Total Solids	70	0.50	0.50 %			10/12/20 21:23	1

Client Sample ID: DW210SS-EB

Date Collected: 10/03/20 17:50 Date Received: 10/06/20 09:00 Lab Sample ID: 180-111869-11

Matrix: Water

Method: FPA 8270F - Semivolatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		2.0	0.68	ug/L		10/08/20 10:44	10/14/20 18:17	1
Acenaphthylene	ND		2.0	0.68	ug/L		10/08/20 10:44	10/14/20 18:17	1
Anthracene	ND		2.0	0.51	ug/L		10/08/20 10:44	10/14/20 18:17	1
Benzo[a]anthracene	ND		2.0	0.78	ug/L		10/08/20 10:44	10/14/20 18:17	1
Benzo[b]fluoranthene	ND		2.0	1.0	ug/L		10/08/20 10:44	10/14/20 18:17	1
Benzo[k]fluoranthene	ND		2.0	0.92	ug/L		10/08/20 10:44	10/14/20 18:17	1
Benzo[g,h,i]perylene	ND		2.0	0.72	ug/L		10/08/20 10:44	10/14/20 18:17	1
Benzo[a]pyrene	ND		2.0	0.55	ug/L		10/08/20 10:44	10/14/20 18:17	1
Chrysene	ND		2.0	0.84	ug/L		10/08/20 10:44	10/14/20 18:17	1
Dibenz(a,h)anthracene	ND		2.0	0.75	ug/L		10/08/20 10:44	10/14/20 18:17	1
Fluoranthene	ND		2.0	0.63	ug/L		10/08/20 10:44	10/14/20 18:17	1
Fluorene	ND		2.0	0.72	ug/L		10/08/20 10:44	10/14/20 18:17	1
Indeno[1,2,3-cd]pyrene	ND		2.0	0.89	ug/L		10/08/20 10:44	10/14/20 18:17	1
Naphthalene	ND		2.0	0.61	ug/L		10/08/20 10:44	10/14/20 18:17	1
Phenanthrene	ND		2.0	0.57	ug/L		10/08/20 10:44	10/14/20 18:17	1
Pyrene	ND		2.0	0.56	ug/L		10/08/20 10:44	10/14/20 18:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed
2-Fluorobiphenyl	92	44 - 105	10/08/20 10:44 10/14/20 18
2-Fluorophenol (Surr)	84	38 - 105	10/08/20 10:44 10/14/20 18
2,4,6-Tribromophenol (Surr)	110	38 - 111	10/08/20 10:44 10/14/20 18
Nitrobenzene-d5 (Surr)	91	45 - 108	10/08/20 10:44 10/14/20 18
Phenol-d5 (Surr)	91	40 - 105	10/08/20 10:44 10/14/20 18
Terphenyl-d14 (Surr)	98	20 - 128	10/08/20 10:44 10/14/20 18

Eurofins TestAmerica, Pittsburgh

Page 32 of 55

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Client Sample ID: DW210SS-EB

Lab Sample ID: 180-111869-11

Date Collected: 10/03/20 17:50 **Matrix: Water** Date Received: 10/06/20 09:00

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		9.7	0.66	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total TCDD	ND		9.7	0.66	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,7,8-PeCDD	ND		49	0.83	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total PeCDD	ND		49	0.83	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,4,7,8-HxCDD	ND		49	0.91	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,6,7,8-HxCDD	ND		49	0.82	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,7,8,9-HxCDD	ND		49	0.77	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total HxCDD	ND		49	0.91	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,4,6,7,8-HpCDD	ND		49	1.2	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total HpCDD	ND		49	1.2	pg/L		10/09/20 09:46	10/20/20 06:01	1
OCDD	15	JB	97	1.1	pg/L		10/09/20 09:46	10/20/20 06:01	1
2,3,7,8-TCDF	ND		9.7	0.38	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total TCDF	ND		9.7	0.38	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,7,8-PeCDF	ND		49	0.40	pg/L		10/09/20 09:46	10/20/20 06:01	1
2,3,4,7,8-PeCDF	ND		49	0.42	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total PeCDF	ND		49	0.46	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,4,7,8-HxCDF	ND		49	0.74	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,6,7,8-HxCDF	ND		49	0.68	pg/L		10/09/20 09:46	10/20/20 06:01	1
2,3,4,6,7,8-HxCDF	ND		49	0.72	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,7,8,9-HxCDF	ND		49	0.76	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total HxCDF	ND		49	0.76	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,4,6,7,8-HpCDF	ND		49	0.30	pg/L		10/09/20 09:46	10/20/20 06:01	1
1,2,3,4,7,8,9-HpCDF	ND		49	0.34	pg/L		10/09/20 09:46	10/20/20 06:01	1
Total HpCDF	ND		49	0.34	pg/L		10/09/20 09:46	10/20/20 06:01	1
OCDF	ND		97	0.63	pg/L		10/09/20 09:46	10/20/20 06:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	90		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-1,2,3,7,8-PeCDD	87		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-1,2,3,6,7,8-HxCDD	85		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-1,2,3,4,6,7,8-HpCDD	77		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-OCDD	76		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-2,3,7,8-TCDF	102		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-1,2,3,7,8-PeCDF	96		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-1,2,3,4,7,8-HxCDF	107		40 - 135				10/09/20 09:46	10/20/20 06:01	1
13C-1,2,3,4,6,7,8-HpCDF	85		40 - 135				10/09/20 09:46	10/20/20 06:01	1

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 180-332720/1-A

Matrix: Water

Analysis Batch: 333370

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 332720

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.9	0.65	ug/L		10/08/20 10:30	10/14/20 11:37	1
Acenaphthylene	ND		1.9	0.65	ug/L		10/08/20 10:30	10/14/20 11:37	1
Anthracene	ND		1.9	0.49	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[a]anthracene	ND		1.9	0.75	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[b]fluoranthene	ND		1.9	0.97	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[k]fluoranthene	ND		1.9	0.88	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[g,h,i]perylene	ND		1.9	0.69	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[a]pyrene	ND		1.9	0.53	ug/L		10/08/20 10:30	10/14/20 11:37	1
Chrysene	ND		1.9	0.81	ug/L		10/08/20 10:30	10/14/20 11:37	1
Dibenz(a,h)anthracene	ND		1.9	0.72	ug/L		10/08/20 10:30	10/14/20 11:37	1
Fluoranthene	ND		1.9	0.60	ug/L		10/08/20 10:30	10/14/20 11:37	1
Fluorene	ND		1.9	0.69	ug/L		10/08/20 10:30	10/14/20 11:37	1
Indeno[1,2,3-cd]pyrene	ND		1.9	0.85	ug/L		10/08/20 10:30	10/14/20 11:37	1
Naphthalene	ND		1.9	0.59	ug/L		10/08/20 10:30	10/14/20 11:37	1
Phenanthrene	ND		1.9	0.55	ug/L		10/08/20 10:30	10/14/20 11:37	1
Pyrene	ND		1.9	0.54	ug/L		10/08/20 10:30	10/14/20 11:37	1
I and the second									

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70	44 - 105	10/08/20 10:30	10/14/20 11:37	1
2-Fluorophenol (Surr)	69	38 ₋ 105	10/08/20 10:30	10/14/20 11:37	1
2,4,6-Tribromophenol (Surr)	68	38 - 111	10/08/20 10:30	10/14/20 11:37	1
Nitrobenzene-d5 (Surr)	68	45 - 108	10/08/20 10:30	10/14/20 11:37	1
Phenol-d5 (Surr)	73	40 - 105	10/08/20 10:30	10/14/20 11:37	1
Terphenyl-d14 (Surr)	72	20 - 128	10/08/20 10:30	10/14/20 11:37	1

Lab Sample ID: LCS 180-332720/2-A

Matrix: Water

Analysis Batch: 333370

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 332720

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 200 Acenaphthene 144 ug/L 72 51 - 100 Acenaphthylene 200 148 ug/L 74 47 - 100 200 Anthracene 159 ug/L 80 51 - 100 Benzo[a]anthracene 200 153 76 49 - 100 ug/L 200 77 47 - 100 Benzo[b]fluoranthene 153 ug/L Benzo[k]fluoranthene 200 144 ug/L 72 47 - 100 Benzo[g,h,i]perylene 200 158 ug/L 79 50 - 100 Benzo[a]pyrene 200 153 ug/L 76 49 - 100 Chrysene 200 156 ug/L 78 49 - 100 Dibenz(a,h)anthracene 200 160 ug/L 80 50 - 100 Fluoranthene 200 164 ug/L 82 52 - 100 72 Fluorene 200 ug/L 52 - 100 143 200 80 Indeno[1,2,3-cd]pyrene 159 ug/L 51 - 100 Naphthalene 200 140 ug/L 70 53 - 100 200 152 76 Phenanthrene ug/L 49 - 100 200 Pyrene 157 ug/L 45 - 100

Eurofins TestAmerica, Pittsburgh

Page 34 of 55

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-332720/2-A

Matrix: Water

Analysis Batch: 333370

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 332720

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	70		44 - 105
2-Fluorophenol (Surr)	76		38 - 105
2,4,6-Tribromophenol (Surr)	87		38 - 111
Nitrobenzene-d5 (Surr)	70		45 - 108
Phenol-d5 (Surr)	79		40 - 105
Terphenyl-d14 (Surr)	78		20 - 128

Lab Sample ID: MB 180-333189/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 333407

Prep Type: Total/NA

Prep Batch: 333189

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		34	9.6	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Acenaphthylene	ND		34	7.3	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Anthracene	ND		34	8.7	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Benzo[a]anthracene	ND		34	15	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Benzo[b]fluoranthene	ND		34	8.2	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Benzo[k]fluoranthene	ND		34	10	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Benzo[g,h,i]perylene	ND		34	7.2	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Benzo[a]pyrene	ND		34	14	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Chrysene	ND		34	19	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Dibenz(a,h)anthracene	ND		34	21	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Fluoranthene	ND		34	8.8	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Fluorene	ND		34	6.6	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Indeno[1,2,3-cd]pyrene	ND		34	17	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Naphthalene	ND		34	6.5	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Phenanthrene	ND		34	9.0	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
Pyrene	ND		34	7.9	ug/Kg		10/13/20 08:11	10/14/20 12:25	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70		45 - 105	10/13/20 08:11	10/14/20 12:25	1
2-Fluorophenol (Surr)	78		42 - 105	10/13/20 08:11	10/14/20 12:25	1
2,4,6-Tribromophenol (Surr)	69		31 - 105	10/13/20 08:11	10/14/20 12:25	1
Nitrobenzene-d5 (Surr)	78		53 - 105	10/13/20 08:11	10/14/20 12:25	1
Phenol-d5 (Surr)	70		47 - 105	10/13/20 08:11	10/14/20 12:25	1
Terphenyl-d14 (Surr)	95		46 - 105	10/13/20 08:11	10/14/20 12:25	1

Lab Sample ID: LCS 180-333189/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 333407

•	Prep Type: Total/NA Prep Batch: 333189
	%Rec.

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
3330	2820		ug/Kg		85	49 - 107	
3330	2790		ug/Kg		84	46 - 110	
3330	2880		ug/Kg		87	47 - 116	
3330	2680		ug/Kg		80	48 - 101	
3330	2510		ug/Kg		75	46 - 100	
3330	2630		ug/Kg		79	43 - 114	
	Added 3330 3330 3330 3330 3330 3330	Added Result 3330 2820 3330 2790 3330 2880 3330 2680 3330 2510	Added Result Qualifier 3330 2820 3330 2790 3330 2880 3330 2680 3330 2510	Added Result Qualifier Unit 3330 2820 ug/Kg 3330 2790 ug/Kg 3330 2880 ug/Kg 3330 2680 ug/Kg 3330 2510 ug/Kg	Added Result Qualifier Unit D 3330 2820 ug/Kg 3330 2790 ug/Kg 3330 2880 ug/Kg 3330 2680 ug/Kg 3330 2510 ug/Kg	Added Result Qualifier Unit D %Rec 3330 2820 ug/Kg 85 3330 2790 ug/Kg 84 3330 2880 ug/Kg 87 3330 2680 ug/Kg 80 3330 2510 ug/Kg 75	Added Result Qualifier Unit D %Rec Limits 3330 2820 ug/Kg 85 49 - 107 3330 2790 ug/Kg 84 46 - 110 3330 2880 ug/Kg 87 47 - 116 3330 2680 ug/Kg 80 48 - 101 3330 2510 ug/Kg 75 46 - 100

Eurofins TestAmerica, Pittsburgh

Page 35 of 55

10

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-333189/2-A

Matrix: Solid

Analysis Batch: 333407

Client Sample ID: Lab Control Sample

Prep Type: Total/NA
Prep Batch: 333189
0/ 🗖

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzo[g,h,i]perylene	3330	2500		ug/Kg		75	49 - 111	
Benzo[a]pyrene	3330	2640		ug/Kg		79	46 - 114	
Chrysene	3330	2340		ug/Kg		70	49 - 100	
Dibenz(a,h)anthracene	3330	2380		ug/Kg		71	49 - 112	
Fluoranthene	3330	2650		ug/Kg		80	54 - 105	
Fluorene	3330	2900		ug/Kg		87	50 - 106	
Indeno[1,2,3-cd]pyrene	3330	2770		ug/Kg		83	49 - 112	
Naphthalene	3330	2500		ug/Kg		75	53 - 100	
Phenanthrene	3330	2740		ug/Kg		82	46 - 111	
Pyrene	3330	2600		ug/Kg		78	49 - 100	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	80		45 - 105
2-Fluorophenol (Surr)	90		42 - 105
2,4,6-Tribromophenol (Surr)	81		31 - 105
Nitrobenzene-d5 (Surr)	88		53 - 105
Phenol-d5 (Surr)	79		47 - 105
Terphenyl-d14 (Surr)	87		46 - 105

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 333372

Lab Sample ID: MB 180-333372/1-A **Matrix: Solid**

Analysis Batch: 333708

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		67	19	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Acenaphthylene	ND		67	15	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Anthracene	ND		67	17	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]anthracene	ND		67	30	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[b]fluoranthene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[k]fluoranthene	ND		67	20	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[g,h,i]perylene	ND		67	14	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]pyrene	ND		67	29	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Chrysene	ND		67	37	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Dibenz(a,h)anthracene	ND		67	43	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Fluoranthene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Fluorene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Indeno[1,2,3-cd]pyrene	ND		67	33	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Naphthalene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Phenanthrene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Pyrene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1

MB MB

Surrogate	%Recovery C	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	64		45 - 105	10/14/20 08:24	10/16/20 12:16	1
2-Fluorophenol (Surr)	64		42 - 105	10/14/20 08:24	10/16/20 12:16	1
2,4,6-Tribromophenol (Surr)	39		31 - 105	10/14/20 08:24	10/16/20 12:16	1
Nitrobenzene-d5 (Surr)	70		53 - 105	10/14/20 08:24	10/16/20 12:16	1
Phenol-d5 (Surr)	61		47 - 105	10/14/20 08:24	10/16/20 12:16	1
Terphenyl-d14 (Surr)	70		46 - 105	10/14/20 08:24	10/16/20 12:16	1

Eurofins TestAmerica, Pittsburgh

Page 36 of 55

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: LCS 180-333372/2-A

Matrix: Solid

Analysis Batch: 333708

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 333372 LCS LCS Spike Analyte Added Result Qualifier Unit D %Rec Limits Acenaphthene 6670 5160 ug/Kg 77 49 - 107 Acenaphthylene 6670 5240 ug/Kg 79 46 - 110 6670 5380 81 47 - 116 Anthracene ug/Kg Benzo[a]anthracene 6670 4840 73 48 - 101 ug/Kg 4630 Benzo[b]fluoranthene 6670 ug/Kg 69 46 - 100 Benzo[k]fluoranthene 6670 4660 ug/Kg 70 43 - 114 49 - 111 6670 4500 68 Benzo[g,h,i]perylene ug/Kg 72 Benzo[a]pyrene 6670 4770 ug/Kg 46 - 114 Chrysene 6670 4350 ug/Kg 65 49 - 100 Dibenz(a,h)anthracene 6670 4320 ug/Kg 65 49 - 112 Fluoranthene 6670 5050 76 54 - 105 ug/Kg Fluorene 6670 5240 ug/Kg 79 50 - 106 Indeno[1,2,3-cd]pyrene 6670 5010 ug/Kg 75 49 - 112 Naphthalene 6670 4820 72 53 - 100 ug/Kg Phenanthrene 6670 5130 ug/Kg 77 46 - 111 6670 Pyrene 4880 ug/Kg 73 49 - 100

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	80		45 - 105
2-Fluorophenol (Surr)	90		42 - 105
2,4,6-Tribromophenol (Surr)	80		31 - 105
Nitrobenzene-d5 (Surr)	88		53 - 105
Phenol-d5 (Surr)	78		47 - 105
Terphenyl-d14 (Surr)	85		46 - 105

Lab Sample ID: 180-111869-1 MS

Matrix: Solid

Analysis Batch: 333708

Client Sample ID: DW202SS
Prep Type: Total/NA
Pron Batch: 333372

Analysis Balch: 333706									Prep Batch: 333372
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	ND		8490	6260		ug/Kg	— <u>—</u>	74	49 - 107
Acenaphthylene	1100		8490	7510		ug/Kg	₩	76	46 - 110
Anthracene	1300		8490	7800		ug/Kg	₩	76	47 - 116
Benzo[a]anthracene	2200		8490	8980		ug/Kg	₩	80	48 - 101
Benzo[b]fluoranthene	4200		8490	10200		ug/Kg	₩	70	46 - 100
Benzo[k]fluoranthene	1500		8490	7750		ug/Kg	₩	74	43 - 114
Benzo[g,h,i]perylene	1700		8490	8240		ug/Kg	₩	76	49 - 111
Benzo[a]pyrene	2100		8490	8290		ug/Kg	₩	74	46 - 114
Chrysene	2900		8490	9090		ug/Kg	₩	73	49 - 100
Dibenz(a,h)anthracene	870		8490	6210		ug/Kg	₩	63	49 - 112
Fluoranthene	3500		8490	10000		ug/Kg	₩	77	54 - 105
Fluorene	100	J	8490	6020		ug/Kg	₩	70	50 - 106
Indeno[1,2,3-cd]pyrene	1700		8490	8690		ug/Kg	₩	82	49 - 112
Naphthalene	770		8490	6930		ug/Kg	₩	73	53 - 100
Phenanthrene	1700		8490	7630		ug/Kg	₩	70	46 - 111
Pyrene	3600		8490	11300		ug/Kg	₩	91	49 - 100

Eurofins TestAmerica, Pittsburgh

Page 37 of 55

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid

Analysis Batch: 333708

Lab Sample ID: 180-111869-1 MS

MS MS

Client Sample ID: DW202SS Prep Type: Total/NA

Prep Batch: 333372

%Recovery Qualifier Limits Surrogate 2-Fluorobiphenyl 74 45 - 105 2-Fluorophenol (Surr) 88 42 - 105 2,4,6-Tribromophenol (Surr) 62 31 - 105 Nitrobenzene-d5 (Surr) 87 53 - 105 Phenol-d5 (Surr) 77 47 - 105 Terphenyl-d14 (Surr) 46 - 105 80

Lab Sample ID: 180-111869-1 MSD Client Sample ID: DW202SS

Matrix: Solid

Analysis Batch: 333708

Prep Type: Total/NA **Prep Batch: 333372**

Analysis Baton, 000700																		i icp D	<i>1</i> 011. 00	J001 <u>L</u>
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD									
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit									
Acenaphthene	ND		8330	6180		ug/Kg	☼	74	49 - 107	1	20									
Acenaphthylene	1100		8330	7690		ug/Kg	☼	79	46 - 110	2	20									
Anthracene	1300		8330	7900		ug/Kg	☼	79	47 - 116	1	20									
Benzo[a]anthracene	2200		8330	8770		ug/Kg	₽	79	48 - 101	2	21									
Benzo[b]fluoranthene	4200		8330	10600		ug/Kg	☼	77	46 - 100	5	20									
Benzo[k]fluoranthene	1500		8330	7750		ug/Kg	☼	75	43 - 114	0	20									
Benzo[g,h,i]perylene	1700		8330	8320		ug/Kg	₽	79	49 - 111	1	19									
Benzo[a]pyrene	2100		8330	8270		ug/Kg	☼	75	46 - 114	0	20									
Chrysene	2900		8330	9070		ug/Kg	☼	75	49 - 100	0	20									
Dibenz(a,h)anthracene	870		8330	6310		ug/Kg	₽	65	49 - 112	1	21									
Fluoranthene	3500		8330	9930		ug/Kg	☼	78	54 - 105	1	20									
Fluorene	100	J	8330	5960		ug/Kg	☼	70	50 - 106	1	19									
Indeno[1,2,3-cd]pyrene	1700		8330	8810		ug/Kg	₽	85	49 - 112	1	19									
Naphthalene	770		8330	6900		ug/Kg	☼	74	53 - 100	0	20									
Phenanthrene	1700		8330	7670		ug/Kg	☼	72	46 - 111	1	20									
Pyrene	3600		8330	11200		ug/Kg	₽	91	49 - 100	1	20									

MSD MSD %Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 45 - 105 77 88 42 - 105 2-Fluorophenol (Surr) 2,4,6-Tribromophenol (Surr) 63 31 - 105 Nitrobenzene-d5 (Surr) 90 53 - 105 Phenol-d5 (Surr) 80 47 - 105 Terphenyl-d14 (Surr) 82 46 - 105

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-420127/1-A

Matrix: Solid

Analysis Batch: 421141

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 420127

МВ	MB					-	
Analyte Result	Qualifier RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD ND	1.0	0.21	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total TCDD ND	1.0	0.21	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8-PeCDD ND	5.0	0.14	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total PeCDD ND	5.0	0.14	pg/g		10/09/20 05:11	10/13/20 02:53	1

Eurofins TestAmerica, Pittsburgh

Page 38 of 55

10

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

MB MB

Lab Sample ID: MB 320-420127/1-A

Matrix: Solid

Analysis Batch: 421141

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 420127

	11.0	1410							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,7,8-HxCDD	0.262	J	5.0	0.036	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,6,7,8-HxCDD	ND		5.0	0.034	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8,9-HxCDD	ND		5.0	0.032	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HxCDD	0.262	J	5.0	0.034	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,6,7,8-HpCDD	0.175	Jq	5.0	0.051	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HpCDD	0.385	Jq	5.0	0.051	pg/g		10/09/20 05:11	10/13/20 02:53	1
OCDD	0.873	Jq	10	0.012	pg/g		10/09/20 05:11	10/13/20 02:53	1
2,3,7,8-TCDF	ND		1.0	0.13	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total TCDF	ND		1.0	0.13	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8-PeCDF	ND		5.0	0.082	pg/g		10/09/20 05:11	10/13/20 02:53	1
2,3,4,7,8-PeCDF	ND		5.0	0.083	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total PeCDF	ND		5.0	0.083	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,7,8-HxCDF	ND		5.0	0.054	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,6,7,8-HxCDF	ND		5.0	0.048	pg/g		10/09/20 05:11	10/13/20 02:53	1
2,3,4,6,7,8-HxCDF	ND		5.0	0.050	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8,9-HxCDF	ND		5.0	0.052	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HxCDF	ND		5.0	0.054	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,6,7,8-HpCDF	ND		5.0	0.034	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,7,8,9-HpCDF	ND		5.0	0.038	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HpCDF	ND		5.0	0.038	pg/g		10/09/20 05:11	10/13/20 02:53	1
OCDF	0.807	J	10	0.12	pg/g		10/09/20 05:11	10/13/20 02:53	1

MB MB

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	71		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,7,8-PeCDD	61		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,6,7,8-HxCDD	82		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,4,6,7,8-HpCDD	70		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-OCDD	68		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-2,3,7,8-TCDF	76		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,7,8-PeCDF	63		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,4,7,8-HxCDF	83		40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,4,6,7,8-HpCDF	78		40 - 135	10/09/20 05:11	10/13/20 02:53	1

Lab Sample ID: LCS 320-420127/2-A

Matrix: Solid

Analysis Batch: 421141

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 420127

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	21.7		pg/g		108	77 - 130	
1,2,3,7,8-PeCDD	100	104		pg/g		104	79 - 134	
1,2,3,4,7,8-HxCDD	100	112		pg/g		112	65 - 144	
1,2,3,6,7,8-HxCDD	100	108		pg/g		108	73 - 147	
1,2,3,7,8,9-HxCDD	100	107		pg/g		107	80 - 143	
1,2,3,4,6,7,8-HpCDD	100	108		pg/g		108	86 - 134	
OCDD	200	217		pg/g		108	80 - 137	
2,3,7,8-TCDF	20.0	23.3		pg/g		117	79 - 137	
1,2,3,7,8-PeCDF	100	109		pg/g		109	81 - 134	
2,3,4,7,8-PeCDF	100	107		pg/g		107	76 - 132	
1,2,3,4,7,8-HxCDF	100	115		pg/g		115	72 - 140	

Eurofins TestAmerica, Pittsburgh

Page 39 of 55

Project/Site: Grenada, Mississippi

Lab Sample ID: LCS 320-420127/2-A

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

LCS LCS

%Recovery Qualifier

72

64

76

75

92

81

70

81

82

Matrix: Solid

Isotope Dilution

13C-OCDD

13C-2,3,7,8-TCDD

13C-2,3,7,8-TCDF

13C-1,2,3,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,7,8-PeCDD

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,6,7,8-HpCDD

Analysis Batch: 421141

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 420127

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,6,7,8-HxCDF	100	103		pg/g		103	63 - 152	
2,3,4,6,7,8-HxCDF	100	120		pg/g		120	72 - 151	
1,2,3,7,8,9-HxCDF	100	127		pg/g		127	72 - 152	
1,2,3,4,6,7,8-HpCDF	100	106		pg/g		106	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	109		pg/g		109	79 - 139	
OCDF	200	248		pg/g		124	75 - 141	

Limits

40 - 135

40 - 135

40 - 135

40 - 135

40 - 135 40 - 135

40 - 135 40 - 135

40 - 135

Lab Sample ID: 180-111869-1 MS

Matrix: Solid

Analysis Batch: 423056

Client Sample ID: DW202SS Prep Type: Total/NA **Prep Batch: 420127**

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier %Rec Limits Analyte Added Unit D 2,3,7,8-TCDD 1.8 25.3 30.7 pg/g ₩ 114 77 - 130 1,2,3,7,8-PeCDD 19 126 158 110 79 - 134 pg/g Ŭ 1,2,3,4,7,8-HxCDD 74 B 126 252 pg/g 141 65 - 144 1,2,3,6,7,8-HxCDD 150 126 304 ∜ 124 73 - 147 pg/g 1,2,3,7,8,9-HxCDD 140 F1 126 332 F1 154 80 - 143 pg/g 126 5740 E4G 501 1,2,3,4,6,7,8-HpCDD 5100 EBG 86 - 134 Ö pg/g OCDD 54000 EBG 253 58900 E4 ₩ 2047 80 - 137 pg/g 1,2,3,7,8-PeCDF 126 151 118 81 - 134 2.1 J ₩ pg/g 2,3,4,7,8-PeCDF ND 126 155 pg/g ₩ 123 76 - 132 21 q G 1,2,3,4,7,8-HxCDF 126 183 pg/g Ö 128 72 - 140 1,2,3,6,7,8-HxCDF 23 G 126 167 pg/g ₩ 114 63 - 152 2,3,4,6,7,8-HxCDF 23 G 126 175 pg/g 120 72 - 151 1,2,3,7,8,9-HxCDF ND G 126 140 111 72 - 152 pg/g ď÷ 990 G 126 1280 4 G 235 81 - 137 1,2,3,4,6,7,8-HpCDF pg/g 135 1,2,3,4,7,8,9-HpCDF 81 G 126 252 G 79 - 139 pg/g ₩ **OCDF** 4300 B 253 5150 E 4 328 75 - 141 pg/g

MS MS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	88		40 - 135
13C-1,2,3,7,8-PeCDD	89		40 - 135
13C-1,2,3,6,7,8-HxCDD	78		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	92		40 - 135
13C-OCDD	106		40 - 135
13C-2,3,7,8-TCDF	106		40 - 135
13C-1,2,3,7,8-PeCDF	97		40 - 135
13C-1,2,3,4,7,8-HxCDF	101		40 - 135

Eurofins TestAmerica, Pittsburgh

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: 180-111869-1 MS

Matrix: Solid

Analysis Batch: 423056

Client: Tetra Tech GEO

MS MS

Isotope Dilution %Recovery Qualifier Limits 13C-1,2,3,4,6,7,8-HpCDF 92 40 - 135 Client Sample ID: DW202SS

%Rec.

Limits

77 - 130

79 - 134

65 - 144

73 - 147

80 - 143

86 - 134

80 - 137

81 - 134

76 - 132

72 - 140

63 - 152

72 - 151

72 - 152

81 - 137

79 - 139

75 - 141

D

₩

☼

77

Ö

∜

Ö

₩

₩

Ö

Ö

₩

Unit

pg/g

54500 E 4

149

150

180

166

175

142

1180 4 G

242 G

4520 4

%Rec

114

108

131

101

135

116

302

116

119

125

113

120

113

153

127

83

Prep Type: Total/NA

Prep Batch: 420127

Prep Type: Total/NA

Prep Batch: 420127

RPD

0

2

5

10

8

8

0

2

8

13

Client Sample ID: DW202SS Lab Sample ID: 180-111869-1 MSD

127

127

127

127

127

127

253

Matrix: Solid

Analysis Batch: 423056

Sample Sample Spike MSD MSD Result Qualifier Added Result Qualifier **Analyte** 1.8 2,3,7,8-TCDD 25.3 30.7 19 1,2,3,7,8-PeCDD 127 155 240 74 B 127 1,2,3,4,7,8-HxCDD 275 1,2,3,6,7,8-HxCDD 150 127 1,2,3,7,8,9-HxCDD 140 F1 127 308 5250 E4G

G

G

MD MD

1,2,3,4,6,7,8-HpCDD 5100 EBG 127 OCDD 54000 EBG 253 1,2,3,7,8-PeCDF 2.1 J 127 ND 2,3,4,7,8-PeCDF 127

1,2,3,4,7,8-HxCDF 21 q G 1,2,3,6,7,8-HxCDF 23 G 2,3,4,6,7,8-HxCDF 23 G 1,2,3,7,8,9-HxCDF ND G

1,2,3,4,6,7,8-HpCDF 990 1,2,3,4,7,8,9-HpCDF 81 OCDF 4300 B MSD MSD

Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 77 40 - 135 13C-1,2,3,7,8-PeCDD 77 40 - 135 13C-1,2,3,6,7,8-HxCDD 71 40 - 135 79 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD 92 40 - 135

13C-2,3,7,8-TCDF 96 40 - 135 13C-1,2,3,7,8-PeCDF 87 40 - 135 13C-1,2,3,4,7,8-HxCDF 88 40 - 135 13C-1,2,3,4,6,7,8-HpCDF 80 40 - 135

Lab Sample ID: MB 320-420196/1-A

Matrix: Water

Analysis Batch: 423518

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 420196

	IVID	IVID							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10	0.90	pg/L		10/09/20 09:46	10/20/20 03:01	1
Total TCDD	ND		10	0.90	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,7,8-PeCDD	ND		50	1.1	pg/L		10/09/20 09:46	10/20/20 03:01	1
Total PeCDD	ND		50	1.1	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,4,7,8-HxCDD	1.84	J	50	0.98	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,6,7,8-HxCDD	ND		50	0.88	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,7,8,9-HxCDD	ND		50	0.82	pg/L		10/09/20 09:46	10/20/20 03:01	1
Total HxCDD	1.84	J	50	0.89	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,4,6,7,8-HpCDD	ND		50	1.4	pg/L		10/09/20 09:46	10/20/20 03:01	1

Eurofins TestAmerica, Pittsburgh

10/23/2020

Page 41 of 55

RPD

Limit

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

10

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

MR MR

Lab Sample ID: MB 320-420196/1-A

Matrix: Water

Analysis Batch: 423518

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 420196

	IVID	IVID							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDD	ND		50	1.4	pg/L		10/09/20 09:46	10/20/20 03:01	1
OCDD	18.4	J	100	1.5	pg/L		10/09/20 09:46	10/20/20 03:01	1
2,3,7,8-TCDF	ND		10	0.64	pg/L		10/09/20 09:46	10/20/20 03:01	1
Total TCDF	ND		10	0.64	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,7,8-PeCDF	ND		50	0.65	pg/L		10/09/20 09:46	10/20/20 03:01	1
2,3,4,7,8-PeCDF	ND		50	0.67	pg/L		10/09/20 09:46	10/20/20 03:01	1
Total PeCDF	ND		50	0.73	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,4,7,8-HxCDF	ND		50	0.86	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,6,7,8-HxCDF	ND		50	0.80	pg/L		10/09/20 09:46	10/20/20 03:01	1
2,3,4,6,7,8-HxCDF	ND		50	0.83	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,7,8,9-HxCDF	ND		50	0.88	pg/L		10/09/20 09:46	10/20/20 03:01	1
Total HxCDF	ND		50	0.88	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,4,6,7,8-HpCDF	ND		50	0.44	pg/L		10/09/20 09:46	10/20/20 03:01	1
1,2,3,4,7,8,9-HpCDF	ND		50	0.51	pg/L		10/09/20 09:46	10/20/20 03:01	1
Total HpCDF	ND		50	0.51	pg/L		10/09/20 09:46	10/20/20 03:01	1
OCDF	ND		100	1.0	pg/L		10/09/20 09:46	10/20/20 03:01	1
	MD	MD							

MB MB

Isotope Dilution	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	93		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,7,8-PeCDD	94		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,6,7,8-HxCDD	91		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,4,6,7,8-HpCDD	86		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-OCDD	91		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-2,3,7,8-TCDF	110		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,7,8-PeCDF	102		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,4,7,8-HxCDF	115		40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,4,6,7,8-HpCDF	95		40 - 135	10/09/20 09:46	10/20/20 03:01	1

Lab Sample ID: LCS 320-420196/2-A

Matrix: Water

1,2,3,4,7,8,9-HpCDF

Analysis Batch: 423518

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 420196**

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 2,3,7,8-TCDD 200 216 pg/L 108 64 - 142 1,2,3,7,8-PeCDD 1000 1050 pg/L 105 71 - 140 1000 1,2,3,4,7,8-HxCDD 1180 118 56 - 146 pg/L 1,2,3,6,7,8-HxCDD 1000 1170 117 73 - 144 pg/L 1000 71 - 151 1,2,3,7,8,9-HxCDD 1160 116 pg/L pg/L 1,2,3,4,6,7,8-HpCDD 1000 1110 111 78 - 139 OCDD 2000 2080 pg/L 104 80 - 132 2,3,7,8-TCDF 200 215 pg/L 107 71 - 142 1,2,3,7,8-PeCDF 1000 1120 pg/L 112 76 - 135 2,3,4,7,8-PeCDF 1000 1130 pg/L 113 74 - 137 1,2,3,4,7,8-HxCDF 1000 1130 113 75 - 131 pg/L 1000 1070 107 1,2,3,6,7,8-HxCDF pg/L 76 - 133 2,3,4,6,7,8-HxCDF 1000 1140 pg/L 114 80 - 137 1,2,3,7,8,9-HxCDF 1000 1100 pg/L 110 77 - 142 1,2,3,4,6,7,8-HpCDF 1000 1100 pg/L 110 79 - 133 1000 1070 107 83 - 130

Eurofins TestAmerica, Pittsburgh

Page 42 of 55

pg/L

10

Spike

Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

Analysis Batch: 423518

Lab Sample ID: LCS 320-420196/2-A

Client: Tetra Tech GEO

Matrix: Water

Analyte

OCDF

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 420196

	%Rec.	
C	Limits	

D %Re Added Result Qualifier Unit 2000 2120 pg/L 106 72 - 140

LCS LCS

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	89		40 - 135
13C-1,2,3,7,8-PeCDD	89		40 - 135
13C-1,2,3,6,7,8-HxCDD	83		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	76		40 - 135
13C-OCDD	81		40 - 135
13C-2,3,7,8-TCDF	103		40 - 135
13C-1,2,3,7,8-PeCDF	98		40 - 135
13C-1,2,3,4,7,8-HxCDF	106		40 - 135
_13C-1,2,3,4,6,7,8-HpCDF	87		40 - 135

Lab Sample ID: LCSD 320-420196/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 423518							Prep Ba	atch: 42	20196
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	200	221		pg/L		111	64 - 142	2	20
1,2,3,7,8-PeCDD	1000	1050		pg/L		105	71 - 140	1	20
1,2,3,4,7,8-HxCDD	1000	1200		pg/L		120	56 - 146	2	20
1,2,3,6,7,8-HxCDD	1000	1150		pg/L		115	73 - 144	2	20
1,2,3,7,8,9-HxCDD	1000	1120		pg/L		112	71 - 151	4	20
1,2,3,4,6,7,8-HpCDD	1000	1070		pg/L		107	78 - 139	3	20
OCDD	2000	2040		pg/L		102	80 - 132	2	20
2,3,7,8-TCDF	200	218		pg/L		109	71 - 142	1	20
1,2,3,7,8-PeCDF	1000	1130		pg/L		113	76 - 135	1	20
2,3,4,7,8-PeCDF	1000	1140		pg/L		114	74 - 137	1	20
1,2,3,4,7,8-HxCDF	1000	1130		pg/L		113	75 - 131	0	20
1,2,3,6,7,8-HxCDF	1000	1070		pg/L		107	76 - 133	0	20
2,3,4,6,7,8-HxCDF	1000	1120		pg/L		112	80 - 137	2	20
1,2,3,7,8,9-HxCDF	1000	1070		pg/L		107	77 - 142	3	20
1,2,3,4,6,7,8-HpCDF	1000	1080		pg/L		108	79 - 133	1	20
1,2,3,4,7,8,9-HpCDF	1000	1050		pg/L		105	83 - 130	2	20
OCDF	2000	2140		pg/L		107	72 - 140	1	20

L	CSD	LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	89		40 - 135
13C-1,2,3,7,8-PeCDD	88		40 - 135
13C-1,2,3,6,7,8-HxCDD	88		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	80		40 - 135
13C-OCDD	81		40 - 135
13C-2,3,7,8-TCDF	103		40 - 135
13C-1,2,3,7,8-PeCDF	97		40 - 135
13C-1,2,3,4,7,8-HxCDF	111		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	90		40 - 135

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) - RA

Lab Sample ID: 180-111869-1 MS **Matrix: Solid**

Analysis Batch: 422248

Client Sample ID: DW202SS Prep Type: Total/NA Prep Batch: 420127

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec 2,3,7,8-TCDF - RA 0.58 J 25.3 26.8 pg/g 104 79 - 137 MS MS

Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDF - RA 40 - 135 89

Lab Sample ID: 180-111869-1 MSD Client Sample ID: DW202SS

Matrix: Solid

Analysis Batch: 422248 Prep Batch: 420127 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 2,3,7,8-TCDF - RA 106 0.58 25.3 27.3 79 - 137 pg/g MSD MSD

Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDF - RA 79 40 - 135

Method: 2540G - SM 2540G

Lab Sample ID: 180-111869-5 DU Client Sample ID: DW206SS Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 333139

DU DU **RPD** Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit D Limit Percent Moisture 15.9 14.1 F3 % 10 12 Percent Solids 84.1 85.9 % 2 10

Method: SM 2540G - Total, Fixed, and Volatile Solids

Lab Sample ID: 180-111869-5 DU Client Sample ID: DW206SS **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 333912

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier RPD Unit D Limit Total Solids 84 85.9 %

10

Prep Type: Total/NA

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Pre	n B	atc	h:	33	27	20

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-11	DW210SS-EB	Total/NA	Water	3520C	
MB 180-332720/1-A	Method Blank	Total/NA	Water	3520C	
LCS 180-332720/2-A	Lab Control Sample	Total/NA	Water	3520C	

Prep Batch: 333189

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-2	DW203SS	Total/NA	Solid	3541	
180-111869-3	DW204SS	Total/NA	Solid	3541	
180-111869-4	DW205SS	Total/NA	Solid	3541	
180-111869-5	DW206SS	Total/NA	Solid	3541	
180-111869-6	DW207SS	Total/NA	Solid	3541	
180-111869-7	KD321SS	Total/NA	Solid	3541	
180-111869-8	DW208SS	Total/NA	Solid	3541	
180-111869-9	DW209SS	Total/NA	Solid	3541	
180-111869-10	DW210SS	Total/NA	Solid	3541	
MB 180-333189/1-A	Method Blank	Total/NA	Solid	3541	
LCS 180-333189/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 333370

Lab Sample ID 180-111869-11	Client Sample ID DW210SS-EB	Prep Type Total/NA	Matrix Water	Method EPA 8270E	Prep Batch 332720
MB 180-332720/1-A	Method Blank	Total/NA	Water	EPA 8270E	332720
LCS 180-332720/2-A	Lab Control Sample	Total/NA	Water	EPA 8270E	332720

Prep Batch: 333372

Lab Sample ID 180-111869-1	Client Sample ID DW202SS	Prep Type Total/NA	Matrix Solid	Method 3541	Prep Batch
MB 180-333372/1-A	Method Blank	Total/NA	Solid	3541	
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	3541	
180-111869-1 MS	DW202SS	Total/NA	Solid	3541	
180-111869-1 MSD	DW202SS	Total/NA	Solid	3541	

Analysis Batch: 333407

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-2	DW203SS	Total/NA	Solid	EPA 8270E	333189
MB 180-333189/1-A	Method Blank	Total/NA	Solid	EPA 8270E	333189
LCS 180-333189/2-A	Lab Control Sample	Total/NA	Solid	EPA 8270E	333189

Analysis Batch: 333544

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-3	DW204SS	Total/NA	Solid	EPA 8270E	333189
180-111869-4	DW205SS	Total/NA	Solid	EPA 8270E	333189
180-111869-5	DW206SS	Total/NA	Solid	EPA 8270E	333189
180-111869-6	DW207SS	Total/NA	Solid	EPA 8270E	333189
180-111869-7	KD321SS	Total/NA	Solid	EPA 8270E	333189
180-111869-8	DW208SS	Total/NA	Solid	EPA 8270E	333189
180-111869-9	DW209SS	Total/NA	Solid	EPA 8270E	333189
180-111869-10	DW210SS	Total/NA	Solid	EPA 8270E	333189

Page 45 of 55

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Analysis Batch: 333708

Lab Sample ID 180-111869-1	Client Sample ID DW202SS	Prep Type Total/NA	Matrix Solid	Method EPA 8270E	Prep Batch 333372
MB 180-333372/1-A	Method Blank	Total/NA	Solid	EPA 8270E	333372
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	EPA 8270E	333372
180-111869-1 MS	DW202SS	Total/NA	Solid	EPA 8270E	333372
180-111869-1 MSD	DW202SS	Total/NA	Solid	EPA 8270E	333372

Specialty Organics

Prep Batch: 420127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-1	DW202SS	Total/NA	Solid	8290	
180-111869-1 - RA	DW202SS	Total/NA	Solid	8290	
180-111869-2	DW203SS	Total/NA	Solid	8290	
180-111869-3	DW204SS	Total/NA	Solid	8290	
180-111869-3 - RA	DW204SS	Total/NA	Solid	8290	
180-111869-4	DW205SS	Total/NA	Solid	8290	
180-111869-4 - RA	DW205SS	Total/NA	Solid	8290	
180-111869-5	DW206SS	Total/NA	Solid	8290	
180-111869-6	DW207SS	Total/NA	Solid	8290	
180-111869-6 - RA	DW207SS	Total/NA	Solid	8290	
180-111869-7	KD321SS	Total/NA	Solid	8290	
180-111869-8	DW208SS	Total/NA	Solid	8290	
180-111869-8 - RA	DW208SS	Total/NA	Solid	8290	
180-111869-9	DW209SS	Total/NA	Solid	8290	
180-111869-9 - RA	DW209SS	Total/NA	Solid	8290	
180-111869-10	DW210SS	Total/NA	Solid	8290	
180-111869-10 - RA	DW210SS	Total/NA	Solid	8290	
MB 320-420127/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-420127/2-A	Lab Control Sample	Total/NA	Solid	8290	
180-111869-1 MS	DW202SS	Total/NA	Solid	8290	
180-111869-1 MS - RA	DW202SS	Total/NA	Solid	8290	
180-111869-1 MSD	DW202SS	Total/NA	Solid	8290	
180-111869-1 MSD - RA	DW202SS	Total/NA	Solid	8290	

Prep Batch: 420196

Lab Sample ID 180-111869-11	Client Sample ID DW210SS-EB	Prep Type Total/NA	Matrix Water	Method 8290	Prep Batch
MB 320-420196/1-A	Method Blank	Total/NA	Water	8290	
LCS 320-420196/2-A	Lab Control Sample	Total/NA	Water	8290	
LCSD 320-420196/3-A	Lab Control Sample Dup	Total/NA	Water	8290	

Analysis Batch: 421141

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 320-420127/1-A	Method Blank	Total/NA	Solid	8290A	420127
LCS 320-420127/2-A	Lab Control Sample	Total/NA	Solid	8290A	420127

Analysis Batch: 422248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-1 - RA	DW202SS	Total/NA	Solid	8290A	420127
180-111869-3 - RA	DW204SS	Total/NA	Solid	8290A	420127
180-111869-4 - RA	DW205SS	Total/NA	Solid	8290A	420127

Eurofins TestAmerica, Pittsburgh

Page 46 of 55

2

3

8

10

12

13

М

Client: Tetra Tech GEO Job ID: 180-111869-1 Project/Site: Grenada, Mississippi

Specialty Organics (Continued)

Analysis Batch: 422248 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-6 - RA	DW207SS	Total/NA	Solid	8290A	420127
180-111869-8 - RA	DW208SS	Total/NA	Solid	8290A	420127
180-111869-9 - RA	DW209SS	Total/NA	Solid	8290A	420127
180-111869-10 - RA	DW210SS	Total/NA	Solid	8290A	420127
180-111869-1 MS - RA	DW202SS	Total/NA	Solid	8290A	420127
180-111869-1 MSD - RA	DW202SS	Total/NA	Solid	8290A	420127

Analysis Batch: 423056

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-1	DW202SS	Total/NA	Solid	8290A	420127
180-111869-2	DW203SS	Total/NA	Solid	8290A	420127
180-111869-3	DW204SS	Total/NA	Solid	8290A	420127
180-111869-4	DW205SS	Total/NA	Solid	8290A	420127
180-111869-5	DW206SS	Total/NA	Solid	8290A	420127
180-111869-6	DW207SS	Total/NA	Solid	8290A	420127
180-111869-1 MS	DW202SS	Total/NA	Solid	8290A	420127
180-111869-1 MSD	DW202SS	Total/NA	Solid	8290A	420127

Analysis Batch: 423058

Lab Sample ID 180-111869-7	Client Sample ID KD321SS	Prep Type Total/NA	Matrix Solid	Method 8290A	Prep Batch 420127
180-111869-8	DW208SS	Total/NA	Solid	8290A	420127
180-111869-9	DW209SS	Total/NA	Solid	8290A	420127
180-111869-10	DW210SS	Total/NA	Solid	8290A	420127

Analysis Batch: 423518

Lab Sample ID 180-111869-11	Client Sample ID DW210SS-EB	Prep Type Total/NA	Matrix Water	Method 8290A	Prep Batch 420196
MB 320-420196/1-A	Method Blank	Total/NA	Water	8290A	420196
LCS 320-420196/2-A	Lab Control Sample	Total/NA	Water	8290A	420196
LCSD 320-420196/3-A	Lab Control Sample Dup	Total/NA	Water	8290A	420196

General Chemistry

Analysis Batch: 333139

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-1	DW202SS	Total/NA	Solid	2540G	
180-111869-2	DW203SS	Total/NA	Solid	2540G	
180-111869-3	DW204SS	Total/NA	Solid	2540G	
180-111869-4	DW205SS	Total/NA	Solid	2540G	
180-111869-5	DW206SS	Total/NA	Solid	2540G	
180-111869-6	DW207SS	Total/NA	Solid	2540G	
180-111869-7	KD321SS	Total/NA	Solid	2540G	
180-111869-8	DW208SS	Total/NA	Solid	2540G	
180-111869-9	DW209SS	Total/NA	Solid	2540G	
180-111869-10	DW210SS	Total/NA	Solid	2540G	
180-111869-5 DU	DW206SS	Total/NA	Solid	2540G	

Analysis Batch: 333912

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-1	DW202SS	Total/NA	Solid	SM 2540G	

Page 47 of 55

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111869-1

Project/Site: Grenada, Mississippi

General Chemistry (Continued)

Analysis Batch: 333912 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111869-2	DW203SS	Total/NA	Solid	SM 2540G	
180-111869-3	DW204SS	Total/NA	Solid	SM 2540G	
180-111869-4	DW205SS	Total/NA	Solid	SM 2540G	
180-111869-5	DW206SS	Total/NA	Solid	SM 2540G	
180-111869-6	DW207SS	Total/NA	Solid	SM 2540G	
180-111869-7	KD321SS	Total/NA	Solid	SM 2540G	
180-111869-8	DW208SS	Total/NA	Solid	SM 2540G	
180-111869-9	DW209SS	Total/NA	Solid	SM 2540G	
180-111869-10	DW210SS	Total/NA	Solid	SM 2540G	
180-111869-5 DU	DW206SS	Total/NA	Solid	SM 2540G	

1

6

8

11

12

13

112

TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica 16. Kul Sample Specific Notes: COCs Sampler: A. Morgen Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only of 2 TALS Project #: Job / SDG No.: Walk-in Client: Lab Sampling: 10/5/20 Therm ID No.: Date/Time: Date/Time: Date/Time: COC No: 180-111869 Chain of Custody Corr'd: Company Company Company Lab Contact: Veronica Bartot Carrier: Cooler Temp. (°C): Obs'd: Kini Received in Laboratory by: Site Contact: 6 rec++ Other: Return to Client Received by. orgenors (EPA 8290 Received by: × 2000/0005 8 t 52 X (t1) X XXXZ メメスマ N X X XXZ X X × × × × × RCRA (N /Y) DRM / RM moher (0£28 483) × × × くてて メママ X ZZ 3 <u>ر</u> ک Filtered Sample (Y / N) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Regulatory Program: Dw NPDES Email: Senn: fel. Abranas @ Tetratech Com. Project Manager: Sennifer Abcomms # of Cont. 2 4 2 4 4 2 4 4 2 7 3 lo/s/to Date/Time: Date/Time: 2 Date/Time: WORKING DAYS whitel Matrix 1205 1:05 50:1 50:1 50:1 1205 50:1 1:05 501 105 50:1 **Analysis Turnaround Time** Tel/Fax: 916-853-4526 Type (C=Comp, G=Grab) Sample TAT if different from Below 5 S 0 2 weeks 1 week 2 days C 1 day Dulloss - EB | 10/3/2 | 1750 | Preservation Used: (1=10), 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other X CALENDAR DAYS Sample 10/3/10 0842 16/3/10 0842 10/3/20 1230 10/3/10 0945 10/3/10 1449 10/3/10 1534 Time 10/3/20 0910 2811 02/2/01 Custody Seal No.: Company: 0/3/20 1010 5011 02/8/01 10/3/20 1610 Tetra Company: Company Sample Phone 916-853-4526 BFE- Side Sumpling City/State/Zip Remetro Cochoso, CA 95670 Comments Section if the lab is to dispose of the sample. Special Instructions/QC Requirements & Comments: RIDG Park No Derie Your Company Name here Teter tech 18238 Sample Identification Yes Fremodel FAX Client Contact Dw 20255 - MS/MSD #NIA 301 Alpha Drive PO# 117-2201456A Pittsburgh, PA Possible Hazard Identification: Project Name: Additional EDD Custody Seals Intact: Site: 6/8000 DW20255 DW20755 Standord DW20355 Dw 20655 K032155 Dw 21055 Relinquished by: DW20935 Dw 20555 Dal0855 Relinquished by: Address 3101 DWZOYSS Relinquished by xxx xxxx (xxx xxx xxx (xxx #N/A ## Page 49 of 55 10/23/2020

Environment Testing

💸 eurofins

Chain of Custody Record

>> Select a Laboratory or Service Center <<

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park. Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468		Chain	of Cus	Chain of Custody Record	ecord				💸 eurofins	Employment Testing. America
Client Information (Sub Contract Lab)	Sampler			Lab PM Bortot	Lab PM: Bortot, Veronica		Carrier Tracking No(s)	No(s):	COC No: 180-414269.1	
Client Contact. Shipping/Receiving	Phone:			E-Mail: Veron	nica.Bortot@	E-Mail: Veronica.Bortot@Eurofinset.com	State of Origin: Mississippi		Page: Page 1 of 2	
Company: TestAmerica Laboratories, Inc.					Accreditations	Accreditations Required (See note):			Job #: 180-111869-1	
Address: 880 Riverside Parkway,	Due Date Requested: 10/16/2020	ted:				Analysis	Analysis Requested		Preservation Codes:	so 7
Oity: West Sacramento	TAT Requested (da	lays):							B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip: CA, 95605									D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	# Od					sie)			G - Amchlar H - Ascorbic Acid	R - Na2S203 S - H2SO4 T - TSP Dodecahvdrate
Email:	#0M				(0)	oT & e		5	I - Ice J - DI Water	U - Acetone V - MCAA
Project Name: Grenada, Mississippi	Project #. 18010096				N TO 29	namosi		mainer	K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site:	#woss				A) as	₹‡ dəş		ot con	Other:	
Samula Identification - Client ID (1 ab ID)	Sample Date	Sample	Sample Type (C=comp,		SM/SM mohes 2 q_0ess/A0es	S_q_0628/4062		otal Number	0	Special Instructions (Motor
		X	100	Preservation Code:	X	8		ıX) hecial	istractions/note.
DW202SS (180-111869-1)	10/3/20	08:42 Central		Solid	×			-		
DW202SS (180-111869-1MS)	10/3/20	08:42 Central	MS	Solid	×			-		
DW202SS (180-111869-1MSD)	10/3/20	08:42 Central	MSD	Solid	×			+		
DW203SS (180-111869-2)	10/3/20	09:10 Central		Solid	×			+		
DW204SS (180-111869-3)	10/3/20	09:45 Central		Solid	×			+		
DW205SS (180-111869-4)	10/3/20	10:10 Central		Solid	×			+		
DW206SS (180-111869-5)	10/3/20	11:05 Central		Solid	×			+		
DW207SS (180-111869-6)	10/3/20	11:35 Central		Solid	×					
KD321SS (180-111869-7)	10/3/20	14:49 Central		Solid	×			1		
Note: Since laboratory accreditations are subject to charge, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	umerica places the ownersh √matrix being analyzed, the s rrent to date, return the signe	ip of method, all amples must be d Chain of Cust	halyte & accred shipped back bdy attesting to	itation compliant to the Eurofins 7 said complican	se upon out sub estAmerica lab se to Eurofins 7	ocontract laboratories. This ocratory or other instruction estAmerica.	sample shipment is fow s will be provided. Any c	warded under chain-of changes to accreditation	custody. If the labo	ratory does not currently prought to Eurofins
Possible Hazard Identification					Sample	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed if sa	mples are retain	ed longer than	1 month)
Unconfirmed Deliverable Desireded I II IV Other Jeneselber	O compa	C Jack			Re	Return To Client Dis	Disposal By Lab		Archive For	Months
Deliverable Nequested: I. II. IV, Orner (Specify)	Frimary Deliver	ые капк.			Special II	structions/QC Requir				
Empty Kit Relinquished by:		Date:			Time:		Method of Shipment	Shipment		
Relinquished by: Relinquished by:	Date/Time:/	1500	7	Company	151	Reperved by:		Date/Time: [o [Si] Date/Time:	944	Company Company
Relinquished by:	Date/Time:			Company	Received by	ed by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:	,				Cooler	Cooler Temperature(s) ³ C and Other Remadus	er Remads			
Carlo and	7				+		1 / 600			Vor. 01/16/2019

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238

Phone: 412-963-7058 Fax: 412-963-2468

T - TSP Dodecahydrate Vote: Since aboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analytic & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/inativ being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica Special Instructions/Note: Company Z - other (specify) P - Na204S Q - Na2S03 R - Na2S203 S - H2S04 N - None O - AsNaO2 U - Acetone V - MCAA W - pH 4-5 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - NanSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 180-414269.2 180-111869-1 Page 2 of 2 J - DI Water K - EDTA L - EDA 340 Total Number of containers 16/8/2 1/1F. Method of Shipment Carrier Tracking No(s): State of Origin: Mississippi Analysis Requested Cooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirements: Veronica.Bortot@Eurofinset.com Return To Client Received by: 88290 & Sep 17 Isomers & Totals Lab PM: Bortot, Veronica 1290A/8290 P. Sox 17 Isomers w/ Totals × × × Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Found Preservation Code: Matrix Water Solid Solid Solid Company (C=comb, G=grab) Sample Type Primary Deliverable Rank: 2 30 Central 15:34 Central 16:10 Central 17:50 Central 12:30 Time TAT Requested (days): Due Date Requested: 10/16/2020 2 Sample Date 10/3/20 10/3/20 10/7 10/3/20 10/3/20 18010096 Date/Time: hone: Client Information (Sub Contract Lab) eliverable Requested: I, II, III, IV. Other (specify Custody Seal No.: Sample Identification - Client ID (Lab ID) 916-373-5600(Tel) 916-372-1059(Fax) DW210SS-EB (180-111869-11) Possible Hazard Identification TestAmerica Laboratories, Inc. DW210SS (180-111869-10) Empty Kit Relinquished by: OW208SS (180-111869-8) OW209SS (180-111869-9) Custody Seals Intact: 880 Riverside Parkway Grenada, Mississippi Shipping/Receiving West Sacramento rquished by: nquished by. Inconfirmed CA, 95605

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

Tracking #:_	1689	5103	2815	
	FO / SAT / 2			/ CDO / Courie

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations. File in the job folder with the COC.

ile in the job folder with the COC.	_				
Therm. ID: 446 Corr. Factor:				Notes:	
ice Wet Gel					
Cooler Custody Seal:					-
Cooler Custody Seal:					
Cooler ID:					
Temp Observed: 1.7 °C Correct	ed:	22	_°C		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,				_
Opening/Processing The Shipment	Yes	No	NA		-
Cooler compromised/tampered with?	D	B	D		-
Cooler Temperature is acceptable?	0	D	D		-
Initials: Date: Co	18/60				
Unpacking/Labeling The Samples	Yes	No	NA		-
CoC is complete w/o discrepancies?	D	D			-
Samples compromised/tampered with?	D	D			
Sample containers have legible labels?	Ø				
Sample custody seal?		D	D		
Containers are not broken or leaking?	Ø				_
Sample date/times are provided?	0				
Appropriate containers are used?	0			Trizma Lot #(s):	-
Sample bottles are completely filled?					_
Sample preservatives verified?			Ø		
Samples w/o discrepancies?			D		
Zero headspace?*		D	Ø	Login Completion Yes No	NA
Alkalinity has no headspace?	D		D	Receipt Temperature on COC?	D
Perchlorate has headspace? (Methods 314, 331, 6850)		۵	0	Samples received within hold time?	0
Multiphasic samples are not present?	D	D	D	NCM Filed? D D Log Release checked in TALS? D D	B
*Containers requiring zero headspace have no headspace	e, or bubb	ole < 6 m	m (1/4")	Log Release Checked in TALS?	D
0 100	120			Initials: Date: 10 08 20	
Initials: Date: 10 08	100			Initials: Date: 10 08 800	_

IITACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTVFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Client: Tetra Tech GEO Job Number: 180-111869-1

Login Number: 111869 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

ordator: Matoon, Bobbio		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Tetra Tech GEO Job Number: 180-111869-1

Login Number: 111869 List Source: Eurofins TestAmerica, Sacramento List Number: 2

List Creation: 10/08/20 01:40 PM

Creator: Saephan, Kae C

Answer	Comment
True	
True	Seal present with no number.
N/A	
True	
True	
True	
True	ob: 1.7c corr: 2.2c
True	
True	
True	
False	Received project as a subcontract.
True	
N/A	
True	
True	
True	
True	
N/A	
	True True N/A True True True True True True True True

10/23/2020

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238

Tel: (412)963-7058

Laboratory Job ID: 180-111870-1

Client Project/Site: Grenada, Mississippi

For:

Tetra Tech GEO 2969 Prospect Park Drive Suite 100 Rancho Cordova, California 95670

Attn: Ms. Jennifer Abrahams, P.G.

Veronica portat

Authorized for release by: 10/15/2020 10:33:13 PM

Veronica Bortot, Senior Project Manager (412)963-2435

Veronica.Bortot@Eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi Laboratory Job ID: 180-111870-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	11
QC Sample Results	15
QC Association Summary	19
Chain of Custody	20
Field Data Sheets	24
Receipt Checklists	25

-6

4

6

0

9

10

12

13

14

Case Narrative

Client: Tetra Tech GEO

Job ID: 180-111870-1 Project/Site: Grenada, Mississippi

Job ID: 180-111870-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-111870-1

Comments

No additional comments.

Receipt

The samples were received on 10/6/2020 9:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.5° C.

Receipt Exceptions

One out of two container labels for the following sample not match the information listed on the Chain-of-Custody (COC): BR351SS. The container labels list a sample id of BR3513SS, while the COC lists BR351SS. The id on the COC was used.

GC/MS Semi VOA

Method 8270E: The following samples were diluted due to the nature of the sample matrix: BR500SS and BR861SS. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossarv page.

Dioxin

Method 8290A: The bracketing continuing calibration verification (CCV) associated with batch 320-421141 has 1,2,3,6,7,8-HxCDF with percent difference value that is between the method criteria of 20% to 25% deviation from the initial calibration curve. Per method quidelines, an average relative response factor (RRF) is calculated from the bracketing CCV and is used to quantitate any positive results in the associated samples for the affected analytes.

Method 8290A: The concentration of one or more analytes associated with the following samples exceeded the instrument calibration range: BR500SS and BR861SS. These analytes have been qualified; however, the peak(s) did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Tetra Tech GEO Job ID: 180-111870-1

Project/Site: Grenada, Mississippi

Qualifiers

00	INAC	C	110
G U		Sem	i VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Dioxin

Qualifier **Qualifier Description**

В Compound was found in the blank and sample.

Ε Result exceeded calibration range.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The q

measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry)

MDC Method Detection Limit MDL

MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RFR Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111870-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20 *
Florida	NELAP	E871008	06-30-21
Georgia	State	PA 02-00416	04-30-21
Illinois	NELAP	004375	06-30-21
Kansas	NELAP	E-10350	01-31-21
Kentucky (UST)	State	162013	04-30-21
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-21
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-21
New Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-21
New York	NELAP	11182	04-01-21
North Carolina (WW/SW)	State	434	01-01-21
North Dakota	State	R-227	04-30-21
Oregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-21
Texas	NELAP	T104704528	03-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-21
Virginia	NELAP	10043	09-14-21
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-21

- 6

4

5

9

10

12

13

14

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111870-1

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority Program		Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received
 Asset ID

 180-111870-7
 BR500SS
 Solid
 10/04/20 16:15
 10/06/20 09:00
 4sset ID

 180-111870-8
 BR861SS
 Solid
 10/04/20 17:00
 10/06/20 09:00
 4sset ID

Job ID: 180-111870-1

3

4

5

7

9

10

12

13

114

Method Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111870-1

Method	Method Description	Protocol	Laboratory
EPA 8270E	Semivolatile Organic Compounds (GC/MS)	SW846	TAL PIT
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
2540G	SM 2540G	SM22	TAL PIT
SM 2540G	Total, Fixed, and Volatile Solids	SM	TAL PIT
3541	Automated Soxhlet Extraction	SW846	TAL PIT
8290	Soxhlet Extraction of Dioxins and Furans	SW846	TAL SAC

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM22 = Standard Methods For The Examination Of Water And Wastewater, 22nd Edition

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058
TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

3

4

6

ė

9

10

12

13

Client Sample ID: BR500SS

Date Collected: 10/04/20 16:15 Date Received: 10/06/20 09:00 Lab Sample ID: 180-111870-7

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G at ID: NOEQUIP		1			332787	10/08/20 20:46	PMH	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			333108	10/08/20 20:46	РМН	TAL PIT

Client Sample ID: BR500SS Lab Sample ID: 180-111870-7

Date Collected: 10/04/20 16:15

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 81.3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			14.8 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		4	1 mL	1 mL	333407	10/14/20 13:17	VVP	TAL PIT
Total/NA	Prep	8290	RA		9.81 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1			421503	10/13/20 16:34	AS	TAL SAC
Total/NA	Prep	8290			9.81 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: DFS 1		1			421141	10/13/20 04:29	AS	TAL SAC

Client Sample ID: BR861SS Lab Sample ID: 180-111870-8

Date Collected: 10/04/20 17:00 Date Received: 10/06/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	2540G		1			332787	10/08/20 20:46	PMH	TAL PIT
	Instrumer	nt ID: NOEQUIP								
Total/NA	Analysis	SM 2540G		1			333108	10/08/20 20:46	PMH	TAL PIT
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: BR861SS Lab Sample ID: 180-111870-8

Date Collected: 10/04/20 17:00 Matrix: Solid
Date Received: 10/06/20 09:00 Percent Solids: 79.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.3 g	5.0 mL	333189	10/13/20 08:11	SAT	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH71		5	1 mL	1 mL	333407	10/14/20 13:43	VVP	TAL PIT
Total/NA	Prep	8290	RA		9.95 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 11D2	RA	1			421503	10/13/20 17:12	AS	TAL SAC
Total/NA	Prep	8290			9.95 g	20 uL	420127	10/09/20 05:11	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: DFS 1		1			421141	10/13/20 05:16	AS	TAL SAC

Lab Chronicle

Client: Tetra Tech GEO Job ID: 180-111870-1

Project/Site: Grenada, Mississippi

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Analyst References:

Lab: TAL PIT

Batch Type: Prep

SAT = Stephen Tallam

Batch Type: Analysis

PMH = Paloma Hoelzle

VVP = Vincent Piccolino

Lab: TAL SAC

Batch Type: Prep

FC = Fue Chang

Batch Type: Analysis

AS = Ajay Sharda

Project/Site: Grenada, Mississippi

Client Sample ID: BR500SS Lab Sample ID: 180-111870-7

Date Collected: 10/04/20 16:15

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 81.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		330	96	ug/Kg	<u></u>	10/13/20 08:11	10/14/20 13:17	4
Acenaphthylene	ND		330	73	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Anthracene	ND		330	86	ug/Kg	₩	10/13/20 08:11	10/14/20 13:17	4
Benzo[a]anthracene	ND		330	150	ug/Kg	⊅	10/13/20 08:11	10/14/20 13:17	4
Benzo[b]fluoranthene	180	J	330	82	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Benzo[k]fluoranthene	ND		330	100	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Benzo[g,h,i]perylene	77	J	330	72	ug/Kg	⊅	10/13/20 08:11	10/14/20 13:17	4
Benzo[a]pyrene	ND		330	140	ug/Kg	₩	10/13/20 08:11	10/14/20 13:17	4
Chrysene	ND		330	180	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Dibenz(a,h)anthracene	ND		330	210	ug/Kg	₽	10/13/20 08:11	10/14/20 13:17	4
Fluoranthene	98	J	330	88	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Fluorene	ND		330	65	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Indeno[1,2,3-cd]pyrene	ND		330	170	ug/Kg	₽	10/13/20 08:11	10/14/20 13:17	4
Naphthalene	ND		330	65	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Phenanthrene	ND		330	89	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Pyrene	130	J	330	79	ug/Kg	☼	10/13/20 08:11	10/14/20 13:17	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	61		45 - 105				10/13/20 08:11	10/14/20 13:17	4
2-Fluorophenol (Surr)	69		42 - 105				10/13/20 08:11	10/14/20 13:17	4
2,4,6-Tribromophenol (Surr)	45		31 - 105				10/13/20 08:11	10/14/20 13:17	4
Nitrobenzene-d5 (Surr)	69		53 - 105				10/13/20 08:11	10/14/20 13:17	4
Phenol-d5 (Surr)	61		47 - 105				10/13/20 08:11	10/14/20 13:17	4
Terphenyl-d14 (Surr)	70		46 - 105				10/13/20 08:11	10/14/20 13:17	4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.3	0.37	pg/g	— -	10/09/20 05:11	10/13/20 04:29	1
Total TCDD	3.1	q	1.3	0.37	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
1,2,3,7,8-PeCDD	ND		6.3	0.55	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
Total PeCDD	20	q	6.3	0.55	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
1,2,3,4,7,8-HxCDD	5.4	JB	6.3	0.31	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
1,2,3,6,7,8-HxCDD	15		6.3	0.29	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
1,2,3,7,8,9-HxCDD	8.3		6.3	0.27	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
Total HxCDD	130	В	6.3	0.29	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
1,2,3,4,6,7,8-HpCDD	390	В	6.3	1.4	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
Total HpCDD	980	В	6.3	1.4	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
OCDD	5200	EB	13	3.9	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
Total TCDF	25	q	1.3	0.65	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
1,2,3,7,8-PeCDF	3.0	J	6.3	0.50	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
2,3,4,7,8-PeCDF	4.6	J	6.3	0.50	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
Total PeCDF	48	q	6.3	0.50	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
1,2,3,4,7,8-HxCDF	10		6.3	0.91	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
1,2,3,6,7,8-HxCDF	5.9	J	6.3	0.82	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
2,3,4,6,7,8-HxCDF	9.4		6.3	0.85	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
1,2,3,7,8,9-HxCDF	ND		6.3	0.88	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
Total HxCDF	110		6.3	0.86	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
1,2,3,4,6,7,8-HpCDF	100		6.3	1.1	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
1,2,3,4,7,8,9-HpCDF	5.3	J	6.3	1.2	pg/g	₽	10/09/20 05:11	10/13/20 04:29	1
Total HpCDF	260		6.3			₩	10/09/20 05:11	10/13/20 04:29	1

Eurofins TestAmerica, Pittsburgh

Page 11 of 26

2

3

5

7

9

10

12

13

12

10/15/2020

Project/Site: Grenada, Mississippi

2-Fluorophenol (Surr)

Client Sample ID: BR500SS Lab Sample ID: 180-111870-7

Date Collected: 10/04/20 16:15 **Matrix: Solid** Date Received: 10/06/20 09:00 **Percent Solids: 81.3**

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	270	В	13	0.31	pg/g	₩	10/09/20 05:11	10/13/20 04:29	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	80		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-1,2,3,7,8-PeCDD	64		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-1,2,3,6,7,8-HxCDD	86		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-1,2,3,4,6,7,8-HpCDD	77		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-OCDD	93		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-2,3,7,8-TCDF	82		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-1,2,3,7,8-PeCDF	72		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-1,2,3,4,7,8-HxCDF	85		40 - 135				10/09/20 05:11	10/13/20 04:29	1
13C-1,2,3,4,6,7,8-HpCDF	83		40 - 135				10/09/20 05:11	10/13/20 04:29	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.6		1.3	0.15	pg/g	*	10/09/20 05:11	10/13/20 16:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	<u></u> 78		40 - 135				10/09/20 05:11	10/13/20 16:34	

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	18.7		0.1	0.1	%			10/08/20 20:46	1
Percent Solids	81.3		0.1	0.1	%			10/08/20 20:46	1
Total Solids	81		0.50	0.50	%			10/08/20 20:46	1

Lab Sample ID: 180-111870-8 **Client Sample ID: BR861SS** Date Collected: 10/04/20 17:00 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 79.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		410	120	ug/Kg	<u></u>	10/13/20 08:11	10/14/20 13:43	5
Acenaphthylene	420		410	90	ug/Kg	☼	10/13/20 08:11	10/14/20 13:43	5
Anthracene	310	J	410	110	ug/Kg	₩	10/13/20 08:11	10/14/20 13:43	5
Benzo[a]anthracene	1100		410	180	ug/Kg	₩	10/13/20 08:11	10/14/20 13:43	5
Benzo[b]fluoranthene	1400		410	100	ug/Kg	₩	10/13/20 08:11	10/14/20 13:43	5
Benzo[k]fluoranthene	730		410	120	ug/Kg	₩	10/13/20 08:11	10/14/20 13:43	5
Benzo[g,h,i]perylene	560		410	88	ug/Kg	₩	10/13/20 08:11	10/14/20 13:43	5
Benzo[a]pyrene	840		410	180	ug/Kg	₩	10/13/20 08:11	10/14/20 13:43	5
Chrysene	1700		410	230	ug/Kg	☼	10/13/20 08:11	10/14/20 13:43	5
Dibenz(a,h)anthracene	490		410	260	ug/Kg	₽	10/13/20 08:11	10/14/20 13:43	5
Fluoranthene	1600		410	110	ug/Kg	☼	10/13/20 08:11	10/14/20 13:43	5
Fluorene	ND		410	81	ug/Kg	☼	10/13/20 08:11	10/14/20 13:43	5
Indeno[1,2,3-cd]pyrene	570		410	200	ug/Kg	≎	10/13/20 08:11	10/14/20 13:43	5
Naphthalene	ND		410	80	ug/Kg	☼	10/13/20 08:11	10/14/20 13:43	5
Phenanthrene	510		410	110	ug/Kg	☼	10/13/20 08:11	10/14/20 13:43	5
Pyrene	1700		410	97	ug/Kg	☼	10/13/20 08:11	10/14/20 13:43	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70		45 - 105				10/13/20 08:11	10/14/20 13:43	5

Eurofins TestAmerica, Pittsburgh

10/13/20 08:11 10/14/20 13:43

Page 12 of 26

42 - 105

76

10/15/2020

Job ID: 180-111870-1

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi

Client Sample ID: BR861SS

Lab Sample ID: 180-111870-8 Date Collected: 10/04/20 17:00 **Matrix: Solid**

Date Received: 10/06/20 09:00 Percent Solids: 79.8

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	46	31 - 105	10/13/20 08:11	10/14/20 13:43	5
Nitrobenzene-d5 (Surr)	73	53 - 105	10/13/20 08:11	10/14/20 13:43	5
Phenol-d5 (Surr)	66	47 - 105	10/13/20 08:11	10/14/20 13:43	5
Terphenyl-d14 (Surr)	77	46 - 105	10/13/20 08:11	10/14/20 13:43	5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.3	0.32	pg/g	*	10/09/20 05:11	10/13/20 05:16	1
Total TCDD	6.7	q	1.3	0.32	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,7,8-PeCDD	ND		6.3	0.57	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
Total PeCDD	20	q	6.3	0.57	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,4,7,8-HxCDD	5.6	JB	6.3	0.28	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,6,7,8-HxCDD	18		6.3	0.27	pg/g	☼	10/09/20 05:11	10/13/20 05:16	1
1,2,3,7,8,9-HxCDD	10		6.3	0.25	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
Total HxCDD	160	В	6.3	0.27	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,4,6,7,8-HpCDD	570	В	6.3	1.9	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
Total HpCDD	1300	В	6.3	1.9	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
OCDD	6300	EB	13	4.3	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
Total TCDF	31	q	1.3	0.64	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,7,8-PeCDF	ND		6.3	0.54	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
2,3,4,7,8-PeCDF	4.8	J	6.3	0.55	pg/g	☼	10/09/20 05:11	10/13/20 05:16	1
Total PeCDF	50	q	6.3	0.55	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,4,7,8-HxCDF	11		6.3	0.96	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,6,7,8-HxCDF	6.9		6.3	0.85	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
2,3,4,6,7,8-HxCDF	9.8		6.3	0.88	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,7,8,9-HxCDF	ND		6.3	0.92	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
Total HxCDF	120		6.3	0.90	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,4,6,7,8-HpCDF	120		6.3	1.1	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
1,2,3,4,7,8,9-HpCDF	5.2	J	6.3	1.2	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1
Total HpCDF	280		6.3	1.2	pg/g	₩	10/09/20 05:11	10/13/20 05:16	1
OCDF	280	В	13	0.32	pg/g	₽	10/09/20 05:11	10/13/20 05:16	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-1,2,3,7,8-PeCDD	68	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-1,2,3,6,7,8-HxCDD	88	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-1,2,3,4,6,7,8-HpCDD	81	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-OCDD	103	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-2,3,7,8-TCDF	82	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-1,2,3,7,8-PeCDF	78	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-1,2,3,4,7,8-HxCDF	89	40 - 135	10/09/20 05:11	10/13/20 05:16	1
13C-1,2,3,4,6,7,8-HpCDF	87	40 - 135	10/09/20 05:11	10/13/20 05:16	1

Method: 8290A - Dioxins and Furans	(HRGC/HRMS) - RA
------------------------------------	------------	--------

		,							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.7		1.3	0.18	pg/g		10/09/20 05:11	10/13/20 17:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	78		40 - 135				10/09/20 05:11	10/13/20 17:12	1

Eurofins TestAmerica, Pittsburgh

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111870-1

Project/Site: Grenada, Mississippi

Client Sample ID: BR861SS Lab Sample ID: 180-111870-8

Date Collected: 10/04/20 17:00 **Matrix: Solid** Date Received: 10/06/20 09:00

Percent Solids: 79.8

General Chemistry								
Analyte	Result Qua	alifier RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	20.2	0.1	0.1	%			10/08/20 20:46	1
Percent Solids	79.8	0.1	0.1	%			10/08/20 20:46	1
Total Solids	80	0.50	0.50	%			10/08/20 20:46	1

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 180-333189/1-A

Matrix: Solid

Analysis Batch: 333407

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 333189

MB	МВ						•	
		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		34	9.6	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	7.3	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	8.7	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	15	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	8.2	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	10	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	7.2	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	14	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	19	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	21	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	8.8	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	6.6	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	17	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	6.5	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	9.0	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
ND		34	7.9	ug/Kg		10/13/20 08:11	10/14/20 12:25	1
	Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 34 ND 34	Result Qualifier RL MDL ND 34 9.6 ND 34 7.3 ND 34 15 ND 34 8.2 ND 34 10 ND 34 7.2 ND 34 14 ND 34 19 ND 34 21 ND 34 8.8 ND 34 6.6 ND 34 6.5 ND 34 6.5 ND 34 9.0	Result Qualifier RL MDL Unit ND 34 9.6 ug/Kg ND 34 7.3 ug/Kg ND 34 8.7 ug/Kg ND 34 15 ug/Kg ND 34 10 ug/Kg ND 34 7.2 ug/Kg ND 34 14 ug/Kg ND 34 19 ug/Kg ND 34 21 ug/Kg ND 34 8.8 ug/Kg ND 34 6.6 ug/Kg ND 34 17 ug/Kg ND 34 6.5 ug/Kg ND 34 9.0 ug/Kg	Result Qualifier RL MDL Unit D ND 34 9.6 ug/Kg ug/Kg ND 34 7.3 ug/Kg ND 34 8.7 ug/Kg ND 34 15 ug/Kg ND 34 10 ug/Kg ND 34 7.2 ug/Kg ND 34 14 ug/Kg ND 34 19 ug/Kg ND 34 8.8 ug/Kg ND 34 6.6 ug/Kg ND 34 17 ug/Kg ND 34 6.5 ug/Kg ND 34 6.5 ug/Kg ND 34 9.0 ug/Kg	Result Qualifier RL MDL unit D ug/Kg Prepared ND 34 9.6 ug/Kg 10/13/20 08:11 ND 34 7.3 ug/Kg 10/13/20 08:11 ND 34 8.7 ug/Kg 10/13/20 08:11 ND 34 15 ug/Kg 10/13/20 08:11 ND 34 8.2 ug/Kg 10/13/20 08:11 ND 34 7.2 ug/Kg 10/13/20 08:11 ND 34 7.2 ug/Kg 10/13/20 08:11 ND 34 19 ug/Kg 10/13/20 08:11 ND 34 21 ug/Kg 10/13/20 08:11 ND 34 8.8 ug/Kg 10/13/20 08:11 ND 34 8.8 ug/Kg 10/13/20 08:11 ND 34 6.6 ug/Kg 10/13/20 08:11 ND 34 6.5 ug/Kg 10/13/20 08:11 ND 34 6.5 ug/Kg 10/13/20 08:11 ND 34 6.5 ug/Kg 10/13/20 08:11	Result Qualifier RL MDL Unit D Prepared Analyzed ND 34 9.6 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 7.3 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 8.7 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 15 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 8.2 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 10 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 7.2 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 14 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 19 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 21 ug/Kg 10/13/20 08:11 10/14/20 12:25 ND 34 8.8 ug/Kg 10/13/20 08:11 10/14/20 12:25

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
					- Dir r uc
2-Fluorobiphenyl	70	45 - 105	10/13/20 08:11	10/14/20 12:25	1
2-Fluorophenol (Surr)	78	42 - 105	10/13/20 08:11	10/14/20 12:25	1
2,4,6-Tribromophenol (Surr)	69	31 - 105	10/13/20 08:11	10/14/20 12:25	1
Nitrobenzene-d5 (Surr)	78	53 - 105	10/13/20 08:11	10/14/20 12:25	1
Phenol-d5 (Surr)	70	47 - 105	10/13/20 08:11	10/14/20 12:25	1
Terphenyl-d14 (Surr)	95	46 - 105	10/13/20 08:11	10/14/20 12:25	1

Lab Sample ID: LCS 180-333189/2-A

Matrix: Solid

Analysis Batch: 333407

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 333189

7							
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	3330	2820		ug/Kg		85	49 - 107
Acenaphthylene	3330	2790		ug/Kg		84	46 - 110
Anthracene	3330	2880		ug/Kg		87	47 - 116
Benzo[a]anthracene	3330	2680		ug/Kg		80	48 - 101
Benzo[b]fluoranthene	3330	2510		ug/Kg		75	46 - 100
Benzo[k]fluoranthene	3330	2630		ug/Kg		79	43 - 114
Benzo[g,h,i]perylene	3330	2500		ug/Kg		75	49 - 111
Benzo[a]pyrene	3330	2640		ug/Kg		79	46 - 114
Chrysene	3330	2340		ug/Kg		70	49 - 100
Dibenz(a,h)anthracene	3330	2380		ug/Kg		71	49 - 112
Fluoranthene	3330	2650		ug/Kg		80	54 - 105
Fluorene	3330	2900		ug/Kg		87	50 - 106
Indeno[1,2,3-cd]pyrene	3330	2770		ug/Kg		83	49 - 112
Naphthalene	3330	2500		ug/Kg		75	53 - 100
Phenanthrene	3330	2740		ug/Kg		82	46 - 111
Pyrene	3330	2600		ug/Kg		78	49 - 100

10/15/2020

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-333189/2-A

Matrix: Solid

Analysis Batch: 333407

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 333189

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	80		45 - 105
2-Fluorophenol (Surr)	90		42 - 105
2,4,6-Tribromophenol (Surr)	81		31 - 105
Nitrobenzene-d5 (Surr)	88		53 - 105
Phenol-d5 (Surr)	79		47 - 105
Terphenyl-d14 (Surr)	87		46 - 105

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-420127/1-A

Matrix: Solid

Analysis Batch: 421141

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 420127

Analysis Balcii. 421141								Prep Batch.	420121
		MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0	0.21	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total TCDD	ND		1.0	0.21	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8-PeCDD	ND		5.0	0.14	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total PeCDD	ND		5.0	0.14	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,7,8-HxCDD	0.262	J	5.0	0.036	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,6,7,8-HxCDD	ND		5.0	0.034	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8,9-HxCDD	ND		5.0	0.032	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HxCDD	0.262	J	5.0	0.034	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,6,7,8-HpCDD	0.175	J q	5.0	0.051	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HpCDD	0.385	Jq	5.0	0.051	pg/g		10/09/20 05:11	10/13/20 02:53	1
OCDD	0.873	J q	10	0.012	pg/g		10/09/20 05:11	10/13/20 02:53	1
2,3,7,8-TCDF	ND		1.0	0.13	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total TCDF	ND		1.0	0.13	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8-PeCDF	ND		5.0	0.082	pg/g		10/09/20 05:11	10/13/20 02:53	1
2,3,4,7,8-PeCDF	ND		5.0	0.083	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total PeCDF	ND		5.0	0.083	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,7,8-HxCDF	ND		5.0	0.054	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,6,7,8-HxCDF	ND		5.0	0.048	pg/g		10/09/20 05:11	10/13/20 02:53	1
2,3,4,6,7,8-HxCDF	ND		5.0	0.050	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,7,8,9-HxCDF	ND		5.0	0.052	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HxCDF	ND		5.0	0.054	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,6,7,8-HpCDF	ND		5.0	0.034	pg/g		10/09/20 05:11	10/13/20 02:53	1
1,2,3,4,7,8,9-HpCDF	ND		5.0	0.038	pg/g		10/09/20 05:11	10/13/20 02:53	1
Total HpCDF	ND		5.0	0.038	pg/g		10/09/20 05:11	10/13/20 02:53	1
OCDF	0.807	J	10	0.12	pg/g		10/09/20 05:11	10/13/20 02:53	1
	MB	MB							

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	71	40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,7,8-PeCDD	61	40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,6,7,8-HxCDD	82	40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,4,6,7,8-HpCDD	70	40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-OCDD	68	40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-2,3,7,8-TCDF	76	40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,7,8-PeCDF	63	40 - 135	10/09/20 05:11	10/13/20 02:53	1
13C-1,2,3,4,7,8-HxCDF	83	40 - 135	10/09/20 05:11	10/13/20 02:53	1

Eurofins TestAmerica, Pittsburgh

Page 16 of 26

10

10/15/2020

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

MB MB

Lab Sample ID: MB 320-420127/1-A

Matrix: Solid

Analysis Batch: 421141

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 420127

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 10/09/20 05:11 10/13/20 02:53 13C-1,2,3,4,6,7,8-HpCDF 78 40 - 135

Lab Sample ID: LCS 320-420127/2-A

Matrix: Solid

Analysis Batch: 421141

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 420127

_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	21.7		pg/g		108	77 - 130	
1,2,3,7,8-PeCDD	100	104		pg/g		104	79 - 134	
1,2,3,4,7,8-HxCDD	100	112		pg/g		112	65 - 144	
1,2,3,6,7,8-HxCDD	100	108		pg/g		108	73 - 147	
1,2,3,7,8,9-HxCDD	100	107		pg/g		107	80 - 143	
1,2,3,4,6,7,8-HpCDD	100	108		pg/g		108	86 - 134	
OCDD	200	217		pg/g		108	80 - 137	
2,3,7,8-TCDF	20.0	23.3		pg/g		117	79 - 137	
1,2,3,7,8-PeCDF	100	109		pg/g		109	81 - 134	
2,3,4,7,8-PeCDF	100	107		pg/g		107	76 - 132	
1,2,3,4,7,8-HxCDF	100	115		pg/g		115	72 - 140	
1,2,3,6,7,8-HxCDF	100	103		pg/g		103	63 - 152	
2,3,4,6,7,8-HxCDF	100	120		pg/g		120	72 - 151	
1,2,3,7,8,9-HxCDF	100	127		pg/g		127	72 - 152	
1,2,3,4,6,7,8-HpCDF	100	106		pg/g		106	81 - 137	
1,2,3,4,7,8,9-HpCDF	100	109		pg/g		109	79 - 139	
OCDF	200	248		pg/g		124	75 - 141	

LCS LCS

Sample Sample

18.7

81.3

Result Qualifier

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	72		40 - 135
13C-1,2,3,7,8-PeCDD	64		40 - 135
13C-1,2,3,6,7,8-HxCDD	76		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	75		40 - 135
13C-OCDD	92		40 - 135
13C-2,3,7,8-TCDF	81		40 - 135
13C-1,2,3,7,8-PeCDF	70		40 - 135
13C-1,2,3,4,7,8-HxCDF	81		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	82		40 - 135

Method: 2540G - SM 2540G

Lab Sample ID: 180-111870-7 DU

Matrix: Solid

Percent Moisture

Percent Solids

Analyte

Analysis Batch: 332787

Client Sample	ID: BR500SS
Prep T	ype: Total/NA

RPD D RPD Limit 10 0.4 10

Eurofins TestAmerica, Pittsburgh

Page 17 of 26

DU DU

18.4

81.6

Result Qualifier

Unit

%

QC Sample Results

Client: Tetra Tech GEO Job ID: 180-111870-1

Project/Site: Grenada, Mississippi

Method: SM 2540G - Total, Fixed, and Volatile Solids

Lab Sample ID: 180-111870-7 DU **Client Sample ID: BR500SS Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 333108

Allalysis Datell. 333100									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Solids	81		 81.6		%			0.4	10

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111870-1

Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Prep B	atch:	333189
--------	-------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-7	BR500SS	Total/NA	Solid	3541	
180-111870-8	BR861SS	Total/NA	Solid	3541	
MB 180-333189/1-A	Method Blank	Total/NA	Solid	3541	
LCS 180-333189/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 333407

Lab Sample ID 180-111870-7	Client Sample ID BR500SS	Prep Type Total/NA	Matrix Solid	Method EPA 8270E	Prep Batch 333189
180-111870-8	BR861SS	Total/NA	Solid	EPA 8270E	333189
MB 180-333189/1-A	Method Blank	Total/NA	Solid	EPA 8270E	333189
LCS 180-333189/2-A	Lab Control Sample	Total/NA	Solid	EPA 8270E	333189

Specialty Organics

Prep Batch: 420127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-7 - RA	BR500SS	Total/NA	Solid	8290	
180-111870-7	BR500SS	Total/NA	Solid	8290	
180-111870-8 - RA	BR861SS	Total/NA	Solid	8290	
180-111870-8	BR861SS	Total/NA	Solid	8290	
MB 320-420127/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-420127/2-A	Lab Control Sample	Total/NA	Solid	8290	

Analysis Batch: 421141

Lab Sample ID 180-111870-7	Client Sample ID BR500SS	Prep Type Total/NA	Matrix Solid	Method 8290A	Prep Batch 420127
180-111870-8	BR861SS	Total/NA	Solid	8290A	420127
MB 320-420127/1-A	Method Blank	Total/NA	Solid	8290A	420127
LCS 320-420127/2-A	Lab Control Sample	Total/NA	Solid	8290A	420127

Analysis Batch: 421503

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-7 - RA	BR500SS	Total/NA	Solid	8290A	420127
180-111870-8 - RA	BR861SS	Total/NA	Solid	8290A	420127

General Chemistry

Analysis Batch: 332787

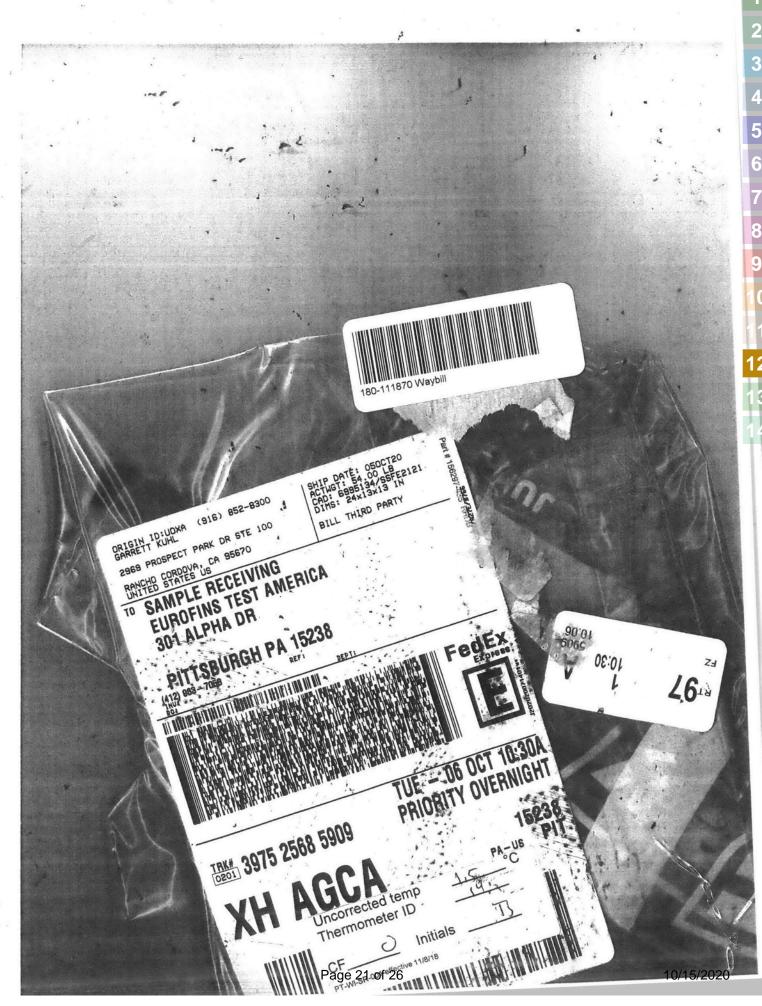
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-7	BR500SS	Total/NA	Solid	2540G	
180-111870-8	BR861SS	Total/NA	Solid	2540G	
180-111870-7 DU	BR500SS	Total/NA	Solid	2540G	

Analysis Batch: 333108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-7	BR500SS	Total/NA	Solid	SM 2540G	
180-111870-8	BR861SS	Total/NA	Solid	SM 2540G	
180-111870-7 DU	BR500SS	Total/NA	Solid	SM 2540G	

Eurofins TestAmerica, Pittsburgh

Page 19 of 26


5

Environment Testing TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica s eurofins Chain of Custody Record Other: RCRA NPDES MQ Regulatory Program: >> Select a Laboratory or Service Center << Deve RiDe SERSI Pol Servastrid

301 Alph-

#N/A

Form No. CA-C-WI-002, Rev. 4.34, dated 8/3/2020 6. KUMI Sample Specific Notes: COCs Hold Sample WEEK TAT Hold Sample TAT Hold Sample Hold sample WEEK TAT Hold Sample Hold Sample Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Sampler: A. Monum For Lab Use Only Week TALS Project #: 10/5/10 Walk-in Client: Lab Sampling: Job / SDG No. Therm ID No. Date/Time: Date/Time: Date/Time COC No: 2 180-111870 Chain of Custody Corr'd Company 765 Company Company Carrier: Date: Cooler Temp. (°C): Obs'd: Suctot N. S. Received in Laboratory by: Lab Contact: Veronica Email: Sena: Fee. Abrahams (Tetached Site Contact: Carrect Return to Client NNXX NAKE Received by: (EPA, 8290) NNXXX X X Z Z 8't 2 (t1 * * ZZ X X X XXZZ NNXX NNX (ot28 823) Filtered Sample (Y / N) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Abrahams # of Cont. 4 4 4 4 4 4 4 4 2 10/5/20 Date/Time: Date/Time: TAT if different from Below See nutes Date/Time: WORKING DAYS Model Matrix 50:1 50:1 50: 1:05 200 50:1 5051 50:1 **Analysis Turnaround Time** TellFax: 916-853-4526 Type (C=Comp, G=Grab) Sample 9 2 weeks 2 days 1 week 1 day tech 5480 0845 10/4/4 0940 Sample 10/4/10 1250 K CALENDAR DAYS 10/4/20 1438 10/4/20 1700 10/4/10 1655 2191 04/101 Time Preservation Used: (= Ice,) 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 10/4/40 1600 10/4/20114 Custody Seal No. Company: Company: Sample Date XX Phone 916-853-4526 95670 Project Name: Additional offissite Sounding Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample. 20 9 | Your Company Name here Tetta Tech City/State/Zip Reache Corder , CA, 2 monde Device Sample Identification Yes Client Contact 117.2201456A EPP Possible Hazard Identification BREPAZISS BR13355-EB Custody Seals Intact: 31231555 Standard BR 500 55 Gregado BR18955 322335 131835155 BR37355 BK86155 Relinquished by: Address 3101 Relinquished by: Relinquished by: xxx xxx (xxx) xxx xxx (xxx # O d #N/#

ooler Temperature(s) ²C and Other Remarks. 1,312.7

Received by:

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238		Chain	of Cus	tody F	Chain of Custody Record				🔆 eurofins	Environment Testung America
Phone: 412-963-7058 Fax: 412-963-2468				ŀ						
Client Information (Sub Contract Lab)	Sampler:			Bortot	Lab PM: Bortot, Veronica		Carrier Tracking No(s):		COC No: 180-414269.1	
Client Contact: Shipping/Receiving	Phone:			E-Mail: Veror	ail: onica.Bortot@	E-Mail: Veronica.Bortot@Eurofinset.com	State of Origin: Mississippi		Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditations R	Accreditations Required (See note):			Job #: 180-111870-1	
Address: 880 Riverside Parkway,	Due Date Requested: 10/12/2020	:pa				Analysis Requested	nested		Preservation Codes:	odes:
City. West Sacramento State, Zip.	TAT Requested (days):	ays):							A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	M - Hexane N - None O - AsNaO2 P - Na2O4S
CA, 95605 Phone: 048 372 4080/Env.	# Od								E - NaHSO4 F - MeOH G - Amchlor	0 - Na2S03 R - Na2S203 S - H2S04
	.#OM				(0			_	H - Ascorbic Acid I - Ice J - Di Water	
Project Name: Grenada, Mississippi	Project #: 18010096				N 10 St			tainera	K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				A) as			-	Other	
Cample Hamification Climb II at III	omeo Oster	Sample	Sample Type (C=comp,	Matrix (Wewster, Sesolld, Owwastefoll,	S besterfiltered S MISM mnotie 2 q 0628/A062			otal Number of	0	Consider I Institute (National Material
cample deministration - Oneill is (cas is)	No.	X	Preserva	Preservation Code:	X			X	Special	The state of the s
BR500SS (180-111870-7)	10/4/20	16:15		Solid	×			+		
BR861SS (180-111870-8)	10/4/20	17:00 Central		Solid	×			+		
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation is the State of Origin listed above for analysis/lests/maintx being analyzed, the samples must be shipped back to the Eurofins TestAmerica aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	stAmerica places the ownershi skmatrix being analyzed, the sa urrent to date, return the signed	p of method, a amples must b d Chain of Cus	nalyte & accre e shipped back tody attesting t	ditation compli- to the Eurofin o said complic	of method, analyte & accreditation compliance upon out subcontract late mpies must be shipped back to the Eurofins TestAmerica laboratory or o Chain of Custody attesting to said complicance to Eurofins TestAmerica	contract laboratories. This samp oratory or other instructions will be estAmerica.	e shipment is forwarded e provided. Any change	under chain-of-	custody. If the lab	oratory does not currently brought to Eurofins
Possible Hazard Identification					Sample D	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal BU Jah	assessed if sample	s are retaine	tained longer than	1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank:	2		Special In	Requirem	its:			
Empty Kit Relinquished by:		Date:			Time:		Method of Shipment:	ant:		
Refinquished by:	DateTime: 0 7 /2	2	1500	SOMPAN ST		ed by:	Date/Time	of the	shb	Company
Relinquished by:	Date/Time:			Company	Received by:	A pa	Date/Time	lime:		Company

quished by:

Custody Seal Nee

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Client Information (Sub Contract Lab)	Sampler			Lab PM. Bortot,	Lab PM: Bortot, Veronica	onica			Carrier Tracking No(s):	:(s)oN bu	0 +	COC No: 180-414269.1
Client Contact: Shipping/Receiving	Phone:			E-Mail: Veror	ill: nica.B	ortot@Eur	E-Mail: Veronica.Bortot@Eurofinset.com	-	State of Ongin Mississippi	2	à a	Page: Page 1 of 1
Company: TestAmerica Laboratories, Inc.					Accred	tations Requ	Accreditations Required (See note)	.(e			2, 7	Job #: 180-111870-2
Address: 880 Riverside Parkway,	Due Date Requested: 10/12/2020	:pe					Ani	alysis R	Analysis Requested		d	ode
City. West Sacramento State, 2p: CA. 95605	TAT Requested (days	ys):									< B O O W	A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - ASNaO2 D - Nifro Acid P - NaZOO4S E - NaHSO4 Q - NaZSO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	#Od				(sle					ш 0 3	3
Email:	WO#:					юТ.8					_	
Project Name. Grenada, Mississippi	Project #. 18010096					samers					_	
Site:	SSOW#:					ZI dəş						Other:
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (wwweer, Sepolid, Owwastelolf, RT-Though Anha)	Fleld Filtered S Perform MS/M	2_q_0658\A0658					Total Number	Special Instructions/Note:
	X	X		Preservation Code:							X	
BR233SS-EB (180-111870-9)	10/4/20	16:55		Water		×				L	2	
		Central										
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samp TestAmerica attention immediately. If all requested accreditations are current to date, return the signed CP	tAmerica places the ownership s/matrix being analyzed, the sar irrent to date, return the signed		shipped back shipped back ody attesting to	method, analyte & accreditation compliance upon out subcontract labs lies must be shipped back to the Eurofins TestAmerica laboratory or of win of Custody aftesting to said complicance to Eurofins TestAmerica.	TestAm	out subcont enca laborate irofins TestA	tract laborator ory or other in merica.	es. This sa	mple shipment is	forwarded und	ier chain-of-cu accreditation s	method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the faboratory does not currently les must be shipped back to the Eurofins TestAmerca laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins is no Custody attesting to said complicance to Eurofins TestAmerica.
Possible Hazard Identification					Sa	nple Disp	osal (A fe	e may b	assessed if	samples a	re retained	er than 1 mo
Uncontirmed						Return	Return To Client	1	Disposal By Lab	Lab	Archive For	Months

9.13SE Loidin インリヒノ Cooler Temperature(s) °C and Other Remarks: Received by. Custody Seals Intact. Custody Seal No.: Empty Kit Relinquished by: nquished by: quished by:

Sacramento Sample Receiving Notes

Environment Testing TestAmerica

Tracking #: 1689 5103 2815

SO / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

ile in the job folder with the COC.							
Therm. ID: 46 Corr. Factor:	(-)1-)	0.5	_°C	Notes:			_
Ice Wet Gel	Othe						-
Cooler Custody Seal: Seel							_
							-
Cooler ID:			-				
Temp Observed: 1.7 °C Correcte	ed.	2.2	°C				
Temp Observed: 1.7 0 Control	le D						
From: Temp Blank D Samp	7						-
							_
Opening/Processing The Shipment	Yes	No	NA				
Cooler compromised/tampered with?		B					
Cooler Temperature is acceptable?	D						_
Α.	ich.						-
Initials: Date: Co.	DIE						_
Unpacking/Labeling The Samples	Yes	No	NA				_
CoC is complete w/o discrepancies?							-
Samples compromised/tampered with?		Ø					
Sample containers have legible labels?		D					_
Sample custody seal?			0				
Containers are not broken or leaking?	D	D	D				
Sample date/times are provided?	0	D	D				
Appropriate containers are used?	0			Trizma Lot #(s):			-
Sample bottles are completely filled?	D		D				
Sample preservatives verified?	D		P				
Samples w/o discrepancies?	D		D			7	-
Zero headspace?*	D	D	D		V	M-	NIA
Alkalinity has no headspace?	D		D	Login Completion	Yes	No D	NA D
Perchlorate has headspace?	_	_	B	Receipt Temperature on COC? Samples received within hold time?	10	_	D
(Methods 314, 331, 6850)					_		-/
Multiphasic samples are not present?	0			NCM Filed?			B
*Containers requiring zero headspace have no headspace	e, or bubb	le < 6 m	m (1/4")	Log Release checked in TALS?	D	D	B
				Initials: Date: 10 08	120		
Initials: Date: 10 08	120			Initials: Date: 10 0 8	100	_	_

IITACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTVFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Client: Tetra Tech GEO Job Number: 180-111870-1

Login Number: 111870 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

QuestionAnswerCommentRadioactivity wasn't checked or is = background as measured by a survey meter.</td N/AThe cooler's custody seal, if present, is intact.TrueSample custody seals, if present, are intact.TrueThe cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?TrueThere are no discrepancies between the containers received and the COC.True
meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC?
Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC?
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC?
tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True
Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True
Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True
COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True
COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True
COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True
Is the Field Sampler's name present on COC?
·
There are no discrepancies between the containers received and the COC. True
Samples are received within Holding Time (excluding tests with immediate True HTs)
Sample containers have legible labels.
Containers are not broken or leaking.
Sample collection date/times are provided. True
Appropriate sample containers are used.
Sample bottles are completely filled. True
Sample Preservation Verified. True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").
Multiphasic samples are not present. True
Camples do not require enlitting or compositing
Samples do not require splitting or compositing. True

Client: Tetra Tech GEO Job Number: 180-111870-1

Login Number: 111870 List Source: Eurofins TestAmerica, Sacramento
List Number: 2 List Creation: 10/08/20 01:40 PM

Creator: Saephan, Kae C

oreator. Gaephan, Rae G		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 1.7c corr: 2.2c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Pittsburgh

Page 26 of 26

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238

Tel: (412)963-7058

Laboratory Job ID: 180-111870-2

Client Project/Site: Grenada, Mississippi

For:

Tetra Tech GEO 2969 Prospect Park Drive Suite 100 Rancho Cordova, California 95670

Attn: Ms. Jennifer Abrahams, P.G.

Veronica portot

Authorized for release by: 10/23/2020 11:15:56 AM

Veronica Bortot, Senior Project Manager (412)963-2435

Veronica.Bortot@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi Laboratory Job ID: 180-111870-2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	10
QC Sample Results	12
QC Association Summary	16
Chain of Custody	17
Field Data Sheets	23
Receipt Checklists	25

3

4

6

Q

9

11

12

1/

Case Narrative

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111870-2

Job ID: 180-111870-2

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-111870-2

Comments

No additional comments.

Receipt

The samples were received on 10/6/2020 9:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.5° C.

Receipt Exceptions

One out of two container labels for the following sample not match the information listed on the Chain-of-Custody (COC): BR351SS. The container labels list a sample id of BR3513SS, while the COC lists BR351SS. The id on the COC was used.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Definitions/Glossary

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Qualifiers

Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

7

8

10

11

13

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Arkansas DEQ	State	19-033-0	06-27-21	
California	State	2891	04-30-21	
Connecticut	State	PH-0688	09-30-20 *	
Florida	NELAP	E871008	06-30-21	
Georgia	State	PA 02-00416	04-30-21	
Illinois	NELAP	004375	06-30-21	
Kansas	NELAP	E-10350	01-31-21	
Kentucky (UST)	State	162013	04-30-21	
Kentucky (WW)	State	KY98043	12-31-20	
Louisiana	NELAP	04041	06-30-21	
Maine	State	PA00164	03-06-22	
Minnesota	NELAP	042-999-482	12-31-20	
Nevada	State	PA00164	07-31-21	
New Hampshire	NELAP	2030	04-05-21	
New Jersey	NELAP	PA005	06-30-21	
New York	NELAP	11182	04-01-21	
North Carolina (WW/SW)	State	434	01-01-21	
North Dakota	State	R-227	04-30-21	
Oregon	NELAP	PA-2151	02-06-21	
Pennsylvania	NELAP	02-00416	04-30-21	
Rhode Island	State	LAO00362	12-31-20	
South Carolina	State	89014	04-30-21	
Texas	NELAP	T104704528	03-31-21	
US Fish & Wildlife	US Federal Programs	058448	07-31-21	
USDA	Federal	P-Soil-01	06-26-22	
USDA	US Federal Programs	P330-16-00211	06-26-22	
Utah	NELAP	PA001462019-8	05-31-21	
Virginia	NELAP	10043	09-14-21	
West Virginia DEP	State	142	02-01-21	
Wisconsin	State	998027800	08-31-21	

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Alaska (UST)	State	17-020	01-20-21	
ANAB	Dept. of Defense ELAP	L2468	01-20-21	
ANAB	Dept. of Energy	L2468.01	01-20-21	
ANAB	ISO/IEC 17025	L2468	01-20-21	
Arizona	State	AZ0708	08-11-21	
Arkansas DEQ	State	88-0691	06-17-21	
California	State	2897	01-31-22	
Colorado	State	CA0004	08-31-21	
Connecticut	State	PH-0691	06-30-21	
Florida	NELAP	E87570	06-30-21	
Georgia	State	4040	01-30-21	
Hawaii	State	<cert no.=""></cert>	01-29-21	
Illinois	NELAP	200060	03-17-21	
Kansas	NELAP	E-10375	10-31-20	
Louisiana	NELAP	01944	06-30-21	
Maine	State	CA00004	04-14-22	
Michigan	State	9947	08-03-23	
Nevada	State	CA000442021-1	07-31-21	
New Hampshire	NELAP	2997	04-18-21	
New Jersey	NELAP	CA005	06-30-21	
New York	NELAP	11666	04-01-21	
Oregon	NELAP	4040	01-29-21	
Pennsylvania	NELAP	68-01272	03-31-21	
Texas	NELAP	T104704399-19-13	06-01-21	
US Fish & Wildlife	US Federal Programs	58448	07-31-21	
USDA	US Federal Programs	P330-18-00239	07-31-21	
Utah	NELAP	CA000442019-01	02-28-21	
Vermont	State	VT-4040	04-16-21	
Virginia	NELAP	460278	03-14-21	
Washington	State	C581	05-05-21	
West Virginia (DW)	State	9930C	12-31-20	
Wisconsin	State	998204680	08-31-21	
Wyoming	State Program	8TMS-L	01-28-19 *	

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111870-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-111870-9	BR233SS-EB	Water	10/04/20 16:55	10/06/20 09:00	

3

4

R

9

11

12

Method Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111870-2

Method	Method Description	Protocol	Laboratory
EPA 8270E	Semivolatile Organic Compounds (GC/MS)	SW846	TAL PIT
8290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
3520C	Liquid-Liquid Extraction (Continuous)	SW846	TAL PIT
8290	Separatory Funnel (Liquid-Liquid) Extraction of Dioxins and Furans	SW846	TAL SAC

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

4

5

7

8

10

11

13

Lab Chronicle

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Client Sample ID: BR233SS-EB Lab Sample ID: 180-111870-9

Date Collected: 10/04/20 16:55 Matrix: Water

Date Received: 10/06/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3520C			270 mL	2.5 mL	332720	10/08/20 10:44	BJT	TAL PIT
Total/NA	Analysis	EPA 8270E		1	1 mL	1 mL	333370	10/14/20 18:44	VVP	TAL PIT
	Instrumer	t ID: CH732								
Total/NA	Prep	8290			1026.6 mL	20 uL	420196	10/09/20 09:46	RDR	TAL SAC
Total/NA	Analysis	8290A		1			423518	10/20/20 06:46	AS	TAL SAC
	Instrumer	t ID: 10D5								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058
TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Analyst References:

Lab: TAL PIT

Batch Type: Prep
BJT = Bill Trout
Batch Type: Analysis

VVP = Vincent Piccolino

Lab: TAL SAC

Batch Type: Prep RDR = Robert Royce

Batch Type: Analysis
AS = Ajay Sharda

_ [

__

7

0

10

12

13

Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: BR233SS-EB

Lab Sample ID: 180-111870-9

Date Collected: 10/04/20 16:55 **Matrix: Water** Date Received: 10/06/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.8	0.60	ug/L		10/08/20 10:44	10/14/20 18:44	1
Acenaphthylene	ND		1.8	0.60	ug/L		10/08/20 10:44	10/14/20 18:44	1
Anthracene	ND		1.8	0.45	ug/L		10/08/20 10:44	10/14/20 18:44	1
Benzo[a]anthracene	ND		1.8	0.69	ug/L		10/08/20 10:44	10/14/20 18:44	1
Benzo[b]fluoranthene	ND		1.8	0.90	ug/L		10/08/20 10:44	10/14/20 18:44	1
Benzo[k]fluoranthene	ND		1.8	0.81	ug/L		10/08/20 10:44	10/14/20 18:44	1
Benzo[g,h,i]perylene	ND		1.8	0.64	ug/L		10/08/20 10:44	10/14/20 18:44	1
Benzo[a]pyrene	ND		1.8	0.49	ug/L		10/08/20 10:44	10/14/20 18:44	1
Chrysene	ND		1.8	0.75	ug/L		10/08/20 10:44	10/14/20 18:44	1
Dibenz(a,h)anthracene	ND		1.8	0.67	ug/L		10/08/20 10:44	10/14/20 18:44	1
Fluoranthene	ND		1.8	0.56	ug/L		10/08/20 10:44	10/14/20 18:44	1
Fluorene	ND		1.8	0.64	ug/L		10/08/20 10:44	10/14/20 18:44	1
Indeno[1,2,3-cd]pyrene	ND		1.8	0.79	ug/L		10/08/20 10:44	10/14/20 18:44	1
Naphthalene	ND		1.8	0.55	ug/L		10/08/20 10:44	10/14/20 18:44	1
Phenanthrene	ND		1.8	0.51	ug/L		10/08/20 10:44	10/14/20 18:44	1
Pyrene	ND		1.8	0.50	ug/L		10/08/20 10:44	10/14/20 18:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	96		44 - 105				10/08/20 10:44	10/14/20 18:44	1
2-Fluorophenol (Surr)	90		38 - 105				10/08/20 10:44	10/14/20 18:44	1
2,4,6-Tribromophenol (Surr)	108		38 - 111				10/08/20 10:44	10/14/20 18:44	1
Nitrobenzene-d5 (Surr)	92		45 - 108				10/08/20 10:44	10/14/20 18:44	1
Phenol-d5 (Surr)	94		40 - 105				10/08/20 10:44	10/14/20 18:44	1
Terphenyl-d14 (Surr)	95		20 - 128				10/08/20 10:44	10/14/20 18:44	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		9.7	1.1	pg/L		10/09/20 09:46	10/20/20 06:46	1
Total TCDD	ND		9.7	1.1	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,7,8-PeCDD	ND		49	1.9	pg/L		10/09/20 09:46	10/20/20 06:46	1
Total PeCDD	ND		49	1.9	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,4,7,8-HxCDD	ND		49	1.8	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,6,7,8-HxCDD	ND		49	1.6	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,7,8,9-HxCDD	ND		49	1.5	pg/L		10/09/20 09:46	10/20/20 06:46	1
Total HxCDD	ND		49	1.8	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,4,6,7,8-HpCDD	ND		49	1.9	pg/L		10/09/20 09:46	10/20/20 06:46	1
Total HpCDD	ND		49	1.9	pg/L		10/09/20 09:46	10/20/20 06:46	1
OCDD	35	JB	97	1.8	pg/L		10/09/20 09:46	10/20/20 06:46	1
2,3,7,8-TCDF	ND		9.7	0.65	pg/L		10/09/20 09:46	10/20/20 06:46	1
Total TCDF	ND		9.7	0.65	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,7,8-PeCDF	ND		49	1.1	pg/L		10/09/20 09:46	10/20/20 06:46	1
2,3,4,7,8-PeCDF	ND		49	1.2	pg/L		10/09/20 09:46	10/20/20 06:46	1
Total PeCDF	ND		49	1.2	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,4,7,8-HxCDF	ND		49	1.2	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,6,7,8-HxCDF	ND		49	1.1	pg/L		10/09/20 09:46	10/20/20 06:46	1
2,3,4,6,7,8-HxCDF	ND		49	1.2	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,7,8,9-HxCDF	ND		49	1.3	pg/L		10/09/20 09:46	10/20/20 06:46	1
Total HxCDF	ND		49	1.3	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,4,6,7,8-HpCDF	ND		49	0.58	pg/L		10/09/20 09:46	10/20/20 06:46	1
1,2,3,4,7,8,9-HpCDF	ND		49	0.66	pg/L		10/09/20 09:46	10/20/20 06:46	1

Eurofins TestAmerica, Pittsburgh

Page 10 of 27

10/23/2020

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Client Sample ID: BR233SS-EB

Lab Sample ID: 180-111870-9

Date Collected: 10/04/20 16:55 **Matrix: Water** Date Received: 10/06/20 09:00

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDF	MD		49	0.66	pg/L		10/09/20 09:46	10/20/20 06:46	1
OCDF	ND		97	1.0	pg/L		10/09/20 09:46	10/20/20 06:46	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	89		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-1,2,3,7,8-PeCDD	87		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-1,2,3,6,7,8-HxCDD	88		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-1,2,3,4,6,7,8-HpCDD	82		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-OCDD	82		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-2,3,7,8-TCDF	102		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-1,2,3,7,8-PeCDF	94		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-1,2,3,4,7,8-HxCDF	111		40 - 135				10/09/20 09:46	10/20/20 06:46	1
13C-1,2,3,4,6,7,8-HpCDF	92		40 - 135				10/09/20 09:46	10/20/20 06:46	1

Client: Tetra Tech GEO

Job ID: 180-111870-2 Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 180-332720/1-A **Matrix: Water**

Analysis Batch: 333370

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 332720

•								•	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1.9	0.65	ug/L		10/08/20 10:30	10/14/20 11:37	1
Acenaphthylene	ND		1.9	0.65	ug/L		10/08/20 10:30	10/14/20 11:37	1
Anthracene	ND		1.9	0.49	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[a]anthracene	ND		1.9	0.75	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[b]fluoranthene	ND		1.9	0.97	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[k]fluoranthene	ND		1.9	0.88	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[g,h,i]perylene	ND		1.9	0.69	ug/L		10/08/20 10:30	10/14/20 11:37	1
Benzo[a]pyrene	ND		1.9	0.53	ug/L		10/08/20 10:30	10/14/20 11:37	1
Chrysene	ND		1.9	0.81	ug/L		10/08/20 10:30	10/14/20 11:37	1
Dibenz(a,h)anthracene	ND		1.9	0.72	ug/L		10/08/20 10:30	10/14/20 11:37	1
Fluoranthene	ND		1.9	0.60	ug/L		10/08/20 10:30	10/14/20 11:37	1
Fluorene	ND		1.9	0.69	ug/L		10/08/20 10:30	10/14/20 11:37	1
Indeno[1,2,3-cd]pyrene	ND		1.9	0.85	ug/L		10/08/20 10:30	10/14/20 11:37	1
Naphthalene	ND		1.9	0.59	ug/L		10/08/20 10:30	10/14/20 11:37	1
Phenanthrene	ND		1.9	0.55	ug/L		10/08/20 10:30	10/14/20 11:37	1
Pyrene	ND		1.9	0.54	ug/L		10/08/20 10:30	10/14/20 11:37	1

	IVIB	IVIB					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl	70		44 - 105	10/08/20 10:30	10/14/20 11:37	1	
2-Fluorophenol (Surr)	69		38 - 105	10/08/20 10:30	10/14/20 11:37	1	
2,4,6-Tribromophenol (Surr)	68		38 - 111	10/08/20 10:30	10/14/20 11:37	1	
Nitrobenzene-d5 (Surr)	68		45 - 108	10/08/20 10:30	10/14/20 11:37	1	
Phenol-d5 (Surr)	73		40 - 105	10/08/20 10:30	10/14/20 11:37	1	
Terphenyl-d14 (Surr)	72		20 - 128	10/08/20 10:30	10/14/20 11:37	1	

Lab Sample ID: LCS 180-332720/2-A

Matrix: Water

Analysis Batch: 333370

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 332720

Alialysis Batch. 333370	Smiles	1.00	1.00				% Page
	Spike		LCS		_	~-	%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	200	144		ug/L		72	51 - 100
Acenaphthylene	200	148		ug/L		74	47 - 100
Anthracene	200	159		ug/L		80	51 - 100
Benzo[a]anthracene	200	153		ug/L		76	49 - 100
Benzo[b]fluoranthene	200	153		ug/L		77	47 - 100
Benzo[k]fluoranthene	200	144		ug/L		72	47 - 100
Benzo[g,h,i]perylene	200	158		ug/L		79	50 - 100
Benzo[a]pyrene	200	153		ug/L		76	49 - 100
Chrysene	200	156		ug/L		78	49 - 100
Dibenz(a,h)anthracene	200	160		ug/L		80	50 - 100
Fluoranthene	200	164		ug/L		82	52 - 100
Fluorene	200	143		ug/L		72	52 - 100
Indeno[1,2,3-cd]pyrene	200	159		ug/L		80	51 - 100
Naphthalene	200	140		ug/L		70	53 - 100
Phenanthrene	200	152		ug/L		76	49 - 100
Pyrene	200	157		ug/L		79	45 - 100

Eurofins TestAmerica, Pittsburgh

Page 12 of 27

10/23/2020

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-332720/2-A

Matrix: Water

Analysis Batch: 333370

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 332720

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	70		44 - 105
2-Fluorophenol (Surr)	76		38 - 105
2,4,6-Tribromophenol (Surr)	87		38 - 111
Nitrobenzene-d5 (Surr)	70		45 - 108
Phenol-d5 (Surr)	79		40 - 105
Terphenyl-d14 (Surr)	78		20 - 128

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-420196/1-A

Matrix: Water

Analysis Batch: 423518

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 420196

MB MB Result Qualifier RL **EDL Unit** Prepared Analyzed Dil Fac Analyte 2,3,7,8-TCDD ND 10 0.90 10/09/20 09:46 10/20/20 03:01 pg/L 10/09/20 09:46 10/20/20 03:01 Total TCDD ND 10 0.90 pg/L 1,2,3,7,8-PeCDD ND 50 1.1 10/09/20 09:46 10/20/20 03:01 pg/L 10/09/20 09:46 10/20/20 03:01 Total PeCDD ND 50 1.1 pg/L 1,2,3,4,7,8-HxCDD 1.84 50 0.98 10/09/20 09:46 10/20/20 03:01 pg/L ND 50 10/09/20 09:46 10/20/20 03:01 1,2,3,6,7,8-HxCDD 88.0 pg/L 1,2,3,7,8,9-HxCDD ND 50 0.82 pg/L 10/09/20 09:46 10/20/20 03:01 Total HxCDD 1.84 J 50 10/09/20 09:46 10/20/20 03:01 0.89 pg/L 1,2,3,4,6,7,8-HpCDD ND 50 1.4 pg/L 10/09/20 09:46 10/20/20 03:01 Total HpCDD ND 50 1.4 10/09/20 09:46 10/20/20 03:01 pg/L OCDD 100 10/09/20 09:46 10/20/20 03:01 18.4 J 1.5 pg/L 2,3,7,8-TCDF ND 10 0.64 pg/L 10/09/20 09:46 10/20/20 03:01 Total TCDF ND 10 0.64 pg/L 10/09/20 09:46 10/20/20 03:01 1,2,3,7,8-PeCDF ND 50 0.65 pg/L 10/09/20 09:46 10/20/20 03:01 ND 50 10/09/20 09:46 10/20/20 03:01 2,3,4,7,8-PeCDF 0.67 pg/L 0.73 pg/L Total PeCDF ND 50 10/09/20 09:46 10/20/20 03:01 ND 50 10/09/20 09:46 10/20/20 03:01 1,2,3,4,7,8-HxCDF 0.86 pg/L 1,2,3,6,7,8-HxCDF ND 50 0.80 pg/L 10/09/20 09:46 10/20/20 03:01 10/09/20 09:46 10/20/20 03:01 ND 50 2,3,4,6,7,8-HxCDF 0.83 pg/L 1,2,3,7,8,9-HxCDF ND 50 0.88 pg/L 10/09/20 09:46 10/20/20 03:01 pg/L Total HxCDF ND 50 0.88 10/09/20 09:46 10/20/20 03:01 50 1,2,3,4,6,7,8-HpCDF ND 0.44 pg/L 10/09/20 09:46 10/20/20 03:01 1,2,3,4,7,8,9-HpCDF ND 50 0.51 pg/L 10/09/20 09:46 10/20/20 03:01 ND Total HpCDF 50 0.51 pg/L 10/09/20 09:46 10/20/20 03:01 OCDF 10/09/20 09:46 10/20/20 03:01 ND 100 1.0 pg/L

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	93	40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,7,8-PeCDD	94	40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,6,7,8-HxCDD	91	40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,4,6,7,8-HpCDD	86	40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-OCDD	91	40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-2,3,7,8-TCDF	110	40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,7,8-PeCDF	102	40 - 135	10/09/20 09:46	10/20/20 03:01	1
13C-1,2,3,4,7,8-HxCDF	115	40 - 135	10/09/20 09:46	10/20/20 03:01	1

Eurofins TestAmerica, Pittsburgh

Page 13 of 27

10

10/23/2020

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-420196/1-A

Matrix: Water

Analysis Batch: 423518

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 420196

MB MB

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-1,2,3,4,6,7,8-HpCDF 95 40 - 135 10/09/20 09:46 10/20/20 03:01

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 320-420196/2-A **Matrix: Water** Prep Type: Total/NA **Prep Batch: 420196**

Analysis Batch: 423518

Spike LCS LCS %Rec. Added Result Qualifier D %Rec Limits **Analyte** Unit 200 2,3,7,8-TCDD 216 pg/L 108 64 - 142 1000 1050 1,2,3,7,8-PeCDD pg/L 105 71 - 140 1000 1180 118 1,2,3,4,7,8-HxCDD pg/L 56 - 146pg/L 1,2,3,6,7,8-HxCDD 1000 1170 117 73 - 144 1,2,3,7,8,9-HxCDD 1000 1160 pg/L 116 71 - 151 1,2,3,4,6,7,8-HpCDD 1000 1110 pg/L 111 78 - 139 OCDD 2000 2080 pg/L 104 80 - 1322,3,7,8-TCDF 200 215 pg/L 107 71 - 142 1000 76 - 135 1,2,3,7,8-PeCDF 1120 pg/L 112 2,3,4,7,8-PeCDF 1000 1130 pg/L 113 74 - 137 1000 1130 1,2,3,4,7,8-HxCDF pg/L 113 75 - 131 1,2,3,6,7,8-HxCDF 1000 1070 pg/L 107 76 - 133 2,3,4,6,7,8-HxCDF 1000 1140 pg/L 114 80 - 137 1,2,3,7,8,9-HxCDF 1000 1100 pg/L 110 77 - 142 1,2,3,4,6,7,8-HpCDF 1000 1100 pg/L 110 79 - 133 1,2,3,4,7,8,9-HpCDF 1000 1070 107 83 - 130 pg/L **OCDF** 2000 2120 pg/L 106 72 - 140

LCS LCS Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 89 40 - 135 13C-1,2,3,7,8-PeCDD 89 40 - 135 83 13C-1,2,3,6,7,8-HxCDD 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 76 40 - 135 13C-OCDD 81 40 - 135 13C-2,3,7,8-TCDF 103 40 - 135 13C-1,2,3,7,8-PeCDF 98 40 - 135

106

87

Lab Sample ID: LCSD 320-420196/3-A

Matrix: Water

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDF

Analysis Batch: 423518

Client Sample ID: Lab	Control	Sample Dup
	Prep Ty	pe: Total/NA

Prep Batch: 420196

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	200	221		pg/L		111	64 - 142	2	20
1,2,3,7,8-PeCDD	1000	1050		pg/L		105	71 - 140	1	20
1,2,3,4,7,8-HxCDD	1000	1200		pg/L		120	56 - 146	2	20
1,2,3,6,7,8-HxCDD	1000	1150		pg/L		115	73 - 144	2	20
1,2,3,7,8,9-HxCDD	1000	1120		pg/L		112	71 - 151	4	20
1,2,3,4,6,7,8-HpCDD	1000	1070		pg/L		107	78 - 139	3	20
OCDD	2000	2040		pg/L		102	80 - 132	2	20
2,3,7,8-TCDF	200	218		pg/L		109	71 - 142	1	20

LCCD LCCD

40 - 135

40 - 135

Child

Eurofins TestAmerica, Pittsburgh

10/23/2020

Page 14 of 27

QC Sample Results

Client: Tetra Tech GEO Job ID: 180-111870-2

Project/Site: Grenada, Mississippi

Lab Sample ID: LCSD 320-420196/3-A

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Water

Analysis Batch: 423518

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 420196**

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,2,3,7,8-PeCDF	1000	1130		pg/L		113	76 - 135	1	20	
2,3,4,7,8-PeCDF	1000	1140		pg/L		114	74 - 137	1	20	
1,2,3,4,7,8-HxCDF	1000	1130		pg/L		113	75 - 131	0	20	
1,2,3,6,7,8-HxCDF	1000	1070		pg/L		107	76 - 133	0	20	
2,3,4,6,7,8-HxCDF	1000	1120		pg/L		112	80 - 137	2	20	
1,2,3,7,8,9-HxCDF	1000	1070		pg/L		107	77 - 142	3	20	
1,2,3,4,6,7,8-HpCDF	1000	1080		pg/L		108	79 - 133	1	20	
1,2,3,4,7,8,9-HpCDF	1000	1050		pg/L		105	83 - 130	2	20	
OCDF	2000	2140		pg/L		107	72 - 140	1	20	

•	CSD	100	n

	LUSD	LUSD	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	89		40 - 135
13C-1,2,3,7,8-PeCDD	88		40 - 135
13C-1,2,3,6,7,8-HxCDD	88		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	80		40 - 135
13C-OCDD	81		40 - 135
13C-2,3,7,8-TCDF	103		40 - 135
13C-1,2,3,7,8-PeCDF	97		40 - 135
13C-1,2,3,4,7,8-HxCDF	111		40 - 135
13C-1.2.3.4.6.7.8-HpCDF	90		40 - 135

QC Association Summary

Client: Tetra Tech GEO

Job ID: 180-111870-2 Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Pre	n Ba	itch:	332	720

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-9	BR233SS-EB	Total/NA	Water	3520C	
MB 180-332720/1-A	Method Blank	Total/NA	Water	3520C	
LCS 180-332720/2-A	Lab Control Sample	Total/NA	Water	3520C	

Analysis Batch: 333370

Lab Sample ID 180-111870-9	Client Sample ID BR233SS-EB	Prep Type Total/NA	Matrix Water	Method EPA 8270E	Prep Batch 332720
MB 180-332720/1-A	Method Blank	Total/NA	Water	EPA 8270E	332720
LCS 180-332720/2-A	Lab Control Sample	Total/NA	Water	EPA 8270E	332720

Specialty Organics

Prep Batch: 420196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-9	BR233SS-EB	Total/NA	Water	8290	
MB 320-420196/1-A	Method Blank	Total/NA	Water	8290	
LCS 320-420196/2-A	Lab Control Sample	Total/NA	Water	8290	
LCSD 320-420196/3-A	Lab Control Sample Dup	Total/NA	Water	8290	

Analysis Batch: 423518

Lab Sample ID 180-111870-9	Client Sample ID BR233SS-EB	Prep Type Total/NA	Matrix Water	Method 8290A	Prep Batch 420196
MB 320-420196/1-A	Method Blank	Total/NA	Water	8290A	420196
LCS 320-420196/2-A	Lab Control Sample	Total/NA	Water	8290A	420196
LCSD 320-420196/3-A	Lab Control Sample Dup	Total/NA	Water	8290A	420196

Date/Time:

Company:

Date/Time:

Company:

Received in Laboratory by:

Date/Time:

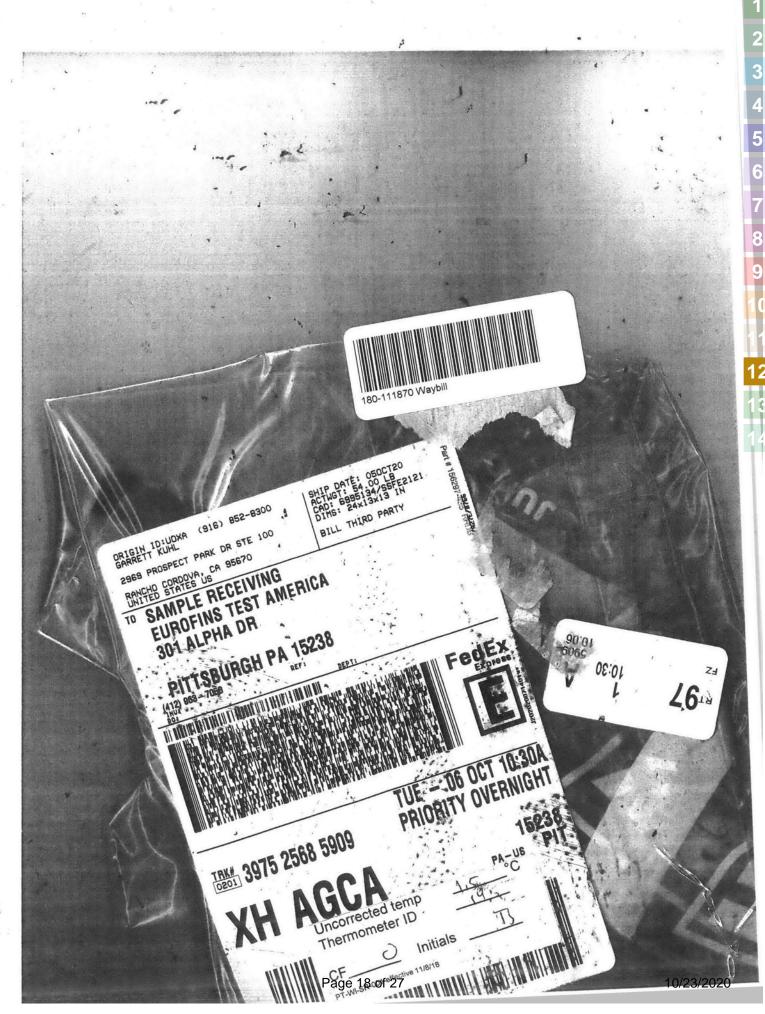
Company:

Received by:

Date/Time:

Company:

Custody Seals Intact: Relinquished by:


Therm ID No.

Corr'd:

Cooler Temp. (°C): Obs'd:

>> Select a Laboratory or Service Center <<			Cha	in of	Chain of Custody Record	ecord			💸 eurofins
#NIA Sol Alpu- Deve Rive Pret #NIA postsolat. Pa 15230									Environment Testing America
MANA CO ANN H	Regulatory Program:		N M	NPDES	RCRA Other:			estAmerica Labor	TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica
	Project Manager: Sennifer	naifer	Abrahams	1					COC No:
Client Contact	Email: Jenn: Fer. Abrahams @ Tetrated	braham	To Tetra		Site Contact: Garret	Kynı	Date:		2 of 7 cocs
Your Company Name here Teta Tech	Tel/Fax: 916-853	1-4526			Lab Contact: Veronica	Bucket	Carrier:		TALS Project #: 12
adel Devie	Analysis Ti	Analysis Turnaround Time	lime						Sampler. A. Jonna (6. Kole)
Jametro Corder	X CALENDAR DAYS	WOR	WORKING DAYS						se Ohly:
Phone all	TAT if different from Below See	om Below 5.	e notes		8 b 1/0 2/0				Walk-in Client:
FAX	×	2 weeks		(N			-	-	Lab Sampling:
せ		1 week		-	00				
0		2 days		-	3) EW/S			_	Job / SDG No.:
14.5.00000		Sample	ŀ	_	٤'				
Sample Identification	Sample Sample Date Time	Type (C=Comp, G=Grab)	Matrix C	Cont. Filtered	mone9				Sample Specific Notes:
BREPALISS	Sh80 02/1/01)	> 1105	7	NXX KOOD			stody	Hold Sample
	10/4/4 0940	7	۶۰۱ /	2 NN	NXX			of Cu	Hold Sample
	1014/20114	7	1:05	2 N	AN XXV			nish	Hold sample
3	10/4/20 1250)	50:1	1 NN	XX			0 02	Hold Sample
	10/4/20 1438	J		2	SXX XX			8111	Hold Sample
	10/4/20 1600	٦		2	NXX AND			-081	Hold Sample
	10/4/20 1615	7		7	N X X				I WEEK TAT
	10/4/20 1700	S	50:1	N	×××				I WEEK TAT
BK 13355-EB	10/4/10/1655	9	Model .	2	NXX				2 week TAT
No I									
akpola /1)			1	7					
10/2/10								1	
Preservation Used: (= Ice.)2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	5=NaOH; 6= Other								
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste	Codes for the sample in the	he sample	in the	Sample Disposal (A	ree may be	assessed if sar	nples are retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B	Unknown	wn		Return to Client	X	X Disposal by Lab	Archive for	Months
s/O									
Standard EDD									

Relinquished by: Relinquished by:

Chain of Custody Record

Phone: 412-963-7058 Fax: 412-963-2468										
Client Information (Sub Contract Lab)	Sampler:			Lab PM Bortot,	Lab PM: Bortot, Veronica	Ca	Carrier Tracking No(s):	No(s):	COC No: 180-414269.1	
Client Conlact: Shipping/Receiving	Phone.			E-Mail: Veron	onica.Bort	E-Mail: Veronica.Bortot@Eurofinset.com	State of Origin: Mississippi		Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditati	Accreditations Required (See note):			Job #: 180-111870-1	
Address: 880 Riverside Parkway,	Due Date Requested 10/12/2020	ted:				Analysi	Analysis Requested		Preservation Codes:	e e
City: West Sacramento	TAT Requested (days):	lays):							B - NaOH C - Zn Acetate	
State, Zip: CA, 95605									D - Nitric Acid E - NaHSO4	P. Na204S O - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	# Od					SIEIG			G - Amehlor	
	#OM				(0))] /M S				
Project Name: Grenada, Mississippi	Project #: 18010096				32 OL N	Jawosi			tainer L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				A) as	Li xos			of con	
Sample (dentification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=crab)	Matrix (Wewster, Sesolid, Orwastefoll,	Field Filtered S Perform MS/M:	S d 0628/Y0628			Total Number o	Special Instructions/Note:
	X	1	Preserva	Preservation Code:	X					V
BR500SS (180-111870-7)	10/4/20	16:15 Central		Solid		×			-	
BR861SS (180-111870-8)	10/4/20	17:00		Solid		×			+	
Note: Since laboratory accreditations are subject to change. Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain an interest a booke for analysis/lesss/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica alteritorism mide State. Any changes to accreditation status should be brought to Eurofins TestAmerica.	stAmerica places the ownersh ts/matrix being analyzed, the surrent to date, return the signe	lip of method, all amples must be d Chain of Cust	halyte & accre	ditation complia	ince upon ou TestAmeric	ut subcontract laboratories. The laboratory or other instruction fins TestAmerica.	is sample shipment is for ms will be provided. Any in	warded under cha	in-of-custody. If the lab	oratory does not currently brought to Eurofins
Possible Hazard Identification					Samp	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	y be assessed if sa	mples are ret	ained longer than	1 month)
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank:			Speci	Special Instructions/QC Requirements	irements:]	Archive For	Months
Empty Kit Relinquished by;		Date:			Time:		Method of Shipment	Shipment:		
Relinquished by:	DateTime:	2 15	07.51	Company of		Received by:		Date/Time:	shb "	Company
Relinquished by:	Date/Time:			Company		Received by:		Date/Time:		Company
Relinquished by:	Date/Time:			Company	œ.	Received by:		Date/Time:		Сотралу
Out of the County of the Count					-	Charles of the state of the state of	William Physicalism			

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park

0 Dr 3	Sampler			Lab PM;	Carrier Co.	Carrier Tracking No(s)		
Client Information (Sub Contract Lab)				Bortot,	Bortot, Veronica			69.1
Client Contact: Shipping/Receiving	Phone:			E-Mail: Veroni	E-Mail: Veronica.Bortot@Eurofinset.com	State of Origin Mississippi	Page. Page 1 of 1	H
Company: TestAmerica Laboratories, Inc.				A	Accreditations Required (See note)		Job#: 180-111870-2	70-2
Address: 880 Riverside Parkway.	Due Date Requested: 10/12/2020	:pa		Ē	An	Analysis Requested	Preservati	8
Ony. West Sacramento State, Zip. CA, 95605	TAT Requested (days):	ays):					A - HCL B - NaOH C - Zn Acetate D - Mitra Acid E - NaHSO4	
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	# Od						F - MeOH G - Amchlor	R - Na2S203 S - H2S04 T - TSD Dodecabuterate
	WO#:			ON 10	(0)			
Project Name: Grenada, Mississippi	Project #: 18010096			SBX) 6	10 SE			W - pH 4-5 Z - other (specify)
Site:	**************************************			ilamei	A) as		of con	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (wewater, seed of Separate, Comusaterial, Comusaterial)	SMSM moheq 2_q_0ess\Aoess		Total Number o	Special Instructions/Note:
	\ \ \	X	- cm	_	X			
BR233SS-EB (180-111870-9)	10/4/20	16:55 Central		Water	×		2	
Note: Since laboratory accrediations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica attention will be provided. Any changes to accreditation status should be brought to Eurofins. TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	Vamerica places the ownership Imatrix being analyzed, the se ment to date, return the signed	o of method, an imples must be Chain of Custr	alyte & accredion shipped back lody attesting to	Lation compliance to the Eurofins Te said complicance	of method, analyte & accreditation compliance upon out subcontract laborator mples must be shipped back to the Eurofins TestAmenca laboratory or other in Chain of Custody attesting to said complicance to Eurofins TestAmenica.	les. This sample shipment is for istructions will be provided. Any	orwarded under cham-of-custody. If they changes to accreditation status shot	he laboratory does not currently uid be brought to Eurofins
Possible Hazard Identification					Sample Disposal (A fe	se may be assessed if s	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	than 1 month)
Unconfirmed					Return To Client	Disposal By Lab	ab Archive For	Months
Deliverable Requested: I. II, III, IV, Other (specify)	Primary Delivera	ble Rank: 2			Special Instructions/QC Requirements	Requirements:		
Empty Kit Relinquished by:		Date:			Time:	Method o	Method of Shipment:	
Reinquished by:	Date/Time:	20	200	Company Comp. A	Received by:		Date/Time: 948	Company
Relinquished by:	Date/Time:		0	Сотралу	Received by:		Date/Time:	Company
Relinquished by:	Date/Time:		0	Company	Received by:		Date/Time:	Company
Custody Seals Intact: Custody Seal No.:					Cooler Temperature(s) °C and Other Remarks:	and Other Remarks:	4.116	
								Ver. 01/16/2019

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468

FIIGHE, 412-303-7030 FAX, 412-303-2400										
Client Information (Sub Contract Lab)	Sampler			Lab PM Bortot	Lab PM: Bortot, Veronica	gg.	Carrier Tracking No(s)	ing No(s)	COC No. 180-415722.	
Client Contact: Shipping/Receiving	Phone			E-Mail: Veron	il: onica.Borto	E-Mail: Veronica.Bortot@Eurofinset.com	State of Origin Mississippi		Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditatio	Accreditations Required (See note):			Job#:	3
Address 880 Riverside Parkway,	Due Date Requested: 10/23/2020	;pe				Analy	Analysis Requested		Preservation Codes	Codes:
City. West Sacramento State, Zp.	TAT Requested (days	ays):							A - HCL B - NaOH C - Zn Acetate D - Nitrio Acid E - NaHSO4	M - Hexane N - None O - AsNaO2 P - Na2O4S O - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	# Od								F - MeOH G - Amchlor H - Assorbic Acid	
1	#OM				(0)					
Project Name: Grenada, Mississippi	Project #: 18010096				1 10 29				K-EDTA	W - pH 4-5 Z - other (specify)
Site	:#MOSS				A) as				oo too	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (Wwwater, Swolid, Owesterfall, BTUTissue, AnAlr)	Field Filtered S Perform MS/M: 8290A/8290_P_S				TedmuM letoT	Special Instructions/Note:
	X	X	1 00	Preservation Code:	X					
BREPA21SS (180-111870-1)	10/4/20	08:45 Central		Solid	×				+	
BR373SS (180-111870-2)	10/4/20	09:40 Central		Solid	×				4 -	
BR351SS (180-111870-3)	10/4/20	11:14 Central		Solid	×				F	
BR315SS (180-111870-4)	10/4/20	12:50 Central		Solid	×				-	
BR289SS (180-111870-5)	10/4/20	14:38 Central		Solid	×				1	
BR233SS (180-111870-6)	10/4/20	16:00 Central		Solid	×				+	
Note. Since laboratory accreditations are subject to change, Eurofins TestAmerca places the ownership of method, analyte & accreditation compliance upon out subcontact laboratory or or maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerca laboratory or or TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica	stAmenca places the ownershi is/matrix being analyzed, the si urent to date, return the signe	p of method, a amples must b	nalyte & accred e shipped back tody attesting to	tation complia to the Eurofins said complica	nce upon out TestAmerica	subcontract laboratories l'aboratory or other instru ns TestAmerica.	This sample shipment is actions will be provided. A	forwarded unde	method, analyte & accreditation compilance upon out subcontract laboratores. This sample shipment is forwarded under chain-of-custody. If the laboratory does not curles must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins ain of Custody attesting to said complicance to Eurofins TestAmerica.	method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently les must be shipped back to the Eurofins TestAmenca laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins ain of Custody attesting to said complicance to Eurofins TestAmerica.
Possible Hazard Identification					Samp	le Disposal (A fee Beturn To Client	may be assessed if sam	samples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mon	1 1 month) Months
Deliverable Requested: I. II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank:	2		Specia	Special Instructions/QC Requirements:	equirements:		5	
Empty Kit Relinqu/shed-by:		Date:		1	Time:		Method	Method of Shipment:		
Reinquisted by	DateTimber	His	0	Shallen	Rec X	John College	7	bate Time	4. PO 04.	5 Company SAC
Relinquished by	Date/Time:/			Company	ag.	Received by:		Daty Time:		Company
Reimquished by	Date/Time:			Сотрапу	Re	Received by.		Date/Time:		Company

Custody Seal No.

Custody Seals Intact:
A Yes A No

Please notify your PM immediately if an error is found in shipment. When returning samples, please return all provided QC samples. Go to http://www.testamericainc.com/customer-support/specialized-instructions-for-field-samplers/ for field sampler instructions.

Seal# Seal# Seal# Seal#

Company

Received By

Company

Relinquished By

Company

Received By

Time

Date

Company

Relinquished By

Christina Kovitch Creator:

Order Completion Information

Sent Date:

Filled by:

Tracking #: Sent Via:

Lot #

Comments

Sample Type

Matrix

Method

Comment

Health and Safety Notes: Preservative Preservative Bottle Type Description Oty Notes to Field Staff: Bottles/Set Sets

10/19/2020 11:59:00PM

ab Project Number.

Deliver By Date:

Ready To Process

Request From Client: 10/19/2020

Bottle Order #:

Bottle Order:

Date Order Posted.

Order Status: Prepared By:

Bottle Order Information

Scan QR code for field sampler instructions

Shipping Order ID: 64985

Environment Testing Sample Received

1	
	180-111870 Field Sheet

Tracking # :_	Branch .	689	5003	2815	

SO IPO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

ile in the job folder with the COC.						
Therm. ID: 440 Corr. Factor: (Notes:		_
Ice Wet/ Gel	Othe					
Cooler Custody Seal:						
Cooler Custody Seal:			_			_
Cooler ID:						
Cobier ID.	(20				
Temp Observed: 1.7 °C Correcte	ed:	Lix	_°C			
From: Temp Blank D Samp	le D					
The Chimment	Yes	No	NA			_
Opening/Processing The Shipment	D	B	0			
Cooler compromised/tampered with?	-	0	D			
Cooler Temperature is acceptable?	D		_			_
Initials: Date: Col	18/10					
Initials: Date: Col	Orv					_
Unpacking/Labeling The Samples	Yes	No	NA			_
CoC is complete w/o discrepancies?						_
Samples compromised/tampered with?	D	Ø				
Sample containers have legible labels?	0	D				
Sample custody seal?	D	D	0			
Containers are not broken or leaking?	P	D	D			-
	B	D	D			
Sample date/times are provided?	D	D	D	Trizma Lot #(s):		_
Appropriate containers are used?	D	0	D			
Sample bottles are completely filled?	0	0	D			-
Sample preservatives verified?	B	D	D			-
Samples w/o discrepancies?	_	0	5	. ,		
Zero headspace?*				Login Completion Yes	No	NA
Alkalinity has no headspace?				Receipt Temperature on COC?	0	
Perchlorate has headspace?	D	D	0	Samples received within hold time?	0	
(Methods 314, 331, 6850)	~	D	D	NCM Filed?		0
Multiphasic samples are not present?	0		_	Log Release checked in TALS?		B
*Containers requiring zero headspace have no headspace	e, or bubb	ole < 6 m	m (1/4")			
				Initials: Date: (0 08/2	O	
Initials: Date: 10 08	100	-		IIIIIIIII		

IITACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTVFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Job:

Sacramento Sample Receiving Notes

Environment Testing

	Tracking #: 168951036602
	SO /FO / SAT / 2-Day / Ground / L
80-111870 Field Sheet	

y / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_ nple Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

File in the job folder with the COC.					
Therm. ID: AK-5 Corr. Factor: Ice	Othe			Notes:	_
Opening/Processing The Shipment Cooler compromised/tampered with? Cooler Temperature is acceptable? Initials: Date: 10/20/	Yes D	No D	NA D		
Unpacking/Labeling The Samples CoC is complete w/o discrepancies?	Yes	No D	NA D		
Samples compromised/tampered with?	D				
Sample containers have legible labels?	1	D	D		
Sample containers have legible labele	D		D		
Sample custody seal? Containers are not broken or leaking?	B	D	D		
Sample date/times are provided?	D		D		
Appropriate containers are used?	12	D		Trizma Lot #(s):	
Sample bottles are completely filled?	0		D		_
Sample preservatives verified?	D	D	B		
Samples w/o discrepancies?	Ø				
Zero headspace?*	D	D	D	Login Completion Yes N	NA NA
Alkalinity has no headspace?		D	D	Receipt Temperature on COC?	
Perchlorate has headspace?	D	0	D	Samples received within hold time?	_
(Methods 314, 331, 6850)				NCM Filed?	
Multiphasic samples are not present?	D		ם	Log Release checked in TALS?	/
*Containers requiring zero headspace have no headspace	e, or bubl	ole < 6 m	m (1/4")		
Initials: Date: 10/20				Initials: Date: 10 20 20	

IITACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTIFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Client: Tetra Tech GEO Job Number: 180-111870-2

Login Number: 111870 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

Creator: watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Pittsburgh

Job Number: 180-111870-2

Login Number: 111870

Client: Tetra Tech GEO

List Number: 2

Creator: Saephan, Kae C

List Source: Eurofins TestAmerica, Sacramento

List Creation: 10/08/20 01:40 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 1.7c corr: 2.2c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Tetra Tech GEO Job Number: 180-111870-2

Login Number: 111870 List Source: Eurofins TestAmerica, Sacramento List Number: 3

List Creation: 10/20/20 11:20 AM

Creator: Saephan, Kae C

Groutor: Guophan, ruo G		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 0.5c corr: 0.0c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-111870-3

Client Project/Site: Grenada, Mississippi

For:

Tetra Tech GEO 2969 Prospect Park Drive Suite 100 Rancho Cordova, California 95670

Attn: Ms. Jennifer Abrahams, P.G.

Authorized for release by: 11/13/2020 10:11:46 AM

Veronica Bortot, Senior Project Manager (412)963-2435

Veronica.Bortot@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi Laboratory Job ID: 180-111870-3

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	13
QC Sample Results	23
QC Association Summary	27
Chain of Custody	29
Field Data Sheets	35
Receipt Checklists	37

3

4

6

8

9

10

12

13

Case Narrative

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111870-3

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-111870-3

Comments

No additional comments.

Receipt

The samples were received on 10/6/2020 9:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.5° C.

Receipt Exceptions

One out of two container labels for the following sample not match the information listed on the Chain-of-Custody (COC): BR351SS. The container labels list a sample id of BR3513SS, while the COC lists BR351SS. The id on the COC was used.

GC/MS Semi VOA

Method 8270E: The following sample was diluted due to the nature of the sample matrix: BR233SS. Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Dioxin

Method 8290A: The bracketing continuing calibration verification (CCV) associated with batch 320-425153 has 1,2,3,4,7,8-HxCDD with percent difference value that is between the method criteria of 20% to 25% deviation from the initial calibration curve. Per method guidelines, an average relative response factor (RRF) is calculated from the bracketing CCV and is used to quantitate any positive results in the associated samples for the affected analytes.

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): BR315SS and BR289SS. The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The concentration of one or more analytes associated with the following sample exceeded the instrument calibration range: BR289SS. These analytes have been qualified; however, the peak(s) did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Method 8290A: The following samples exhibited elevated noise or matrix interferences for one or more analytes causing elevation of the detection limit (EDL): BR315SS, BR289SS and BR233SS . The reporting limit (RL) for the affected analytes has been raised to be equal to the EDL, and a "G" qualifier applied.

Method 8290A: The concentration of one or more analytes associated with the following samples exceeded the instrument calibration range: BR289SS and BR233SS. These analytes have been qualified; however, the peak(s) did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Dioxin Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 180-111870-3

4

_

6

1

10

12

13

Definitions/Glossary

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Qualifiers

00	BAC	C	NO A
GU		Sem	i VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Dioxin

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
E	Result exceeded calibration range.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The reported result is the estimated maximum possible concentration of this analyte, quantitated using the theoretical ion ratio. The measured ion ratio does not meet qualitative identification criteria and indicates a possible interference.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCI	EDA recommended "Maximum Contaminant Loyel"

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit MLMinimum Level (Dioxin) Most Probable Number MPN Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20 *
Florida	NELAP	E871008	06-30-21
Georgia	State	PA 02-00416	04-30-21
Illinois	NELAP	004375	06-30-21
Kansas	NELAP	E-10350	01-31-21
Kentucky (UST)	State	162013	04-30-21
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-21
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-21
New Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-21
New York	NELAP	11182	04-01-21
North Carolina (WW/SW)	State	434	11-01-20
North Dakota	State	R-227	04-30-21
Oregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-21
Texas	NELAP	T104704528	03-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-21
Virginia	NELAP	10043	09-14-21
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-21

4

5

9

10

12

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-21
Arkansas DEQ	State	88-0691	06-17-21
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-21
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-21
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-21
Kansas	NELAP	E-10375	10-31-20 *
Louisiana	NELAP	01944	06-30-21
Maine	State	CA00004	04-14-22
Michigan	State	9947	08-03-23
Nevada	State	CA000442021-1	07-31-21
New Hampshire	NELAP	2997	04-18-21
New Jersey	NELAP	CA005	06-30-21
New York	NELAP	11666	04-01-21
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-21
Texas	NELAP	T104704399-19-13	06-01-21
US Fish & Wildlife	US Federal Programs	58448	07-31-21
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-21
Virginia	NELAP	460278	03-14-21
Washington	State	C581	05-05-21
West Virginia (DW)	State	9930C	12-31-20
Wisconsin	State	998204680	08-31-21
Wyoming	State Program	8TMS-L	01-28-19 *

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Sample Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-111870-1	BREPA21SS	Solid	10/04/20 08:45	10/06/20 09:00	
180-111870-2	BR373SS	Solid	10/04/20 09:40	10/06/20 09:00	
180-111870-3	BR351SS	Solid	10/04/20 11:14	10/06/20 09:00	
180-111870-4	BR315SS	Solid	10/04/20 12:50	10/06/20 09:00	
180-111870-5	BR289SS	Solid	10/04/20 14:38	10/06/20 09:00	
180-111870-6	BR233SS	Solid	10/04/20 16:00	10/06/20 09:00	

Job ID: 180-111870-3

3

4

9

10

12

13

12

Method Summary

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111870-3

Method	Method Description	Protocol	Laboratory
EPA 8270E	Semivolatile Organic Compounds (GC/MS)	SW846	TAL PIT
3290A	Dioxins and Furans (HRGC/HRMS)	SW846	TAL SAC
2540G	SM 2540G	SM22	TAL PIT
SM 2540G	Total, Fixed, and Volatile Solids	SM	TAL PIT
541	Automated Soxhlet Extraction	SW846	TAL PIT
3290	Soxhlet Extraction of Dioxins and Furans	SW846	TAL SAC

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SM22 = Standard Methods For The Examination Of Water And Wastewater, 22nd Edition

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058
TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

£

7

8

9

10

12

Client Sample ID: BREPA21SS Lab Sample ID: 180-111870-1

Date Collected: 10/04/20 08:45

Date Received: 10/06/20 09:00

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G t ID: NOEQUIP		1			334427	10/22/20 19:53	ELS	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G t ID: NOEQUIP		1			334823	10/26/20 21:38	РМН	TAL PIT

Client Sample ID: BREPA21SS Lab Sample ID: 180-111870-1

Date Collected: 10/04/20 08:45

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 83.5

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333809	10/17/20 16:03	VVP	TAL PIT
Total/NA	Prep	8290			9.75 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 4D5		1			426767	10/29/20 15:41	ALM	TAL SAC

Client Sample ID: BR373SS Lab Sample ID: 180-111870-2

Date Collected: 10/04/20 09:40

Date Received: 10/06/20 09:00

Matrix: Solid

Prep Type Total/NA	Batch Type Analysis	Batch Method 2540G	Run	Pactor 1	Initial Amount	Final Amount	Batch Number 334427	Prepared or Analyzed 10/22/20 19:53	Analyst ELS	Lab TAL PIT
Total/NA	Analysis Instrumer	SM 2540G at ID: NOEQUIP		1			334823	10/26/20 21:38	РМН	TAL PIT

Client Sample ID: BR373SS

Date Collected: 10/04/20 09:40

Date Received: 10/06/20 09:00

Lab Sample ID: 180-111870-2

Matrix: Solid
Percent Solids: 79.6

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.0 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis	EPA 8270E		1	1 mL	1 mL	333809	10/17/20 16:29	VVP	TAL PIT
	Instrumer	nt ID: CH71								
Total/NA	Prep	8290	RA		9.94 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis	8290A	RA	1			428963	11/06/20 02:28	AS	TAL SAC
	Instrumer	nt ID: 11D2								
Total/NA	Prep	8290			9.94 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis	8290A		1			428890	11/05/20 15:09	AS	TAL SAC
	Instrumer	nt ID: DFS 1								

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: BR351SS

Date Collected: 10/04/20 11:14 Date Received: 10/06/20 09:00 Lab Sample ID: 180-111870-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G t ID: NOEQUIP		1			334429	10/22/20 20:55	TAM	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G t ID: NOEQUIP		1			334823	10/26/20 21:38	РМН	TAL PIT

Client Sample ID: BR351SS

Date Collected: 10/04/20 11:14 Date Received: 10/06/20 09:00

Lab Sample ID: 180-111870-3 **Matrix: Solid**

Percent Solids: 80.8

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.0 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333809	10/17/20 16:55	VVP	TAL PIT
Total/NA	Prep	8290	RA		10.62 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1			427868	10/30/20 21:38	AS	TAL SAC
Total/NA	Prep	8290			10.62 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 4D5		1			426767	10/29/20 17:09	ALM	TAL SAC

Client Sample ID: BR315SS Date Collected: 10/04/20 12:50

Date Received: 10/06/20 09:00

Lab Sample ID: 180-111870-4

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	2540G		1			334429	10/22/20 20:55	TAM	TAL PIT
	Instrumer	nt ID: NOEQUIP								
Total/NA	Analysis	SM 2540G		1			334823	10/26/20 21:38	PMH	TAL PIT
	Instrumer	nt ID: NOEQUIP								

Client Sample ID: BR315SS

Date Collected: 10/04/20 12:50 Date Received: 10/06/20 09:00 Lab Sample ID: 180-111870-4 **Matrix: Solid**

Percent Solids: 82.4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH71		1	1 mL	1 mL	333809	10/17/20 17:21	VVP	TAL PIT
Total/NA	Prep	8290	RA		9.80 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 11D2	RA	1			427868	10/30/20 22:16	AS	TAL SAC
Total/NA	Prep	8290			9.80 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 4D5		1			426767	10/29/20 17:53	ALM	TAL SAC

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Lab Sample ID: 180-111870-5 **Client Sample ID: BR289SS**

Date Collected: 10/04/20 14:38 **Matrix: Solid** Date Received: 10/06/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	2540G t ID: NOEQUIP		1			334429	10/22/20 20:55	TAM	TAL PIT
Total/NA	Analysis Instrumen	SM 2540G t ID: NOEQUIP		1			334823	10/26/20 21:38	РМН	TAL PIT

Lab Sample ID: 180-111870-5 **Client Sample ID: BR289SS**

Date Collected: 10/04/20 14:38 **Matrix: Solid** Date Received: 10/06/20 09:00 **Percent Solids: 84.7**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.1 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumer	EPA 8270E at ID: CH71		1	1 mL	1 mL	333809	10/17/20 17:47	VVP	TAL PIT
Total/NA	Prep	8290	RA		9.81 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A at ID: 11D2	RA	1			427868	10/30/20 22:55	AS	TAL SAC
Total/NA	Prep	8290			9.81 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumer	8290A nt ID: 4D5		1			426767	10/29/20 18:36	ALM	TAL SAC

Lab Sample ID: 180-111870-6 **Client Sample ID: BR233SS**

Date Collected: 10/04/20 16:00 **Matrix: Solid** Date Received: 10/06/20 09:00

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method 2540G at ID: NOEQUIP	Run	Factor 1	Initial Amount	Final Amount	Batch Number 334429	Prepared or Analyzed 10/22/20 20:55	Analyst TAM	Lab TAL PIT
Total/NA	Analysis Instrumen	SM 2540G at ID: NOEQUIP		1			334823	10/26/20 21:38	PMH	TAL PIT

Lab Sample ID: 180-111870-6 **Client Sample ID: BR233SS** Date Collected: 10/04/20 16:00 **Matrix: Solid**

Date Received: 10/06/20 09:00 Percent Solids: 81.0

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			15.2 g	5.0 mL	333372	10/14/20 08:24	CSC	TAL PIT
Total/NA	Analysis Instrumen	EPA 8270E at ID: CH71		15	1 mL	1 mL	333809	10/17/20 18:13	VVP	TAL PIT
Total/NA	Prep	8290	RA		10.08 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 11D2	RA	1			427868	10/30/20 23:33	AS	TAL SAC
Total/NA	Prep	8290			10.08 g	20 uL	426110	10/28/20 09:18	FC	TAL SAC
Total/NA	Analysis Instrumen	8290A at ID: 4D5		1			426767	10/29/20 19:20	ALM	TAL SAC

Eurofins TestAmerica, Pittsburgh

Lab Chronicle

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Analyst References:

Lab: TAL PIT

Batch Type: Prep

CSC = Chayce Cockroft

Batch Type: Analysis

ELS = Edwin Shireman

PMH = Paloma Hoelzle

TAM = Tessa Mastalski

VVP = Vincent Piccolino

Lab: TAL SAC

Batch Type: Prep

FC = Fue Chang

Batch Type: Analysis

ALM = Adrian Messecar

AS = Ajay Sharda

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Terphenyl-d14 (Surr)

Client Sample ID: BREPA21SS

Lab Sample ID: 180-111870-1 Date Collected: 10/04/20 08:45 **Matrix: Solid** Date Received: 10/06/20 09:00

Percent Solids: 83.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		80	23	ug/Kg	<u></u>	10/14/20 08:24	10/17/20 16:03	1
Acenaphthylene	ND		80	17	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Anthracene	ND		80	21	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Benzo[a]anthracene	ND		80	36	ug/Kg	⊅	10/14/20 08:24	10/17/20 16:03	1
Benzo[b]fluoranthene	25	J	80	20	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Benzo[k]fluoranthene	ND		80	24	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Benzo[g,h,i]perylene	ND		80	17	ug/Kg	₩	10/14/20 08:24	10/17/20 16:03	1
Benzo[a]pyrene	ND		80	34	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Chrysene	ND		80	44	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Dibenz(a,h)anthracene	ND		80	51	ug/Kg	₩	10/14/20 08:24	10/17/20 16:03	1
Fluoranthene	ND		80	21	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Fluorene	ND		80	16	ug/Kg	☆	10/14/20 08:24	10/17/20 16:03	1
Indeno[1,2,3-cd]pyrene	ND		80	40	ug/Kg	₩	10/14/20 08:24	10/17/20 16:03	1
Naphthalene	ND		80	15	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Phenanthrene	ND		80	21	ug/Kg	☆	10/14/20 08:24	10/17/20 16:03	1
Pyrene	21	J	80	19	ug/Kg	☼	10/14/20 08:24	10/17/20 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		45 - 105				10/14/20 08:24	10/17/20 16:03	1
2-Fluorophenol (Surr)	79		42 - 105				10/14/20 08:24	10/17/20 16:03	1
2,4,6-Tribromophenol (Surr)	65		31 - 105				10/14/20 08:24	10/17/20 16:03	1
Nitrobenzene-d5 (Surr)	78		53 - 105				10/14/20 08:24	10/17/20 16:03	1
Phenol-d5 (Surr)	69		47 - 105				10/14/20 08:24	10/17/20 16:03	1

46 - 105

87

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.52	pg/g	☆	10/28/20 09:18	10/29/20 15:41	1
Total TCDD	ND		1.2	0.52	pg/g	☼	10/28/20 09:18	10/29/20 15:41	1
1,2,3,7,8-PeCDD	ND		6.1	0.79	pg/g	₩	10/28/20 09:18	10/29/20 15:41	1
Total PeCDD	3.1	J	6.1	0.79	pg/g	₩	10/28/20 09:18	10/29/20 15:41	1
1,2,3,4,7,8-HxCDD	1.7	J	6.1	0.26	pg/g	₩	10/28/20 09:18	10/29/20 15:41	1
1,2,3,6,7,8-HxCDD	3.8	J	6.1	0.23	pg/g	☼	10/28/20 09:18	10/29/20 15:41	1
1,2,3,7,8,9-HxCDD	3.4	J	6.1	0.23	pg/g	☼	10/28/20 09:18	10/29/20 15:41	1
Total HxCDD	40		6.1	0.24	pg/g	☼	10/28/20 09:18	10/29/20 15:41	1
1,2,3,4,6,7,8-HpCDD	130	В	6.1	2.5	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
Total HpCDD	330	В	6.1	2.5	pg/g	₩	10/28/20 09:18	10/29/20 15:41	1
OCDD	2900	В	12	7.2	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
2,3,7,8-TCDF	ND		1.2	0.28	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
Total TCDF	ND		1.2	0.28	pg/g	₩	10/28/20 09:18	10/29/20 15:41	1
1,2,3,7,8-PeCDF	ND		6.1	1.1	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
2,3,4,7,8-PeCDF	ND		6.1	1.2	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
Total PeCDF	ND		6.1	1.2	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
1,2,3,4,7,8-HxCDF	1.3	J	6.1	0.42	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
1,2,3,6,7,8-HxCDF	0.82	J	6.1	0.37	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
2,3,4,6,7,8-HxCDF	0.74	Jq	6.1	0.41	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
1,2,3,7,8,9-HxCDF	ND		6.1	0.46	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
Total HxCDF	16	q	6.1	0.42	pg/g	₩	10/28/20 09:18	10/29/20 15:41	1
1,2,3,4,6,7,8-HpCDF	21		6.1	0.60	pg/g	₽	10/28/20 09:18	10/29/20 15:41	1
1,2,3,4,7,8,9-HpCDF	ND		6.1	0.84	pg/g	÷Ċ÷	10/28/20 09:18	10/29/20 15:41	1

Eurofins TestAmerica, Pittsburgh

10/14/20 08:24 10/17/20 16:03

Page 13 of 39

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Percent Moisture

Percent Solids

Total Solids

Client Sample ID: BREPA21SS

Lab Sample ID: 180-111870-1 Date Collected: 10/04/20 08:45 **Matrix: Solid** Date Received: 10/06/20 09:00

Percent Solids: 83.5

10/22/20 19:53

10/22/20 19:53

10/26/20 21:38

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDF	65		6.1	0.72	pg/g		10/28/20 09:18	10/29/20 15:41	1
OCDF	94		12	0.35	pg/g	☼	10/28/20 09:18	10/29/20 15:41	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-1,2,3,7,8-PeCDD	77		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-1,2,3,6,7,8-HxCDD	79		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-1,2,3,4,6,7,8-HpCDD	82		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-OCDD	99		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-2,3,7,8-TCDF	70		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-1,2,3,7,8-PeCDF	76		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-1,2,3,4,7,8-HxCDF	74		40 - 135				10/28/20 09:18	10/29/20 15:41	1
13C-1,2,3,4,6,7,8-HpCDF	79		40 - 135				10/28/20 09:18	10/29/20 15:41	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: BR373SS Lab Sample ID: 180-111870-2 Date Collected: 10/04/20 09:40 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 79.6

0.1

0.1

0.50

16.5

83.5

83

0.1 %

0.1 %

0.50 %

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac Acenaphthene $\overline{\mathsf{ND}}$ 84 ug/Kg 10/14/20 08:24 10/17/20 16:29 24 **Acenaphthylene** 40 J 84 ug/Kg 10/14/20 08:24 10/17/20 16:29 **Anthracene** 35 84 22 ug/Kg 10/14/20 08:24 10/17/20 16:29 Benzo[a]anthracene 96 84 ug/Kg 10/14/20 08:24 10/17/20 16:29 Benzo[b]fluoranthene 190 84 21 ug/Kg 10/14/20 08:24 10/17/20 16:29 ug/Kg 84 10/14/20 08:24 10/17/20 16:29 Benzo[k]fluoranthene 91 84 10/14/20 08:24 10/17/20 16:29 Benzo[g,h,i]perylene **79** 18 ug/Kg 84 ug/Kg 10/14/20 08:24 10/17/20 16:29 Benzo[a]pyrene 98 84 46 ug/Kg 10/14/20 08:24 10/17/20 16:29 Chrysene 150 84 Dibenz(a,h)anthracene 89 54 ug/Kg 10/14/20 08:24 10/17/20 16:29 **Fluoranthene** 140 84 22 ug/Kg 10/14/20 08:24 10/17/20 16:29 Fluorene ND 84 16 ug/Kg 10/14/20 08:24 10/17/20 16:29 Indeno[1,2,3-cd]pyrene 74 J 84 ug/Kg 10/14/20 08:24 10/17/20 16:29 84 16 ug/Kg 10/14/20 08:24 10/17/20 16:29 **Naphthalene** 21 84 **Phenanthrene** 42 ug/Kg 10/14/20 08:24 10/17/20 16:29 84 20 ug/Kg 10/14/20 08:24 10/17/20 16:29 **Pyrene** 170

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72	45 - 105	10/14/20 08:24	10/17/20 16:29	1
2-Fluorophenol (Surr)	74	42 - 105	10/14/20 08:24	10/17/20 16:29	1
2,4,6-Tribromophenol (Surr)	64	31 - 105	10/14/20 08:24	10/17/20 16:29	1
Nitrobenzene-d5 (Surr)	75	53 - 105	10/14/20 08:24	10/17/20 16:29	1
Phenol-d5 (Surr)	65	47 - 105	10/14/20 08:24	10/17/20 16:29	1
Terphenyl-d14 (Surr)	83	46 - 105	10/14/20 08:24	10/17/20 16:29	1

Eurofins TestAmerica, Pittsburgh

Page 14 of 39

Total Solids

Client Sample ID: BR373SS Lab Sample ID: 180-111870-2

Date Collected: 10/04/20 09:40

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 79.6

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.3	0.28	pg/g	<u></u>	10/28/20 09:18	11/05/20 15:09	
Total TCDD	2.6	q	1.3		pg/g	≎	10/28/20 09:18	11/05/20 15:09	1
1,2,3,7,8-PeCDD	0.95		6.3	0.30	pg/g	☼	10/28/20 09:18	11/05/20 15:09	1
Total PeCDD	4.0	J	6.3	0.30	pg/g	≎	10/28/20 09:18	11/05/20 15:09	1
1,2,3,4,7,8-HxCDD	2.3	J	6.3	0.18	pg/g	☼	10/28/20 09:18	11/05/20 15:09	1
1,2,3,6,7,8-HxCDD	6.5		6.3	0.17	pg/g	≎	10/28/20 09:18	11/05/20 15:09	1
1,2,3,7,8,9-HxCDD	5.0	J	6.3	0.16	pg/g		10/28/20 09:18	11/05/20 15:09	1
Total HxCDD	61		6.3	0.17	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
1,2,3,4,6,7,8-HpCDD	190	В	6.3	0.84	pg/g	☼	10/28/20 09:18	11/05/20 15:09	1
Total HpCDD	460	В	6.3	0.84	pg/g	₽	10/28/20 09:18	11/05/20 15:09	1
OCDD	1800	В	13	1.4	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
Total TCDF	8.8	q	1.3	0.22	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
1,2,3,7,8-PeCDF	0.76		6.3	0.25	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
2,3,4,7,8-PeCDF	1.3	J	6.3		pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
Total PeCDF	11	q	6.3	0.26	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
1,2,3,4,7,8-HxCDF	4.5	J	6.3		pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
1,2,3,6,7,8-HxCDF	2.1	J	6.3	0.22	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
2,3,4,6,7,8-HxCDF	2.1	J	6.3	0.23	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
1,2,3,7,8,9-HxCDF	ND		6.3	0.24	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
Total HxCDF	39		6.3	0.23	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
1,2,3,4,6,7,8-HpCDF	45		6.3	0.52	pg/g	☼	10/28/20 09:18	11/05/20 15:09	1
1,2,3,4,7,8,9-HpCDF	2.3	J	6.3	0.58	pg/g		10/28/20 09:18	11/05/20 15:09	1
Total HpCDF	120		6.3	0.55	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
OCDF	140		13	0.26	pg/g	₩	10/28/20 09:18	11/05/20 15:09	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	69		40 - 135					11/05/20 15:09	1
13C-1,2,3,7,8-PeCDD	65		40 - 135				10/28/20 09:18	11/05/20 15:09	1
13C-1,2,3,6,7,8-HxCDD	76		40 - 135				10/28/20 09:18	11/05/20 15:09	1
13C-1,2,3,4,6,7,8-HpCDD	70		40 - 135				10/28/20 09:18	11/05/20 15:09	
13C-OCDD	70		40 - 135				10/28/20 09:18	11/05/20 15:09	1
13C-2,3,7,8-TCDF	79		40 - 135				10/28/20 09:18	11/05/20 15:09	1
13C-1,2,3,7,8-PeCDF	79		40 - 135				10/28/20 09:18	11/05/20 15:09	
13C-1,2,3,4,7,8-HxCDF	83		40 - 135				10/28/20 09:18	11/05/20 15:09	1
13C-1,2,3,4,6,7,8-HpCDF	76		40 - 135				10/28/20 09:18	11/05/20 15:09	1
THE COURT OF THE COURT		00///01/01							
Method: 8290A - Dioxins a Analyte		GC/HRMS) Qualifier) - RA RL	FDI	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	0.93		1.3		pg/g	— -	10/28/20 09:18	11/06/20 02:28	1
Isotope Dilution	%Recovery		Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	74		40 - 135				10/28/20 09:18		1
-									
General Chemistry	Bool4	Qualifier	ы	ы	Unit	Б	Dronored	Analyzed	Dil Eco
Analyte Paragraph Majeture		Qualifier	RL	0.1		<u>D</u>	Prepared	Analyzed	Dil Fac
Percent Moisture	20.4		0.1					10/22/20 19:53	1
Percent Solids	79.6		0.1	0.1	70			10/22/20 19:53	1

10/26/20 21:38

0.50

0.50 %

79

Project/Site: Grenada, Mississippi

Client Sample ID: BR351SS

Date Collected: 10/04/20 11:14 Date Received: 10/06/20 09:00

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

Phenol-d5 (Surr)

Lab Sample ID: 180-111870-3

10/14/20 08:24 10/17/20 16:55

10/14/20 08:24 10/17/20 16:55

10/14/20 08:24 10/17/20 16:55

Matrix: Solid

Percent Solids: 80.8

Job ID: 180-111870-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		83	24	ug/Kg	<u></u>	10/14/20 08:24	10/17/20 16:55	1
Acenaphthylene	ND		83	18	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Anthracene	ND		83	21	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Benzo[a]anthracene	ND		83	37	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Benzo[b]fluoranthene	56	J	83	20	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Benzo[k]fluoranthene	25	J	83	25	ug/Kg	☼	10/14/20 08:24	10/17/20 16:55	1
Benzo[g,h,i]perylene	21	J	83	18	ug/Kg	₽	10/14/20 08:24	10/17/20 16:55	1
Benzo[a]pyrene	ND		83	36	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Chrysene	51	J	83	46	ug/Kg	☼	10/14/20 08:24	10/17/20 16:55	1
Dibenz(a,h)anthracene	ND		83	53	ug/Kg	₽	10/14/20 08:24	10/17/20 16:55	1
Fluoranthene	93		83	22	ug/Kg	☼	10/14/20 08:24	10/17/20 16:55	1
Fluorene	ND		83	16	ug/Kg	☼	10/14/20 08:24	10/17/20 16:55	1
Indeno[1,2,3-cd]pyrene	ND		83	41	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Naphthalene	ND		83	16	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Phenanthrene	40	J	83	22	ug/Kg	₩	10/14/20 08:24	10/17/20 16:55	1
Pyrene	94		83	20	ug/Kg	☆	10/14/20 08:24	10/17/20 16:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	76		45 - 105				10/14/20 08:24	10/17/20 16:55	1
2-Fluorophenol (Surr)	73		42 - 105				10/14/20 08:24	10/17/20 16:55	1
2,4,6-Tribromophenol (Surr)	51		31 - 105				10/14/20 08:24	10/17/20 16:55	1

53 - 105

47 - 105

46 - 105

81

67

80

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.43	pg/g	— <u></u>	10/28/20 09:18	10/29/20 17:09	1
Total TCDD	0.76	J q	1.2	0.43	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
1,2,3,7,8-PeCDD	1.3	J	5.8	0.66	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
Total PeCDD	9.4		5.8	0.66	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
1,2,3,4,7,8-HxCDD	3.1	J	5.8	0.31	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
1,2,3,6,7,8-HxCDD	9.8		5.8	0.28	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
1,2,3,7,8,9-HxCDD	7.4		5.8	0.27	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
Total HxCDD	77	q	5.8	0.28	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
1,2,3,4,6,7,8-HpCDD	230	В	5.8	3.6	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
Total HpCDD	500	В	5.8	3.6	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
OCDD	2000	В	12	5.1	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
Total TCDF	25	q	1.2	0.24	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
1,2,3,7,8-PeCDF	1.8	J	5.8	1.0	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
2,3,4,7,8-PeCDF	4.2	J	5.8	1.1	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
Total PeCDF	41		5.8	1.0	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
1,2,3,4,7,8-HxCDF	7.6		5.8	0.65	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
1,2,3,6,7,8-HxCDF	5.2	J	5.8	0.58	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
2,3,4,6,7,8-HxCDF	7.6		5.8	0.63	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
1,2,3,7,8,9-HxCDF	ND		5.8	0.72	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
Total HxCDF	77		5.8	0.64	pg/g	₽	10/28/20 09:18	10/29/20 17:09	1
1,2,3,4,6,7,8-HpCDF	58		5.8	1.1	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
1,2,3,4,7,8,9-HpCDF	ND		5.8	1.6	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
Total HpCDF	130		5.8	1.3		₩	10/28/20 09:18	10/29/20 17:09	1

Eurofins TestAmerica, Pittsburgh

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

2-Fluorophenol (Surr)

Client Sample ID: BR351SS

Date Collected: 10/04/20 11:14 Date Received: 10/06/20 09:00

Lab Sample ID: 180-111870-3

Matrix: Solid

Percent Solids: 80.8

Method: 8290A - Dioxins	and Furans (HR	GC/HRMS)	(Continued)						
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
OCDF	120		12	0.46	pg/g	₩	10/28/20 09:18	10/29/20 17:09	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	77		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-1,2,3,7,8-PeCDD	80		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-1,2,3,6,7,8-HxCDD	79		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-1,2,3,4,6,7,8-HpCDD	84		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-OCDD	100		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-2,3,7,8-TCDF	70		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-1,2,3,7,8-PeCDF	75		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-1,2,3,4,7,8-HxCDF	75		40 - 135				10/28/20 09:18	10/29/20 17:09	1
13C-1,2,3,4,6,7,8-HpCDF	81		40 - 135				10/28/20 09:18	10/29/20 17:09	1

Method: 8290A - Dioxins and	Furans (HRG	C/HRMS)	- RA						
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	1.1	J	1.2	0.53	pg/g	*	10/28/20 09:18	10/30/20 21:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	77		40 - 135				10/28/20 09:18	10/30/20 21:38	1

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19.2		0.1	0.1	%			10/22/20 20:55	1
Percent Solids	80.8		0.1	0.1	%			10/22/20 20:55	1
Total Solids	81		0.50	0.50	%			10/26/20 21:38	1

Lab Sample ID: 180-111870-4 **Client Sample ID: BR315SS** Date Collected: 10/04/20 12:50 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 82.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		81	23	ug/Kg	— <u>~</u>	10/14/20 08:24	10/17/20 17:21	1
Acenaphthylene	49	J	81	18	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Anthracene	46	J	81	21	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Benzo[a]anthracene	90		81	36	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Benzo[b]fluoranthene	220		81	20	ug/Kg	☼	10/14/20 08:24	10/17/20 17:21	1
Benzo[k]fluoranthene	95		81	24	ug/Kg	☼	10/14/20 08:24	10/17/20 17:21	1
Benzo[g,h,i]perylene	93		81	17	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Benzo[a]pyrene	110		81	35	ug/Kg	☼	10/14/20 08:24	10/17/20 17:21	1
Chrysene	150		81	45	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Dibenz(a,h)anthracene	91		81	51	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Fluoranthene	130		81	21	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Fluorene	ND		81	16	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Indeno[1,2,3-cd]pyrene	81		81	40	ug/Kg	⊅	10/14/20 08:24	10/17/20 17:21	1
Naphthalene	ND		81	16	ug/Kg	₩	10/14/20 08:24	10/17/20 17:21	1
Phenanthrene	35	J	81	22	ug/Kg	☼	10/14/20 08:24	10/17/20 17:21	1
Pyrene	190		81	19	ug/Kg	☼	10/14/20 08:24	10/17/20 17:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	66		45 - 105				10/14/20 08:24	10/17/20 17:21	1

Eurofins TestAmerica, Pittsburgh

10/14/20 08:24 10/17/20 17:21

Page 17 of 39

42 - 105

70

11/13/2020

Project/Site: Grenada, Mississippi

Client Sample ID: BR315SS Lab Sample ID: 180-111870-4

Date Collected: 10/04/20 12:50

Date Received: 10/06/20 09:00

Matrix: Solid
Percent Solids: 82.4

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	51	31 - 105	10/14/20 08:24 10/17/20 17:2	1 1
Nitrobenzene-d5 (Surr)	71	53 - 105	10/14/20 08:24 10/17/20 17:2	1 1
Phenol-d5 (Surr)	62	47 - 105	10/14/20 08:24 10/17/20 17:2	1 1
Terphenyl-d14 (Surr)	73	46 - 105	10/14/20 08:24 10/17/20 17:2	1 1

Method: 8290A - Dioxins and Furan	s (HRGC/HRMS)
-----------------------------------	---------------

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.46	pg/g	-	10/28/20 09:18	10/29/20 17:53	1
Total TCDD	4.5	q	1.2	0.46	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,7,8-PeCDD	2.0	J	6.2	0.60	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
Total PeCDD	23	q	6.2	0.60	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,4,7,8-HxCDD	4.4	J	6.2	0.44	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,6,7,8-HxCDD	11		6.2	0.39	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,7,8,9-HxCDD	8.4		6.2	0.38	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
Total HxCDD	130		6.2	0.40	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,4,6,7,8-HpCDD	320	BG	6.6	6.6	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
Total HpCDD	1100	BG	6.6	6.6	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
OCDD	4400	В	12	9.9	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
Total TCDF	52	q	1.2	0.36	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,7,8-PeCDF	4.2	J	6.2	1.0	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
2,3,4,7,8-PeCDF	9.1		6.2	1.1	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
Total PeCDF	95		6.2	1.1	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,4,7,8-HxCDF	12		6.2	1.1	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,6,7,8-HxCDF	10		6.2	0.97	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
2,3,4,6,7,8-HxCDF	16		6.2	1.1	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,7,8,9-HxCDF	ND		6.2	1.2	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
Total HxCDF	170		6.2	1.1	pg/g	☆	10/28/20 09:18	10/29/20 17:53	1
1,2,3,4,6,7,8-HpCDF	160		6.2	2.3	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
1,2,3,4,7,8,9-HpCDF	5.9	J	6.2	3.3	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1
Total HpCDF	350		6.2			₽	10/28/20 09:18	10/29/20 17:53	1
OCDF	240		12	0.51	pg/g	₽	10/28/20 09:18	10/29/20 17:53	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	79	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-1,2,3,7,8-PeCDD	84	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-1,2,3,6,7,8-HxCDD	83	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-1,2,3,4,6,7,8-HpCDD	87	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-OCDD	113	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-2,3,7,8-TCDF	73	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-1,2,3,7,8-PeCDF	76	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-1,2,3,4,7,8-HxCDF	78	40 - 135	10/28/20 09:18	10/29/20 17:53	1
13C-1,2,3,4,6,7,8-HpCDF	84	40 - 135	10/28/20 09:18	10/29/20 17:53	1

Method: 8290A - Dioxins and Furans	(HRGC/HRMS) - RA
------------------------------------	------------	--------

		,							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDF	2.5	q	1.2	0.53	pg/g		10/28/20 09:18	10/30/20 22:16	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF	81		40 - 135				10/28/20 09:18	10/30/20 22:16	1

Project/Site: Grenada, Mississippi

Client: Tetra Tech GEO

Client Sample ID: BR315SS Lab Sample ID: 180-111870-4

Date Collected: 10/04/20 12:50 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 82.4

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.6		0.1	0.1	%			10/22/20 20:55	1
Percent Solids	82.4		0.1	0.1	%			10/22/20 20:55	1
Total Solids	82		0.50	0.50	%			10/26/20 21:38	1

Lab Sample ID: 180-111870-5 **Client Sample ID: BR289SS** Date Collected: 10/04/20 14:38 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 84.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		79	23	ug/Kg	<u></u>	10/14/20 08:24	10/17/20 17:47	1
Acenaphthylene	58	J	79	17	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Anthracene	48	J	79	20	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Benzo[a]anthracene	140		79	35	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Benzo[b]fluoranthene	260		79	19	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Benzo[k]fluoranthene	120		79	23	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Benzo[g,h,i]perylene	90		79	17	ug/Kg	₽	10/14/20 08:24	10/17/20 17:47	1
Benzo[a]pyrene	150		79	34	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Chrysene	170		79	43	ug/Kg	≎	10/14/20 08:24	10/17/20 17:47	1
Dibenz(a,h)anthracene	93		79	50	ug/Kg	₽	10/14/20 08:24	10/17/20 17:47	1
Fluoranthene	150		79	21	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Fluorene	ND		79	15	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Indeno[1,2,3-cd]pyrene	93		79	39	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Naphthalene	ND		79	15	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Phenanthrene	27	J	79	21	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Pyrene	240		79	19	ug/Kg	₩	10/14/20 08:24	10/17/20 17:47	1
Surrogato	%Pocovery	Qualifier	Limite				Propared	Analyzod	Dil Eac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	68	45 - 105	10/14/20 08:24	10/17/20 17:47	1
2-Fluorophenol (Surr)	75	42 - 105	10/14/20 08:24	10/17/20 17:47	1
2,4,6-Tribromophenol (Surr)	58	31 - 105	10/14/20 08:24	10/17/20 17:47	1
Nitrobenzene-d5 (Surr)	74	53 - 105	10/14/20 08:24	10/17/20 17:47	1
Phenol-d5 (Surr)	66	47 - 105	10/14/20 08:24	10/17/20 17:47	1
Terphenyl-d14 (Surr)	75	46 - 105	10/14/20 08:24	10/17/20 17:47	1

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.46	pg/g	<u></u>	10/28/20 09:18	10/29/20 18:36	1
Total TCDD	5.7	q	1.2	0.46	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
1,2,3,7,8-PeCDD	2.2	J	6.0	0.64	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
Total PeCDD	26		6.0	0.64	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
1,2,3,4,7,8-HxCDD	5.3	J q	6.0	0.49	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
1,2,3,6,7,8-HxCDD	16		6.0	0.44	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
1,2,3,7,8,9-HxCDD	8.8		6.0	0.43	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
Total HxCDD	160	q	6.0	0.46	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
1,2,3,4,6,7,8-HpCDD	420	G B	6.7	6.7	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
Total HpCDD	1000	GB	6.7	6.7	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
OCDD	8700	GEB	19	19	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
Total TCDF	28		1.2	0.34	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
1,2,3,7,8-PeCDF	2.1	Jq	6.0	0.94	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1

Eurofins TestAmerica, Pittsburgh

Page 19 of 39

Client: Tetra Tech GEO Project/Site: Grenada, Mississippi

Client Sample ID: BR289SS Lab Sample ID: 180-111870-5

Date Collected: 10/04/20 14:38 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 84.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,4,7,8-PeCDF	3.4	Jq	6.0	0.98	pg/g	*	10/28/20 09:18	10/29/20 18:36	1
Total PeCDF	33	q	6.0	0.96	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
1,2,3,4,7,8-HxCDF	5.1	J	6.0	0.67	pg/g	⊅	10/28/20 09:18	10/29/20 18:36	1
1,2,3,6,7,8-HxCDF	5.6	J	6.0	0.60	pg/g	☼	10/28/20 09:18	10/29/20 18:36	1
2,3,4,6,7,8-HxCDF	5.4	J	6.0	0.65	pg/g	≎	10/28/20 09:18	10/29/20 18:36	1
1,2,3,7,8,9-HxCDF	0.75	J	6.0	0.74	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
Total HxCDF	110		6.0	0.67	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
1,2,3,4,6,7,8-HpCDF	97		6.0	1.7	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
1,2,3,4,7,8,9-HpCDF	4.9	J	6.0	2.3	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
Total HpCDF	290		6.0	2.0	pg/g	₩	10/28/20 09:18	10/29/20 18:36	1
OCDF	330		12	0.86	pg/g	₽	10/28/20 09:18	10/29/20 18:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	74		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-1,2,3,7,8-PeCDD	79		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-1,2,3,6,7,8-HxCDD	75		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-1,2,3,4,6,7,8-HpCDD	81		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-OCDD	105		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-2,3,7,8-TCDF	68		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-1,2,3,7,8-PeCDF	73		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-1,2,3,4,7,8-HxCDF	75		40 - 135				10/28/20 09:18	10/29/20 18:36	1
13C-1,2,3,4,6,7,8-HpCDF	77		40 - 135				10/28/20 09:18	10/29/20 18:36	1

Method: 8290A - Dioxins and Furans (HRGC/HRMS) - RA											
Analyte	Result Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac				
2,3,7,8-TCDF	2.5	1.2	0.78 pg/g	*	10/28/20 09:18	10/30/20 22:55	1				
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac				
13C-2,3,7,8-TCDF	77	40 - 135			10/28/20 09:18	10/30/20 22:55	1				

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.3		0.1	0.1	%			10/22/20 20:55	1
Percent Solids	84.7		0.1	0.1	%			10/22/20 20:55	1
Total Solids	84		0.50	0.50	%			10/26/20 21:38	1

Client Sample ID: BR233SS Lab Sample ID: 180-111870-6 Date Collected: 10/04/20 16:00 **Matrix: Solid** Date Received: 10/06/20 09:00 Percent Solids: 81.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		1200	350	ug/Kg	<u></u>	10/14/20 08:24	10/17/20 18:13	15
Acenaphthylene	470	J	1200	270	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Anthracene	ND		1200	320	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Benzo[a]anthracene	ND		1200	550	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Benzo[b]fluoranthene	800	J	1200	300	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Benzo[k]fluoranthene	ND		1200	370	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Benzo[g,h,i]perylene	450	J	1200	260	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Benzo[a]pyrene	540	J	1200	530	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Chrysene	ND		1200	680	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Dibenz(a,h)anthracene	ND		1200	780	ug/Kg	₽	10/14/20 08:24	10/17/20 18:13	15

Eurofins TestAmerica, Pittsburgh

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Analyte

Isotope Dilution

13C-OCDD

13C-2,3,7,8-TCDD

13C-2,3,7,8-TCDF

13C-1,2,3,7,8-PeCDF

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,7,8-PeCDD

13C-1,2,3,6,7,8-HxCDD

13C-1,2,3,4,6,7,8-HpCDD

Client Sample ID: BR233SS Lab Sample ID: 180-111870-6

MDL Unit

D

Prepared

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

%Recovery Qualifier

70

75

71

73

87

61

71

68

Allalyte	Result	Quanner	114	IVIDE	Oilit		i repared	Allalyzea	Diriac
Fluoranthene	770	J	1200	320	ug/Kg		10/14/20 08:24	10/17/20 18:13	15
Fluorene	ND		1200	240	ug/Kg	≎	10/14/20 08:24	10/17/20 18:13	15
Indeno[1,2,3-cd]pyrene	ND		1200	610	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Naphthalene	ND		1200	240	ug/Kg	₽	10/14/20 08:24	10/17/20 18:13	15
Phenanthrene	630	J	1200	330	ug/Kg	₽	10/14/20 08:24	10/17/20 18:13	15
Pyrene	770	J	1200	290	ug/Kg	₩	10/14/20 08:24	10/17/20 18:13	15
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	53		45 - 105				10/14/20 08:24	10/17/20 18:13	15
2-Fluorophenol (Surr)	56		42 - 105				10/14/20 08:24	10/17/20 18:13	15
2,4,6-Tribromophenol (Surr)	35		31 - 105				10/14/20 08:24	10/17/20 18:13	15
Nitrobenzene-d5 (Surr)	58		53 - 105				10/14/20 08:24	10/17/20 18:13	15
Phenol-d5 (Surr)	53		47 - 105				10/14/20 08:24	10/17/20 18:13	15
Terphenyl-d14 (Surr)	60		46 - 105				10/14/20 08:24	10/17/20 18:13	15
Method: 8290A - Dioxins ar	nd Furans (HR	GC/HRMS)							
Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.2	0.92	pg/g	-	10/28/20 09:18	10/29/20 19:20	1
Total TCDD	2.0		1.2	0.92	pg/g	₩	10/28/20 09:18	10/29/20 19:20	1
1,2,3,7,8-PeCDD	2.3	J	6.1	1.2	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
Total PeCDD	25	q	6.1	1.2	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
1,2,3,4,7,8-HxCDD	6.3		6.1	0.58	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
1,2,3,6,7,8-HxCDD	19		6.1	0.52	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
1,2,3,7,8,9-HxCDD	11		6.1	0.50	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
Total HxCDD	180		6.1	0.53	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
1,2,3,4,6,7,8-HpCDD	580	BG	7.9	7.9	pg/g	₩	10/28/20 09:18	10/29/20 19:20	1
Total HpCDD	1400	BG	7.9	7.9	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
OCDD	7900	EBG	17	17	pg/g	₩	10/28/20 09:18	10/29/20 19:20	1
Total TCDF	34	q	1.2	0.65	pg/g	₩	10/28/20 09:18	10/29/20 19:20	1
1,2,3,7,8-PeCDF	ND		6.1	1.5	pg/g	₽	10/28/20 09:18	10/29/20 19:20	1
2,3,4,7,8-PeCDF	ND		6.1	1.6	pg/g	₩	10/28/20 09:18	10/29/20 19:20	1
Total PeCDF	30	q	6.1	1.6	pg/g	₩	10/28/20 09:18	10/29/20 19:20	1
1,2,3,4,7,8-HxCDF								10/00/00 10 00	1
1,2,0, 1,1 ,0 11X0D1	5.5	J	6.1	0.67	pg/g	₩	10/28/20 09:18	10/29/20 19:20	
1,2,3,6,7,8-HxCDF			6.1 6.1		pg/g pg/g	‡	10/28/20 09:18 10/28/20 09:18		1
	5.5	J		0.60		₽		10/29/20 19:20	1 1
1,2,3,6,7,8-HxCDF	5.5 4.2	J	6.1	0.60 0.65	pg/g	₽	10/28/20 09:18	10/29/20 19:20 10/29/20 19:20	
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	5.5 4.2 3.4	J	6.1 6.1	0.60 0.65 0.74	pg/g pg/g	₽	10/28/20 09:18 10/28/20 09:18 10/28/20 09:18	10/29/20 19:20 10/29/20 19:20	1
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	5.5 4.2 3.4 ND	J	6.1 6.1 6.1	0.60 0.65 0.74 0.67	pg/g pg/g pg/g	# # #	10/28/20 09:18 10/28/20 09:18 10/28/20 09:18	10/29/20 19:20 10/29/20 19:20 10/29/20 19:20 10/29/20 19:20	1
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	5.5 4.2 3.4 ND 110	J	6.1 6.1 6.1	0.60 0.65 0.74 0.67 1.9	pg/g pg/g pg/g pg/g	\$ \$ \$ \$	10/28/20 09:18 10/28/20 09:18 10/28/20 09:18 10/28/20 09:18	10/29/20 19:20 10/29/20 19:20 10/29/20 19:20 10/29/20 19:20 10/29/20 19:20	1 1 1
1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF 1,2,3,4,6,7,8-HpCDF	5.5 4.2 3.4 ND 110	J	6.1 6.1 6.1 6.1 6.1	0.60 0.65 0.74 0.67 1.9 2.7	pg/g pg/g pg/g pg/g pg/g	\$ \$ \$ \$	10/28/20 09:18 10/28/20 09:18 10/28/20 09:18 10/28/20 09:18 10/28/20 09:18	10/29/20 19:20 10/29/20 19:20 10/29/20 19:20 10/29/20 19:20 10/29/20 19:20 10/29/20 19:20	1 1 1 1

 40 - 135
 10/28/20 09:18 10/29/20 19:20 1

 40 - 135
 10/28/20 09:18 10/29/20 19:20 1

 40 - 135
 10/28/20 09:18 10/29/20 19:20 1

 40 - 135
 10/28/20 09:18 10/29/20 19:20 1

Prepared

Eurofins TestAmerica, Pittsburgh

Analyzed

10/28/20 09:18 10/29/20 19:20

10/28/20 09:18 10/29/20 19:20

10/28/20 09:18 10/29/20 19:20

10/28/20 09:18 10/29/20 19:20

Page 21 of 39

Limits

40 - 135

40 - 135

40 - 135

40 - 135

2

3

5

Dil Fac

Analyzed

7

a

10

12

۱

11/13/2020

Dil Fac

Client Sample Results

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Client Sample ID: BR233SS Lab Sample ID: 180-111870-6

Date Collected: 10/04/20 16:00 **Matrix: Solid** Date Received: 10/06/20 09:00

Percent Solids: 81.0

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-1,2,3,4,6,7,8-HpCDF 40 - 135 10/28/20 09:18 10/29/20 19:20 72

Method: 8290A - Dioxins and Furans (HRGC/HRMS) - RA

Result Qualifier RL**EDL** Unit D Prepared Analyzed Dil Fac ☼ 10/28/20 09:18 10/30/20 23:33 0.59 pg/g 2,3,7,8-TCDF 1.8 1.2 Dil Fac

Isotope Dilution %Recovery Qualifier Prepared Analyzed Limits 13C-2,3,7,8-TCDF 73 40 - 135 10/28/20 09:18 10/30/20 23:33

General Chemistry

Analyte Result Qualifier **RL** Unit Analyzed RL Prepared Dil Fac 0.1 % **Percent Moisture** 0.1 10/22/20 20:55 19.0 **Percent Solids** 81.0 0.1 0.1 % 10/22/20 20:55 1 0.50 0.50 % 10/26/20 21:38 **Total Solids** 80

Client: Tetra Tech GEO

Project/Site: Grenada, Mississippi

Job ID: 180-111870-3

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS)

MD MD

Lab Sample ID: MB 180-333372/1-A

Matrix: Solid

Analysis Batch: 333708

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 333372

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		67	19	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Acenaphthylene	ND		67	15	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Anthracene	ND		67	17	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]anthracene	ND		67	30	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[b]fluoranthene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[k]fluoranthene	ND		67	20	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[g,h,i]perylene	ND		67	14	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Benzo[a]pyrene	ND		67	29	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Chrysene	ND		67	37	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Dibenz(a,h)anthracene	ND		67	43	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Fluoranthene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Fluorene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Indeno[1,2,3-cd]pyrene	ND		67	33	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Naphthalene	ND		67	13	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Phenanthrene	ND		67	18	ug/Kg		10/14/20 08:24	10/16/20 12:16	1
Pyrene	ND		67	16	ug/Kg		10/14/20 08:24	10/16/20 12:16	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl	64		45 - 105	10/14/20 08:24	10/16/20 12:16	1	
2-Fluorophenol (Surr)	64		42 - 105	10/14/20 08:24	10/16/20 12:16	1	
2,4,6-Tribromophenol (Surr)	39		31 - 105	10/14/20 08:24	10/16/20 12:16	1	
Nitrobenzene-d5 (Surr)	70		53 - 105	10/14/20 08:24	10/16/20 12:16	1	
Phenol-d5 (Surr)	61		47 - 105	10/14/20 08:24	10/16/20 12:16	1	
Terphenyl-d14 (Surr)	70		46 - 105	10/14/20 08:24	10/16/20 12:16	1	

Lab Sample ID: LCS 180-333372/2-A

Matrix: Solid

Analysis Batch: 333708

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 333372

7 maryolo Batolii 6007 60	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Acenaphthene	6670	5160		ug/Kg		77	49 - 107
Acenaphthylene	6670	5240		ug/Kg		79	46 - 110
Anthracene	6670	5380		ug/Kg		81	47 - 116
Benzo[a]anthracene	6670	4840		ug/Kg		73	48 - 101
Benzo[b]fluoranthene	6670	4630		ug/Kg		69	46 - 100
Benzo[k]fluoranthene	6670	4660		ug/Kg		70	43 - 114
Benzo[g,h,i]perylene	6670	4500		ug/Kg		68	49 - 111
Benzo[a]pyrene	6670	4770		ug/Kg		72	46 - 114
Chrysene	6670	4350		ug/Kg		65	49 - 100
Dibenz(a,h)anthracene	6670	4320		ug/Kg		65	49 - 112
Fluoranthene	6670	5050		ug/Kg		76	54 - 105
Fluorene	6670	5240		ug/Kg		79	50 - 106
Indeno[1,2,3-cd]pyrene	6670	5010		ug/Kg		75	49 - 112
Naphthalene	6670	4820		ug/Kg		72	53 - 100
Phenanthrene	6670	5130		ug/Kg		77	46 - 111
Pyrene	6670	4880		ug/Kg		73	49 - 100

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Method: EPA 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

LCS LCS

Lab Sample ID: LCS 180-333372/2-A

Matrix: Solid

Analysis Batch: 333708

Client Sample ID: Lab Control Sample

Prep Batch: 333372

Prep Type: Total/NA

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	80		45 - 105
2-Fluorophenol (Surr)	90		42 - 105
2,4,6-Tribromophenol (Surr)	80		31 - 105
Nitrobenzene-d5 (Surr)	88		53 - 105
Phenol-d5 (Surr)	78		47 - 105
Terphenyl-d14 (Surr)	85		46 - 105

Method: 8290A - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-426110/1-A

Matrix: Solid

Analysis Batch: 426767

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 426110

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		1.0	0.54	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total TCDD	ND		1.0	0.54	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,7,8-PeCDD	ND		5.0	0.50	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total PeCDD	ND		5.0	0.50	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,4,7,8-HxCDD	ND		5.0	0.23	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,6,7,8-HxCDD	ND		5.0	0.21	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,7,8,9-HxCDD	ND		5.0	0.20	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total HxCDD	ND		5.0	0.23	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,4,6,7,8-HpCDD	0.254	Jq	5.0	0.14	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total HpCDD	0.254	Jq	5.0	0.14	pg/g		10/28/20 09:18	10/29/20 13:29	1
OCDD	1.45	J	10	0.23	pg/g		10/28/20 09:18	10/29/20 13:29	1
2,3,7,8-TCDF	ND		1.0	0.32	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total TCDF	ND		1.0	0.32	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,7,8-PeCDF	ND		5.0	0.50	pg/g		10/28/20 09:18	10/29/20 13:29	1
2,3,4,7,8-PeCDF	ND		5.0	0.52	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total PeCDF	ND		5.0	0.99	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,4,7,8-HxCDF	ND		5.0	0.20	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,6,7,8-HxCDF	ND		5.0	0.18	pg/g		10/28/20 09:18	10/29/20 13:29	1
2,3,4,6,7,8-HxCDF	ND		5.0	0.19	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,7,8,9-HxCDF	ND		5.0	0.22	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total HxCDF	ND		5.0	0.22	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,4,6,7,8-HpCDF	ND		5.0	0.12	pg/g		10/28/20 09:18	10/29/20 13:29	1
1,2,3,4,7,8,9-HpCDF	ND		5.0	0.17	pg/g		10/28/20 09:18	10/29/20 13:29	1
Total HpCDF	ND		5.0	0.17	pg/g		10/28/20 09:18	10/29/20 13:29	1
OCDF	ND		10	0.19	pg/g		10/28/20 09:18	10/29/20 13:29	1

Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	75		40 - 135	10/28/20 09:18	10/29/20 13:29	1
13C-1,2,3,7,8-PeCDD	74		40 - 135	10/28/20 09:18	10/29/20 13:29	1
13C-1,2,3,6,7,8-HxCDD	77		40 - 135	10/28/20 09:18	10/29/20 13:29	1
13C-1,2,3,4,6,7,8-HpCDD	81		40 - 135	10/28/20 09:18	10/29/20 13:29	1
13C-OCDD	95		40 - 135	10/28/20 09:18	10/29/20 13:29	1
13C-2,3,7,8-TCDF	67		40 - 135	10/28/20 09:18	10/29/20 13:29	1
13C-1,2,3,7,8-PeCDF	72		40 - 135	10/28/20 09:18	10/29/20 13:29	1
13C-1,2,3,4,7,8-HxCDF	73		40 - 135	10/28/20 09:18	10/29/20 13:29	1

Eurofins TestAmerica, Pittsburgh

Page 24 of 39 11/13/2020

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-426110/1-A

Lab Sample ID: LCS 320-426110/2-A

Matrix: Solid

Matrix: Solid

Analyte

OCDD

OCDF

2,3,7,8-TCDF

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

2,3,4,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

2,3,7,8-TCDD

1,2,3,7,8-PeCDD

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

1,2,3,7,8,9-HxCDD

1,2,3,4,6,7,8-HpCDD

Analysis Batch: 426767

Analysis Batch: 426767

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 426110

MB MB

Isotope Dilution %Recovery Qualifier Limits Prepared Analyzed Dil Fac 13C-1,2,3,4,6,7,8-HpCDF 80 40 - 135 10/28/20 09:18 10/29/20 13:29

LCS LCS

17.9

88.0

89.7

98.9

97.0

97.2

212

18.6

93.8

96.2

101

102

105

107

94.2

104

205

Result Qualifier

Unit

pg/g

Spike

Added

20.0

100

100

100

100

100

200

20.0

100

100

100

100

100

100

100

100

200

Client Sample ID: Lab Control Sample

Limits

77 - 130

79 - 134

65 - 144

73 - 147

80 - 143

86 - 134

80 - 137

79 - 137

81 - 134

76 - 132

72 - 140

63 - 152

72 - 151

72 - 152

81 - 137

79 - 139

75 - 141

Prep Type: Total/NA **Prep Batch: 426110**

%Rec.

89

88

90

97

97

106

93

94

96

101

102

105

107

94

104

103

D %Rec

10

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	71		40 - 135
13C-1,2,3,7,8-PeCDD	73		40 - 135
13C-1,2,3,6,7,8-HxCDD	71		40 - 135
13C-1,2,3,4,6,7,8-HpCDD	75		40 - 135
13C-OCDD	94		40 - 135
13C-2,3,7,8-TCDF	65		40 - 135
13C-1,2,3,7,8-PeCDF	71		40 - 135
13C-1,2,3,4,7,8-HxCDF	67		40 - 135
13C-1,2,3,4,6,7,8-HpCDF	75		40 - 135
_			

Lab Sample ID: LCSD 320-426110/3-A

Matrix: Solid

Analysis Batch: 426767

Client Sample I	ID: Lab	Control	Samp	e Dup
		Pren T	vne: To	tal/NA

Prep Batch: 426110

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	17.7		pg/g		88	77 - 130	1	20
1,2,3,7,8-PeCDD	100	87.4		pg/g		87	79 - 134	1	20
1,2,3,4,7,8-HxCDD	100	91.3		pg/g		91	65 - 144	2	20
1,2,3,6,7,8-HxCDD	100	96.4		pg/g		96	73 - 147	3	20
1,2,3,7,8,9-HxCDD	100	95.8		pg/g		96	80 - 143	1	20
1,2,3,4,6,7,8-HpCDD	100	95.1		pg/g		95	86 - 134	2	20
OCDD	200	207		pg/g		103	80 - 137	3	20
2,3,7,8-TCDF	20.0	18.9		pg/g		95	79 - 137	2	20

Eurofins TestAmerica, Pittsburgh

QC Sample Results

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Method: 8290A - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-426110/3-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Solid

Analysis Batch: 426767

Prep Type: Total/NA **Prep Batch: 426110**

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3,7,8-PeCDF	100	94.2		pg/g		94	81 - 134	0	20
2,3,4,7,8-PeCDF	100	96.4		pg/g		96	76 - 132	0	20
1,2,3,4,7,8-HxCDF	100	99.7		pg/g		100	72 - 140	2	20
1,2,3,6,7,8-HxCDF	100	98.8		pg/g		99	63 - 152	3	20
2,3,4,6,7,8-HxCDF	100	103		pg/g		103	72 - 151	2	20
1,2,3,7,8,9-HxCDF	100	105		pg/g		105	72 - 152	2	20
1,2,3,4,6,7,8-HpCDF	100	94.6		pg/g		95	81 - 137	0	20
1,2,3,4,7,8,9-HpCDF	100	104		pg/g		104	79 - 139	1	20
OCDF	200	205		pg/g		103	75 - 141	0	20

LCSD LCSD

ıalifier Limits
40 - 135
40 - 135
40 - 135
40 - 135
40 - 135
40 - 135
40 - 135
40 - 135
40 - 135

Method: SM 2540G - Total, Fixed, and Volatile Solids

Lab Sample ID: 180-111870-1 DU **Client Sample ID: BREPA21SS Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 334823

	Sample	Sample	DU	DU				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
Total Solids	83		 82.9		%		0.2	10	

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

GC/MS Semi VOA

Prep Batch: 333372

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-1	BREPA21SS	Total/NA	Solid	3541	
180-111870-2	BR373SS	Total/NA	Solid	3541	
180-111870-3	BR351SS	Total/NA	Solid	3541	
180-111870-4	BR315SS	Total/NA	Solid	3541	
180-111870-5	BR289SS	Total/NA	Solid	3541	
180-111870-6	BR233SS	Total/NA	Solid	3541	
MB 180-333372/1-A	Method Blank	Total/NA	Solid	3541	
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 333708

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 180-333372/1-A	Method Blank	Total/NA	Solid	EPA 8270E	333372
LCS 180-333372/2-A	Lab Control Sample	Total/NA	Solid	EPA 8270E	333372

Analysis Batch: 333809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-1	BREPA21SS	Total/NA	Solid	EPA 8270E	333372
180-111870-2	BR373SS	Total/NA	Solid	EPA 8270E	333372
180-111870-3	BR351SS	Total/NA	Solid	EPA 8270E	333372
180-111870-4	BR315SS	Total/NA	Solid	EPA 8270E	333372
180-111870-5	BR289SS	Total/NA	Solid	EPA 8270E	333372
180-111870-6	BR233SS	Total/NA	Solid	EPA 8270E	333372

Specialty Organics

Prep Batch: 426110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-1	BREPA21SS	Total/NA	Solid	8290	
180-111870-2 - RA	BR373SS	Total/NA	Solid	8290	
180-111870-2	BR373SS	Total/NA	Solid	8290	
180-111870-3 - RA	BR351SS	Total/NA	Solid	8290	
180-111870-3	BR351SS	Total/NA	Solid	8290	
180-111870-4 - RA	BR315SS	Total/NA	Solid	8290	
180-111870-4	BR315SS	Total/NA	Solid	8290	
180-111870-5 - RA	BR289SS	Total/NA	Solid	8290	
180-111870-5	BR289SS	Total/NA	Solid	8290	
180-111870-6 - RA	BR233SS	Total/NA	Solid	8290	
180-111870-6	BR233SS	Total/NA	Solid	8290	
MB 320-426110/1-A	Method Blank	Total/NA	Solid	8290	
LCS 320-426110/2-A	Lab Control Sample	Total/NA	Solid	8290	
LCSD 320-426110/3-A	Lab Control Sample Dup	Total/NA	Solid	8290	

Analysis Batch: 426767

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-1	BREPA21SS	Total/NA	Solid	8290A	426110
180-111870-3	BR351SS	Total/NA	Solid	8290A	426110
180-111870-4	BR315SS	Total/NA	Solid	8290A	426110
180-111870-5	BR289SS	Total/NA	Solid	8290A	426110
180-111870-6	BR233SS	Total/NA	Solid	8290A	426110
MB 320-426110/1-A	Method Blank	Total/NA	Solid	8290A	426110
LCS 320-426110/2-A	Lab Control Sample	Total/NA	Solid	8290A	426110

Eurofins TestAmerica, Pittsburgh

Page 27 of 39 11/13/2020

_

4

6

0

9

10

11

12

13

14

QC Association Summary

Client: Tetra Tech GEO Job ID: 180-111870-3

Project/Site: Grenada, Mississippi

Specialty Organics (Continued)

Analysis	Batch: 426767	(Continued)
-----------------	---------------	-------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 320-426110/3-A	Lab Control Sample Dup	Total/NA	Solid	8290A	426110

Analysis Batch: 427868

	Sample ID -111870-3 - RA	Client Sample ID BR351SS	Prep Type Total/NA	Matrix Solid	Method P 8290A	Prep Batch 426110
180-	-111870-4 - RA	BR315SS	Total/NA	Solid	8290A	426110
180-	-111870-5 - RA	BR289SS	Total/NA	Solid	8290A	426110
180	-111870-6 - RA	BR233SS	Total/NA	Solid	8290A	426110

Analysis Batch: 428890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-2	BR373SS	Total/NA	Solid	8290A	426110

Analysis Batch: 428963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-2 - RA	BR373SS	Total/NA	Solid	8290A	426110

General Chemistry

Analysis Batch: 334427

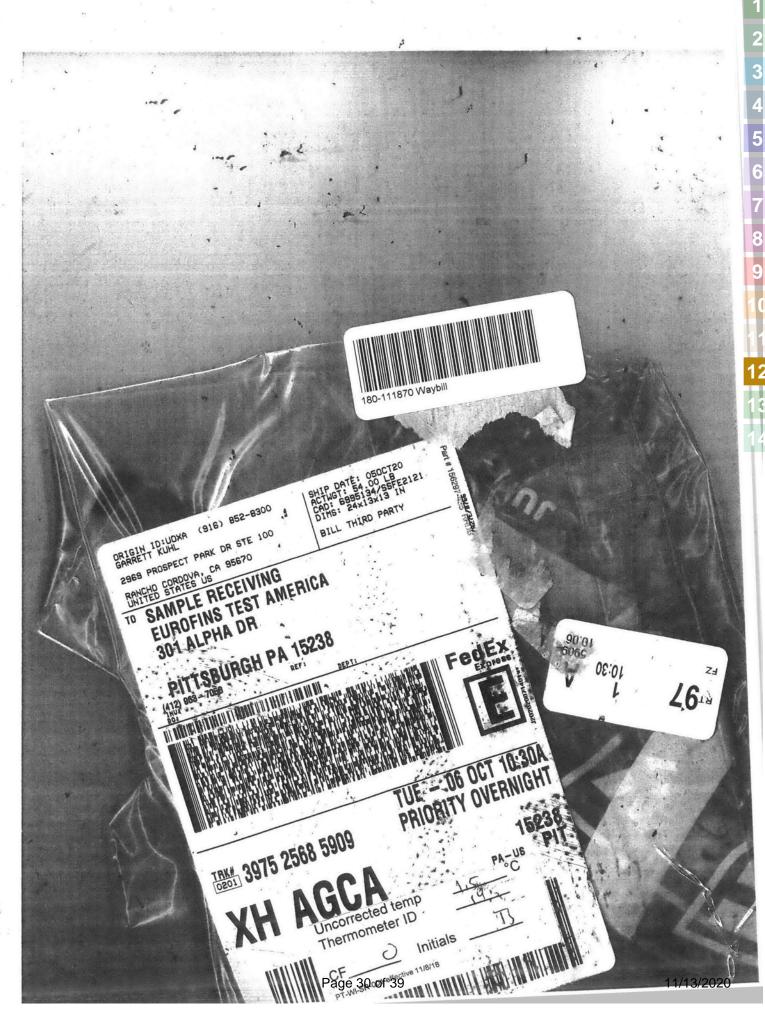
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-1	BREPA21SS	Total/NA	Solid	2540G	
180-111870-2	BR373SS	Total/NA	Solid	2540G	

Analysis Batch: 334429

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-3	BR351SS	Total/NA	Solid	2540G	_ ·
180-111870-4	BR315SS	Total/NA	Solid	2540G	
180-111870-5	BR289SS	Total/NA	Solid	2540G	
180-111870-6	BR233SS	Total/NA	Solid	2540G	

Analysis Batch: 334823

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-111870-1	BREPA21SS	Total/NA	Solid	SM 2540G	
180-111870-2	BR373SS	Total/NA	Solid	SM 2540G	
180-111870-3	BR351SS	Total/NA	Solid	SM 2540G	
180-111870-4	BR315SS	Total/NA	Solid	SM 2540G	
180-111870-5	BR289SS	Total/NA	Solid	SM 2540G	
180-111870-6	BR233SS	Total/NA	Solid	SM 2540G	
180-111870-1 DU	BREPA21SS	Total/NA	Solid	SM 2540G	


Eurofins TestAmerica, Pittsburgh

11/13/2020

eurofins Environment Testing America **Chain of Custody Record**

>> Select a Laboratory or Service Center <<

Environment Testing America	TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica	COC No:	Kyni Date: 2 of 2 COCs	Buchat Carrier: TALS Project #: 100	Sampler of Contract of Kole	Walk-in Client:	Lab Sampling:		Job / SDG No.:			adilibio	Hold Sample	Hold Sample	41014	T-IS	Hold Sample	Held	1 4	,						Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)		X Disposal by Lab Archive for Months		(°C): Obs'd: Corr'd: Therm ID No.:	Company: Date/Time;	Company Date/Time:	124
	DES RCRA Other:	45	Site Contact: Garrett	Lab Contact: Veconica	(ob)	T	28 1/A	10 () a	8't (Et (Wa	SW SW	mohel MAS 5 (\$1	1	NNXX	NNXX	2 NNAX AT	XXX	× × × × × × × × × × × × × × × × × × ×	* * 2	× × ×		NN X X						T	Return to Client	× 2	Cooler Temp. (°C): Obs'd	Received by:	-	K
	ram: Dw NPDES	naifer Abrahams	ms (c) [c]	3-18.56	Analysis Turnaround Time	The Anthony See Anthony		1 week	2 days	1 day	Type # of	Manix	2, 13.67	C 5011 2	C So:1 1	ر چونا ک	C So: 1	2 1:05)	C 50:1 2	-	(2 Model c				_	Codes for the sample		Unknown			Date/Time:	Date/Time:	_
	Regulatory Program:	Project Manager: Sennifer	Email: Senn: Fec. A		Analysis Tu	TAT if different from Relow \$6	2 . 2		20		Sample Sample		5h80 02/h/01	10/4/4 0940	Pillolla	10/4/20 1250		10/4/40 16.00	>171 0 1/10 1 VI		T -	7.0			5=NaOH· 6= Other	se List any EPA Waste		Polson B		Custody Seal No.:	Company:		
#NIA POSTS DEN DENS RIDE PLEX #NIA POSTS PA 157239	ANH #		Client Contact	Your Company Name here Teta Tech	2 Embandel Deive	City/State/Zip Kanelyo Cocaby (A) 05 640		ct Name: Addressed	George MS	PO# 117-2201456A		Sample Identification	SREPAZISS	BR37355	12,635,156	0.83,555	0678955	387338	20 50 SS	348135	2K12355-F2	4	My Morgan	01/2/01	Processivation lead: #= Ca 2= HCl: 3= H2SO4: A=HNO3: 5=NaOH: 6= Other	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the	Comments Section if the lab is to dispose of the sample.	S/O	Hundred FDI	Custody Seals Intact:	Relinquished by: As and	Relinquished by:	_

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468	0	hain	Chain of Custody Record	tody F	Seco	P				eurofins	TINS Environment Testing America
Client Information (Sub Contract Lab)	Sampler:			Lab PM Bortot	Lab PM: Bortot, Veronica	nica		Carrier Tracking No(s)	No(s):	COC No: 180-414269.1	9.1
Client Contact. Shipping/Receiving	Phone:			E-Mail: Veron	onica.Bo	E-Mail: Veronica.Bortot@Eurofinset.com	mo	State of Origin: Mississippi		Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accredita	Accreditations Required (See note):	ote):			Job#:	0-1
Address: 880 Riverside Parkway,	Due Date Requested: 10/12/2020	Ġ.				Ā	Analysis Requested	quested		Preservation Codes	n Codes:
City; West Sacramento State Zio:	TAT Requested (days):	3/8/								A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	M - Hexane N - None (e O - AsNaO2 d P - Na2O4S
Care, 95605 Phone: 916-373-5600(Tel) 916-372-1059(Fax)	#O#:				(stetc				E - NaHSO4 F - MeOH G - Amchlor	
Email:	#OM) I /M s				_	
Project Name: Grenada, Mississippi	Project #: 18010096					isomet					W - pH 4-5 Z - other (specify)
Site;	SSOW#:					Li xos				of cor	
Sample (dentification - Client ID (Lah ID)	Sample Date	Sample	Sample Type (C=comp,	Matrix (Wwwster, Sesolid, Owesterfold,	Field Filtered S MS/M myotae	S_q_0628\A0628				Total Number	Special Instructions/Note:
	X	X	7 65	Preservation Code:	X						
BR500SS (180-111870-7)	10/4/20	16:15 Central		Solid		×				-	
BR861SS (180-111870-8)	10/4/20	17:00 Central		Solid		×				+	
									1		
Note: Since laboratory accreditations are subject to change, Eurofins Test	Merica places the ownership	of method, ar	nalyte & accred	litation complis	noe upon	out subcontract laborat	ories. This sam	ple shipment is forw	arded under	chain-of-custody. If th	e laboratory does not currently
maintan accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica identions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	s/matrix being analyzed, the sar irrent to date, return the signed	nples must be Chain of Cust	shipped back ody attesting to	to the Eurofin said complic	TestAme	ica laboratory or other ofins TestAmerica.	instructions will	be provided. Any ct	hanges to acc	reditation status shou	d be brought to Eurofins
Possible Hazard Identification Unconfirmed					San	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	fee may be	assessed if sam	nples are	retained longer t	han 1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverat	ble Rank: 2			Spe	Special Instructions/QC Requirements:	C Requireme	ints:			
Empty Kit Relinquished by:		Date:			Time:			Method of Shipment:	hipment:		
Relinquished by:	Date/Time:	3/	1500	Company of		Received by:		\	Date/Time:	Shb "1	Company

Cooler Temperature(s) "C and Other Remarks. 1,3127 Received by: Received by: Company Company Date/Time: Custody Seal Nee A Yes A No nquished by: iquished by:

🔆 eurofins

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238

Phone: 412-963-7058 Fax: 412-963-2468

🔆 eurofins

Environment Testing

America

Chain of Custody Record

Eurofins TestAmerica, Pittsburgh

301 Alpha Drive RIDC Park

Pittsburgh, PA 15238 Phone: 412-963-7058 Fax: 412-963-2468

のなっろん T - TSP Dodecahydrate U - Acetone Eurofins Since aboratory accreditations are subject to change. Eurofins TestAmerica places the ownership of method, analyze & accreditation compliance upon out subcontract laboratores. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Special Instructions/Note: W - pH 4-5 Z - other (specify) P - Na204S O - Na2SO3 R - Na2S2O3 S - H2SO4 O - AsNaO2 Months V - MCAA Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes: G - Amchlor H - Ascorbic Acid 180-111870-3 180-415722.1 A - HCL B - NaOH C - Zn Acetate D - Nitro Acid E - NaHSO4 F - MeOH Page 1 of 1 1 - Ice J - DI Water K-EDTA Total Number of containers arrier Tracking No(s) State of Origin: Mississippi Analysis Requested Special Instructions/QC Requirements Veronica.Bortot@Eurofinset.com Return To Client Received by: Lab PM: Bortot, Veronica × × × × 8290A/8290 P Sox 17 Isomers w/ Totals × × Perform MS/MSD (Yes or No) me Field Filtered Sample (Yes or No) E-Mail: Preservation Code: Matrix Solid Solid Solid Solid Solid Solid Company (C=comp, G=grab) Sample Type Primary Deliverable Rank: 2 Sample Central 09:40 Central 11:14 Central 12:50 Central 14:38 Central 16:00 08:45 Central Time (AT Requested (days) Due Date Requested: 10/23/2020 Sample Date 10/4/20 10/4/20 10/4/20 10/4/20 10/4/20 10/4/20 18010096 Date/Time: eliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Sample Identification - Client ID (Lab ID) 916-373-5600(Tel) 916-372-1059(Fax) Possible Hazard Identification TestAmerica Laboratories, Inc. BREPA21SS (180-111870-1 BR351SS (180-111870-3) BR315SS (180-111870-4) BR289SS (180-111870-5) BR373SS (180-111870-2) BR233SS (180-111870-6) 880 Riverside Parkway Grenada, Mississippi Shipping/Receiving **Empty Kit Relinquis** West Sacramento yduished by. Unconfirmed CA, 95605

Custody Seal No.

Custody Seals Intact:

A Yes A No

corpesso, 0

Cooler Temperature(s) °C and Other Remarks.

Page 3 of 3

Please notify your PM immediately if an error is found in shipment. When returning samples, please return all provided QC samples. Go to http://www.testamericainc.com/customer-support/specialized-instructions-for-field-samplers/ for field sampler instructions.

Seal# Seal# Seal# Seal#

Company

Received By

Company

Relinquished By

Company

Received By

Time

Date

Company

Relinquished By

Order Completion Information

Christina Kovitch Creator:

Filled by:

Sent Date:

Tracking #: Sent Via:

Sample Type Matrix Method Preservative Bottle Type Description Qty

10/19/2020 11:59:00PM

ab Project Number.

Deliver By Date:

Ready To Process

Request From Client: 10/19/2020

Bottle Order #:

Bottle Order:

Date Order Posted.

Order Status: Prepared By:

Bottle Order Information

Lot #

Comments

Health and Safety Notes: Preservative

Comment

Scan QR code for field sampler instructions

Notes to Field Staff:

Bottles/Set

Sets

Shipping Order ID: 64985

Job:

Sacramento Sample Receiving Notes

Environment Testing TestAmerica

Tracking # :	689	5103	2815	
-				

SO / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

ile in the job folder with the COC.					
		2 0	-		
Therm. ID: 446 Corr. Factor:				Notes:	
Ice Wet Gel	Othe		-		
Cooler Custody Seal:					
Cooler ID:					
Temp Observed: 1.7 °C Correcte	ed:	2.2	_°C		
From: Temp Blank D Samp	le 🗹				
From. Temp Start =	,				-
	Ves	No	NA		-
Opening/Processing The Shipment	Yes	No	D		
Cooler compromised/tampered with?	0	0	D		
Cooler Temperature is acceptable?	1	ы	_		
Initials: Date: Col	18/10				
Initials: Date: Col	00				
		Ma	ALA		
Unpacking/Labeling The Samples	Yes	No	NA D		
CoC is complete w/o discrepancies?			ם		
Samples compromised/tampered with?		Ø	_		
Sample containers have legible labels?					
Sample custody seal?		D	12		-
Containers are not broken or leaking?	0	D			
Sample date/times are provided?	B		ם	T-i	
Appropriate containers are used?	0			Trizma Lot #(s):	
Sample bottles are completely filled?	D		ם		
Sample preservatives verified?	0		B		_
Samples w/o discrepancies?	D				
Zero headspace?*	D	D	B	Login Completion Yes No	NA
Alkalinity has no headspace?			d	Receipt Temperature on COC?	
Perchlorate has headspace?			0	Samples received within hold time?	D
(Methods 314, 331, 6850)	_/	_	D	NCM Filed?	0
Multiphasic samples are not present?	0		_	Log Release checked in TALS?	B
*Containers requiring zero headspace have no headspace	e, or bubb	le < 6 m	m (1/4")	- 1	
Initials: Date: 10 08	120			Initials: Date: (0 08 20	
Initials: Date: 10 08	1				

INTACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTVFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Job:

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

180-111870 Field Sheet

Tracking #	168951036602	

SO / PO / FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other_____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

ile in the job folder with the COC.				
Therm. ID: AK-5 Corr. Factor: (Ice Wet Gel Cooler Custody Seal: Cooler ID:	Other		_	Notes:
Cooler ID:	1	17		
Temp Observed: 0.5 °C Corrected: 00 °C				
From: Temp Blank Samp	le D			
- Processing The Shinment	Yes	No	NA	
Opening/Processing The Shipment Cooler compromised/tampered with?	D	0	D	
Cooler Temperature is acceptable?	D			
1	1			
Initials: Date: 10/20/	20			
Unpacking/Labeling The Samples	Yes	No	NA	
CoC is complete w/o discrepancies?			D	
Samples compromised/tampered with?				
Sample containers have legible labels?	Ø			
Sample custody seal?			D	
Containers are not broken or leaking?	D	D	D	
Sample date/times are provided?	D			T
Appropriate containers are used?	12			Trizma Lot #(s):
Sample bottles are completely filled?	B			
Sample preservatives verified?	D	D	B	
Samples w/o discrepancies?	D			
Zero headspace?*	D		B	Login Completion Yes No NA
Alkalinity has no headspace?		D		Receipt Temperature on COC?
Perchlorate has headspace? (Methods 314, 331, 6850)	D	ם	D	Samples received within hold time?
Multiphasic samples are not present?	Ø		ם	Log Release checked in TALS?
*Containers requiring zero headspace have no headspace		le < 6 m	m (1/4°)	
Initials: Date: 10 20	120			Initials: Date: 10 20 20

IITACORPICORPIQAIQA_FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTVFORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 TGT 6/11/2020

Client: Tetra Tech GEO Job Number: 180-111870-3

Login Number: 111870 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Watson, Debbie

Creator. Watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Tetra Tech GEO Job Number: 180-111870-3

Login Number: 111870 List Source: Eurofins TestAmerica, Sacramento
List Number: 2 List Creation: 10/08/20 01:40 PM

Creator: Saephan, Kae C

Creator: Saephan, Kae C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	ob: 1.7c corr: 2.2c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

Eurofins TestAmerica, Pittsburgh

Residual Chlorine Checked.

Client: Tetra Tech GEO Job Number: 180-111870-3

Login Number: 111870
List Source: Eurofins TestAmerica, Sacramento
List Number: 3
List Creation: 10/20/20 11:20 AM

Creator: Saephan, Kae C

Answer	Comment	
True		
N/A		
N/A		
True	ob: 0.5c corr: 0.0c	
True		
True		
True		
False	Received project as a subcontract.	
True		
N/A		
True		
N/A		
	True N/A N/A N/A True	

APPENDIX D

2020 Data Validation Reports

Data Validation Summary Report Implementation of 2020 Work Plan for Additional Off-Site Sampling

Koppers Drive and Bailey Road Grenada, Mississippi

PREPARED FOR

Beazer East, Inc.

c/o Three Rivers Management, Inc. 600 River Avenue, Suite 200 Pittsburgh, PA 15212

Koppers Inc.

436 Seventh Avenue Pittsburgh, PA 15219

PREPARED BY

Tetra Tech

1093 Commerce Park Drive, Suite 100 Oak Ridge, TN 37830

December 14, 2020

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 PRECISION AND ACCURACY OF ENVIRONMENTAL DATA	2
2.1 PRECISION	2
2.2 ACCURACY	3
2.3 REPRESENTATIVENESS	3
2.4 COMPARABILITY	4
2.5 COMPLETENESS	4
2.6 SENSITIVITY	4
3.0 VALIDATION RESULTS AND PARCCS	6
3.1 PRECISION	6
3.1.1 Instrument Calibration	6
3.1.2 MS/MSD and LCS/LCSD	6
3.1.3 Field Duplicate Samples	6
3.2 ACCURACY	7
3.2.1 Instrument Calibration	7
3.2.2 MS/MSD	7
3.2.3 LCS Samples	7
3.2.4 Isotope Dilution Analytes	7
3.2.5 Surrogates	7
3.2.6 Analyte Quantitation and Target Identification	7
3.3 REPRESENTATIVENESS	8
3.3.1 Sample Preservation and Holding Times	8
3.3.2 Blanks	8
3.4 COMPARABILITY	8
3.5 COMPLETENESS	8
3.6 SENSITIVITY	8
3.6.1 Internal Standards	8
3.6.2 Tailing Factors	8
4.0 SUMMARY	9
5.0 REFERENCES	10

LIST OF TABLES

Table 1	Analytical Methods
Table 2	Sample Cross-Reference
Table 3	Sample Validation Stages
Table 4	Validation Qualifiers
Table 5	Validation Checks and Stages
Table 6	Results Qualified During Validation
Table 7	Field Duplicate Summary

ATTACHMENTS

Attachment A Validation Checklists

LIST OF ACRONYMS/ABBREVIATIONS

Acronyms/Abbreviations	Definition
ССВ	continuing calibration blank
CCV	continuing calibration verification
DL	detection limit
DMC	deuterated monitoring compound
DQO	data quality objectives
DVSR	data validation summary report
EB	equipment blank
EDD	electronic data delivery
EDL	estimated detection limit
EMPC	estimated maximum potential concentration
FD	field duplicate
GC-MS	gas chromatography-mass spectroscopy
IC	ion chromatography
ICAL	initial calibration
ICB	initial calibration blank
ICS	interference check samples
ICV	initial calibration verification
IDL	instrument detection limits
LCS	laboratory control sample
MDL	method detection limit
mg/kg	milligram per kilogram
mg/L	milligram per liter
MS/MSD	matrix spike / matrix spike duplicate
N/A	not applicable
NFG	National Functional Guidelines
%C	percent completeness
%D	percent difference or drift
%R	percent recovery
%RSD	percent relative standard deviation
PARCCS	precision, accuracy, representativeness, comparability, completeness, sensitivity
QA	quality assurance
QAPP	quality assurance project plan

Acronyms/Abbreviations	Definition
QC	quality control
RL	reporting limit
RPD	relative percent difference
SDG	sample delivery group
SVOC	semivolatile organic compound
Tetra Tech	Tetra Tech, Inc.
USEPA	United States Environmental Protection Agency
μg/L	micrograms per liter
VOC	volatile organic compound
WG	groundwater
WQ	water quality control sample

1.0 INTRODUCTION

Tetra Tech, Inc. (Tetra Tech) has prepared this data validation summary report (DVSR) to assess the validity and usability of laboratory analytical data from the Implementation of the 2020 Work Plan for Additional Off-Site Sampling at Koppers Drive and Bailey Road in Grenada, Mississippi.

Eurofins TestAmerica, Inc. in Pittsburgh, Pennsylvania and West Sacramento, California provided laboratory analytical services. The analyses were performed by the methods and labs shown in Table 1.

The laboratory assigns job numbers, also called sample delivery groups (SDGs), to all samples. The samples associated with quality assurance and quality control (QA/QC) are designed to document the data quality of the samples in each sampling round or within an SDG. Table 2 cross-references each sample with its analysis, SDG, collection date, client sample number, laboratory sample number, QC type, and matrix. The samples shown in Table 2 are those submitted to the lab. Additional lab QC, using the field samples chosen by the lab, are not listed.

The laboratory analytical data were verified and validated in accordance with procedures described in the *RFI Work Plan Addendum 3 Former Koppers Inc. Grenada Facility Grenada, Mississippi Site* (Tetra Tech, 2020) referred to as the updated Quality Assurance Project Plan (QAPP); *National Functional Guidelines for High Resolution Superfund Methods Data Review, (USEPA, 2016)*; *National Functional Guidelines for Superfund Organic Methods Data Review, (USEPA, 2017)*; and laboratory methods. Approximately 95 percent of the data was validated to Stage 2B and 5 percent to Stage 4. Data validation checklists are compiled in Attachment A. The electronic data deliverables (EDDs) were updated with the validation qualifiers and revised results, where applicable.

This report summarizes the QA/QC evaluation of the data using precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS) relative to the project data quality objectives (DQOs). This report provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability of the data.

2.0 PRECISION AND ACCURACY OF ENVIRONMENTAL DATA

Environmental data quality depends on sample collection procedures, analytical methods and instrumentation, documentation, and sample matrix properties. Both sampling procedures and laboratory analyses contain potential sources of uncertainty, error, and/or bias, which may affect the overall quality of a measurement. Errors for sample data may result from incomplete equipment decontamination, inappropriate sampling techniques, sample heterogeneity, improper filtering, and improper preservation. The accuracy of analytical results is dependent on selecting appropriate analytical methods, maintaining equipment properly, and complying with QC requirements. The sample matrix also is an important factor in the ability to obtain precise and accurate results within a given medium.

Environmental and laboratory QA/QC samples provide information on the effects of sampling procedures and evaluate laboratory contamination, laboratory performance, and matrix effects. Field QA/QC samples include equipment blanks (EBs), field duplicates (FDs), and matrix spike/matrix spike duplicates (MS/MSDs). Laboratory QA/QC samples include method blanks, laboratory control samples (LCSs), laboratory control sample duplicates (LCSDs), and additional MS/MSDs needed to meet method requirements.

2.1 PRECISION

Precision is a measure of the agreement of analytical results under a given set of conditions. It is a quantity that is not measured directly but is calculated from concentrations. Precision can be expressed as the relative percent difference (RPD) between two measurements:

$$RPD = \frac{(C1 - C2)*100}{(C1 + C2)/2}$$

where:

C1 = reported concentration for the sample

C2 = reported concentration for the duplicate

Precision can be expressed as the percent relative standard deviation (%RSD) between three or more measurements:

$$%RSD = (s/\bar{a})*100$$

where:

%RSD = percent relative standard deviation

s = standard deviation

ā = mean of replicate analyses

Precision is assessed by calculating %RSD during an initial calibration (ICAL) and RPD from the percent recoveries of the spiked compounds for each sample in the MS/MSD pair. In the absence of an MS/MSD pair, a laboratory duplicate or LCS/LCS duplicate pair can be analyzed as an alternative means of assessing precision. An additional measure of sampling precision is obtained by collecting and analyzing field duplicate samples, which are compared using the RPD results as the evaluation criteria.

MS and MSD samples are field samples which have been spiked by the laboratory with target analytes prior to preparation and analysis. These samples measure the appropriateness of the analytical method and effectiveness in recovering target analytes from a specific environmental matrix. The LCS sample is spiked with the same target analytes as the MS/MSD using an interference-free matrix instead of a field sample aliquot. The LCS measures laboratory efficiency in recovering target analytes in the absence of matrix interferences. It is used to verify that the analyses are being performed in control.

The laboratory analyzes laboratory replicates. A field sample is analyzed and an unspiked duplicate of that sample is also analyzed. The data reviewer compares the reported results of the primary analysis and the laboratory duplicate and calculates RPDs to assess laboratory precision.

Calibration precision is determined by calculating %RSD. Laboratory and field sampling precision are evaluated by calculating RPDs for field sample duplicate pairs. The sampler collects two field samples at the same location and under identical conditions. The laboratory then analyzes the samples under identical conditions.

An RPD outside the allowed limit between MS/MSD samples indicates imprecision. Imprecision is the variance in the consistency with which the laboratory arrives at a reported result. The actual analyte concentration may be higher or lower than the reported result.

Possible causes of poor precision include sample heterogeneity, sample matrix interference, improper sample collection or handling, inconsistent sample preparation, instrument column fouling, and poor instrument stability. In duplicate pairs, results may be reported in either the primary or duplicate samples at levels below the reporting limit (RL) or non-detected. Since these values are estimated, RPD exceedances from these duplicate pairs do not suggest a significant impact to data quality.

2.2 ACCURACY

Accuracy is a measure of the closeness of agreement between a measured value and the true value of an analytical parameter. It may be used to identify bias in each measurement system. Recoveries outside acceptable QC limits may be caused by factors such as instrumentation, analyst error, or matrix interference. Accuracy is assessed through the analysis of continuing calibrations, LCS, LCSD, MS, MSD, and surrogates. In some cases, samples from multiple SDGs were within one QC batch and therefore are associated with the same laboratory QC samples. Accuracy is determined using the percent recovery (%R) of MS and LCS analyses.

Percent recovery is calculated using the following equation:

$$%R = (A-B)/C \times 100$$

where:

A = measured concentration in the spiked sample

B = measured native concentration in the unspiked sample

C = concentration of the spike

The percent recovery of each analyte spiked in MS/MSD samples and LCS is evaluated with the acceptance criteria specified by the QAPPs and laboratory limits. Spike recoveries outside the acceptable QC accuracy limits provide an indication of bias, where the reported data may overestimate or underestimate the actual concentration of compounds detected or quantitation limits reported for environmental samples.

2.3 REPRESENTATIVENESS

Representativeness is a qualitative parameter that expresses the degree to which the sample data are characteristic of a population. It is evaluated by reviewing the QC results of blanks, samples, and holding times. Positive detects of compounds in the blank samples identify compounds that may have been introduced into the samples during sample collection, transport, preparation, or analysis. The QA/QC blanks collected and analyzed for this event were method blanks and EBs.

A method blank is a laboratory grade water or solid matrix that contains the method reagents and has undergone the same preparation and analysis as the environmental samples. The method blank provides a measure of the combined contamination derived from the laboratory source water, glassware, instruments, reagents, and sample preparation steps. Method blanks are prepared for each sample of a similar matrix extracted by the same method at a similar concentration level.

EBs consist of analyte-free water poured over or through the sample collection equipment. The water is collected in a sample container for laboratory analysis. These blanks are collected after the sampling equipment is decontaminated and measure efficiency of the decontamination procedure. Equipment blanks are collected and analyzed for all target analytes.

Contaminants found in both the environmental sample and the blank sample are assumed to be laboratory artifacts if both values are less than the RL or if a sample result and blank contaminant value are greater than the RL and the sample result is less than 10 times the blank contaminant value.

Holding times are evaluated to assure that the sample integrity is intact for accurate sample preparation and analysis. Holding times are specific for each method and matrix analyzed. Holding time exceedance can cause loss of sample constituents due to biodegradation, precipitation, volatilization, and chemical degradation. Sample results for analyses that were performed after the method holding time are qualified according to national functional guidelines (NFGs).

2.4 COMPARABILITY

Comparability is a qualitative characteristic that defines the extent to which the data for a chemical parameter measurement are consistent with, and may be compared with, data from other sampling events. Comparability is dependent upon the design of the sampling plans and execution of activities consistent with approved plans. Factors affecting comparability include sample collection and handling techniques, matrix type, and analytical method. Comparability is achieved through the use of standard techniques to collect representative samples, consistent application of analytical method protocols, and use of appropriate units in reporting analytical results. Comparability is also dependent upon other PARCCS criteria, because only when precision, accuracy, and representativeness are known can data sets be compared with confidence.

2.5 COMPLETENESS

Completeness is defined as the percentage of acceptable sample results compared to the total number of sample results. Completeness is evaluated to determine if an acceptable amount of usable data were obtained so that a valid scientific site assessment can be completed. Completeness equals the total number of sample results for each fraction minus the total number of rejected sample results divided by the total number of sample results multiplied by 100.

Percent completeness is calculated using the following equation:

$$%C = (T - R)/T \times 100$$

where:

%C = percent completeness

T = total number of sample results

R = total number of rejected sample results

Completeness is also determined by comparing the planned number of samples per method and matrix as specified in the QAPP, with the number determined above. Data rejected in favor of alternate results are not used in the completion calculation.

2.6 SENSITIVITY

Sensitivity is the ability of an analytical method or instrument to discriminate between measurement responses representing different concentrations. It is generally used to describe the instrument detection limits or RLs established to meet project DQOs. The method detection limit (MDL) represents the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero. Adjusted MDL values reflect sample-specific actions, such as dilutions or varying aliquot sizes. The Test

America laboratory data report shows the adjusted MDL and RL for the SW-846 Method 8270D/E data. The RL is the minimum concentration that can be reported based on the analysis of a specific matrix. The RL is often the lowest acceptable calibration point for the analyte. The SW-846 Method 8290A data shows an estimated detection limit (EDL). The EDL is the minimum concentration required to produce a specified signal-to-noise ratio. All results reported between the adjusted MDL and RL or EDL and RL were qualified "J" by the labs.

3.0 VALIDATION RESULTS AND PARCCS

This section discusses the validation results and the associated PARCCS criteria. Before conducting the PARCCS evaluation, the analytical data were validated according to the QAPP, NFGs, and the analytical methods.

Samples not meeting the acceptance criteria were denoted with a validation qualifier that indicates a deficiency with the data. Table 4 contains validation qualifiers used in data validation.

When more than one validation qualifier is applicable to a data point, the final validation qualifier applied is based on the following hierarchy:

R > J "R" takes precedence over the "J" qualifier.

J+ The high bias (J+) qualifier is applied to detected results only.

J > J+ or J- The unbiased (J) qualifier supersedes biased (J+ or J-) qualifiers since it is not

possible to assess the direction of the potential bias.

J > EMPC "J" qualifier supersedes the "EMPC" qualifier.

J = J+ plus J- Adding biased (J+ or J-) qualifiers with opposite signs results in an unbiased

qualifier (J).

UJ = U plus J "UJ" qualifier is used when a non-detected "U" flag is added to a "J" flag.

Table 5 identifies the QC elements reviewed for each validation level. The actual elements are method-dependent.

Table 6 presents all results qualified during validation.

3.1 PRECISION

3.1.1 Instrument Calibration

The objective of an ICAL is to ensure that an instrument can produce acceptable qualitative and quantitative data by determining the ratio of instrument response to analyte concentration. %RSD in methods 8290A and 8270D/E is used to evaluate ICAL results and provide a means of evaluating precision within an analytical system. No data were qualified for imprecision in the ICAL for this task.

3.1.2 MS/MSD and LCS/LCSD

Most MS/MSD and LCS/LCSD RPDs were within the lab's acceptance criteria. In SDG 180-111805-1, benzo[g,h,i]perylene RPD was high between the MS and MSD of KD297SS. The parent sample was non-detect, so there can be no imprecision. Per NFG the sample was not qualified. In SDGs 180-111697-1 and 180-111805-1, the RPD of 2,3,4,6,7,8-HxCDF was high between the LCS and LCSD. The affected samples were qualified "J" or "UJ" per NFG.

3.1.3 Field Duplicate Samples

For results > 5X the RL, the FD samples were evaluated for acceptable precision with RPDs. If one or both results was < 5X the RL, samples were evaluated by the difference between the two measurements. Table 7 includes a summary of the FD analyses and results where an analyte was detected in either the parent and/or the FD. If RPDs exceeded 40 percent or the absolute value of the difference between the results was greater than 2x the RL, the results were qualified. Two pairs were analyzed: KD010SS and KD860SS and BR500SS and BR861SS. Thirty-eight results were qualified "J" or "UJ" for imprecision.

3.2 ACCURACY

3.2.1 Instrument Calibration

The objective of continuing calibration verification is to ensure that the instrument continues to meet the sensitivity and linearity criteria throughout each analytical sequence. Initial and continuing calibration verification (CCV) results provide a means of evaluating accuracy within an analytical run. Percent difference or drift (%D), %R, correlation coefficient, and coefficient of determination are the parameters used to measure the effectiveness of instrument calibration. The correlation coefficient indicates the linearity of the calibration curve. %R and %D are used to verify the ongoing calibration acceptability of the analytical system. No data were qualified for calibration outliers.

3.2.2 MS/MSD

In 180-111869-1, 1,2,3,7,8,9-HxCDD recovery was high in the MS of DW202SS. It was qualified "J" in the parent sample.

3.2.3 LCS Samples

Recoveries were within the lab's limit. No data were qualified for LCS recovery outliers.

3.2.4 Isotope Dilution Analytes

Isotope dilution analytes are added to all samples analyzed by 8290A. All recoveries were within the lab's acceptance limits.

3.2.5 Surrogates

Surrogates or deuterated compounds are added to all samples analyzed by 8270D/E to measure the efficiency of the analytical method. In SDG 180-111869-1, no surrogates were detected in DW206SS because of sample dilution. No qualification was applied. Tribromophenol recovery was low in DW202SS. The target compounds were all base-neutrals. Tribromophenol is an acid compound, so no qualification was needed.

3.2.6 Analyte Quantitation and Target Identification

Raw data were evaluated for the Stage 4 samples. All analyte quantitation and target identifications reviewed matched the reported values. Target compounds detected below the RLs were flagged "J" by the laboratory and should be considered estimated. The qualifier was retained in validation.

In the 8290A analyses, estimated maximum possible concentrations (EMPCs) were calculated by the laboratory for 2,3,7,8-substituted isomers that had a signal to noise ratio of ≥ 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. The lab calculated EMPCs for multiple results. The validator assigned the "EMPC" qualifier to 58 of these results.

Results for detected total homologues were considered estimated and qualified "J" because concentrations were determined from calibrated and non-calibrated (estimated) values. Three hundred three results were qualified "J" due to uncertainty associated with quantitation.

In 8290A analyses, many data points that exceeded the calibration ranges of the instrument were reported. The results that exceeded the calibration range were qualified "J." Thirty results were qualified for exceeding the calibration range.

3.3 REPRESENTATIVENESS

3.3.1 Sample Preservation and Holding Times

Holding times and sample preservation were evaluated to verify compliance with the analytical methods. 8270D/E and 8290A samples do not require preservation other than cooling. Holding times were met for all samples.

3.3.2 Blanks

Method blanks and EBs were analyzed to evaluate representativeness. The concentration of an analyte in any blank was used for data qualification. If contaminants were detected in a blank, the blank concentration was compared to the sample results. If the analyte was not detected in the sample, no qualification was applied to the sample.

In 8290A analyses, every method blank had multiple detections. The concentrations in the soil samples were >10x the amount in the blanks, so there was no qualification. For the method blanks associated with the EBs, analytes were also detected. Twenty-four results were qualified "U" in EBs because of lab contamination. The concentrations in the EBs was <10x the amount in the blanks.

3.4 COMPARABILITY

The laboratory used standard analytical methods for all analyses. In all cases, the adjusted MDLs attained were at or below the RLs. The comparability of the data is acceptable.

3.5 COMPLETENESS

The completeness level attained for the field samples and EBs is 100 percent. The percentage was calculated as the total number of accepted (non-rejected) sample results divided by the total number of sample results multiplied by 100. No data were rejected.

3.6 SENSITIVITY

The calibrations were evaluated for instrument sensitivity and were determined to be technically acceptable. Due to high analyte concentrations, many analytical runs were analyzed at dilutions. For diluted analyses, adjusted MDLs and RLs were elevated.

3.6.1 Internal Standards

Internal standards were added to all samples analyzed by methods 8270D/E and 8290A. Internal standard areas and retention times were evaluated to ensure that instrument sensitivity and response remained stable during analysis. In 8290A, internal standard areas, retention times, and recoveries were reported in Level IV data packages only. They were evaluated in Stage 4 validation to ensure that instrument sensitivity and response remained stable during analysis. No data were qualified for internal standard anomalies.

3.6.2 Tailing Factors

Method SW-846 8270D/E requires that the instrument tuning solution be able to assess the column performance and injection port inertness. Tailing factors are used to determine the presence of active sites on the column that would affect sensitivity. Based upon method 8270D/E requirements, the tailing factor measured at 10% peak height for the extracted quantitation ion should be no greater than 2. They were evaluated in Stage 4 validation. Tailing factors were acceptable.

4.0 SUMMARY

The analytical data validation of the laboratory analytical results generated from the Implementation of the 2020 Work Plan for Additional Off-Site Sampling at Koppers Drive and Bailey Road in Grenada, Mississippi established that the overall project requirements and completeness levels were met. Sample results were qualified for calibration exceedances, compound identification, EMPCs, imprecision between the LCS and LCSD, imprecision between samples and their FDs, quantitation, and detections below the RL. No data were rejected.

5.0 REFERENCES

Tetra Tech. (2020). RFI Work Plan Addendum 3 Former Koppers Inc. Grenada Facility Grenada, Mississippi.

United States Environmental Protection Agency (USEPA). (2016). *National Functional Guidelines for High Resolution Superfund Methods Data Review.* EPA-542-B-16-001. April.

USEPA. (2017b). *National Functional Guidelines for Superfund Organic Methods Data Review.* EPA-540-R-2017-002. January.

Tables

Table 1 Analytical Methods

Method	Parameters	Lab	
SW-846 Method 8270D/E	Polynuclear Aromatic Hydrocarbons	oons Eurofins TestAmerica - Pittsburgh	
SW-846 Method 8290A	Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans	Eurofins TestAmerica - West Sacramento	

SDG	Client Sample ID	Lab Sample ID	Matrix	Sample Type	Sample Date	SW-846 8270D/E	SW-846 8290A
180-111697-1	KD302SS	180-111697-1	Soil	Normal	9/28/2020	X	X
180-111697-1	KD280SS	180-111697-2	Soil	Normal	9/28/2020	X	Χ
180-111697-1	KD280SS-EB	180-111697-3	Water	Equipment Blank	9/28/2020	X	Χ
180-111697-1	KD248SS	180-111697-4	Soil	Normal	9/29/2020	X	Χ
180-111697-1	KD216SS	180-111697-5	Soil	Normal	9/29/2020	X	X
180-111697-1	KD132SS	180-111697-6	Soil	Normal	9/29/2020	Х	X
180-111697-1	KDEPA9SS	180-111697-7	Soil	Normal	9/29/2020	Х	X
180-111697-1	KD106SS-EB	180-111697-8	Water	Equipment Blank	9/29/2020	Х	Χ
180-111697-1	KD106SS	180-111697-9	Soil	Normal	9/29/2020	X	Х
180-111697-1	KD080SS	180-111697-10	Soil	Normal	9/30/2020	Х	Χ
180-111697-1	KD010SS	180-111697-11	Soil	Normal	9/30/2020	Х	Χ
180-111697-1	KD860SS	180-111697-12	Soil	Field Duplicate	9/30/2020	Х	Х
180-111805-1	KD029SS	180-111805-1	Soil	Normal	9/30/2020	Х	Х
180-111805-1	KD045SS	180-111805-2	Soil	Normal	10/1/2020	Х	Х
180-111805-1	KD123SS	180-111805-3	Soil	Normal	10/1/2020	Х	Х
180-111805-1	KD149SS	180-111805-4	Soil	Normal	10/1/2020	X	X
180-111805-1	KD225ESS	180-111805-5	Soil	Normal	10/1/2020	X	X
180-111805-1	KD225WSS	180-111805-6	Soil	Normal	10/1/2020	X	X
180-111805-1	DW201SS	180-111805-7	Soil	Normal	10/2/2020	X	X
180-111805-1	KD251SS	180-111805-8	Soil	Normal	10/2/2020	X	X
180-111805-1	KD275SS	180-111805-9	Soil	Normal	10/2/2020	X	X
180-111805-1	KD297SS	180-111805-10	Soil	Normal	10/2/2020	X	X
180-111805-1	KD297SS-MS	180-111805-10 MS	Soil	Matrix Spike	10/2/2020	X	X
180-111805-1	KD297SS-MSD	180-111805-10 MSD	Soil	Matrix Spike Duplicate	10/2/2020	X	X
180-111805-1	KD010SS-EB	180-111805-11	Water	Equipment Blank	9/30/2020	X	X
180-111805-1	KD01033-EB KD297SS-EB	180-111805-12	Water	Equipment Blank	10/2/2020	X	X
180-111805-1	KD29733-EB KD225WSS-EB	180-111805-13	Water	Equipment Blank	10/1/2020	X	X
180-111869-1	DW202SS	180-111869-1	Soil	Normal	10/3/2020	X	X
180-111869-1	DW202SS-MS	180-111869-1 MS	Soil		10/3/2020	X	X
180-111869-1	DW202SS-WSD	180-111869-1 MSD	Soil	Matrix Spike Matrix Spike Duplicate	10/3/2020	X	X
180-111869-1	DW203SS	180-111869-2	Soil	Normal	10/3/2020	X	X
	DW203SS DW204SS		Soil			X	X
180-111869-1		180-111869-3		Normal	10/3/2020		
180-111869-1 180-111869-1	DW205SS	180-111869-4	Soil	Normal	10/3/2020	X	X
180-111869-1	DW206SS	180-111869-5	Soil	Normal	10/3/2020		X
	DW207SS	180-111869-6	Soil	Normal	10/3/2020	X	X
180-111869-1	KD321SS	180-111869-7	Soil	Normal	10/3/2020	X	X
180-111869-1	DW208SS	180-111869-8	Soil	Normal	10/3/2020	X	X
180-111869-1	DW209SS	180-111869-9	Soil	Normal	10/3/2020	X	X
180-111869-1	DW210SS	180-111869-10	Soil	Normal	10/3/2020	X	X
180-111869-1	DW210SS-EB	180-111869-11	Water	Equipment Blank	10/3/2020	X	X
180-111870-1	BR500SS	180-111870-7	Soil	Normal	10/4/2020	X	X
180-111870-1	BR861SS	180-111870-8	Soil	Field Duplicate	10/4/2020	X	X
180-111870-2	BR233SS-EB	180-111870-9	Water	Equipment Blank	10/4/2020	X	X
180-111870-3	BREPA21SS	180-111870-1	Soil	Normal	10/4/2020	X	X
180-111870-3	BR373SS	180-111870-2	Soil	Normal	10/4/2020	X	X
180-111870-3	BR351SS	180-111870-3	Soil	Normal	10/4/2020	X	X
180-111870-3	BR315SS	180-111870-4	Soil	Normal	10/4/2020	X	X
180-111870-3	BR289SS	180-111870-5	Soil	Normal	10/4/2020	X	X
180-111870-3	BR233SS	180-111870-6	Soil	Normal	10/4/2020	X	X

SDG	Client Sample ID	Lab Sample ID	Matrix	Sample Type	Sample Date	SW-846 8270D/E	SW-846 8290A
180-111697-1	KD302SS	180-111697-1	Soil	Normal	9/28/2020	Stage 2B	Stage 2B
180-111697-1	KD280SS	180-111697-2	Soil	Normal	9/28/2020	Stage 2B	Stage 2B
180-111697-1	KD280SS-EB	180-111697-3	Water	Equipment Blank	9/28/2020	Stage 2B	Stage 2B
180-111697-1	KD248SS	180-111697-4	Soil	Normal	9/29/2020	Stage 2B	Stage 2B
180-111697-1	KD216SS	180-111697-5	Soil	Normal	9/29/2020	Stage 2B	Stage 2B
180-111697-1	KD132SS	180-111697-6	Soil	Normal	9/29/2020	Stage 2B	Stage 2B
180-111697-1	KDEPA9SS	180-111697-7	Soil	Normal	9/29/2020	Stage 2B	Stage 2B
180-111697-1	KD106SS-EB	180-111697-8	Water	Equipment Blank	9/29/2020	Stage 2B	Stage 2B
180-111697-1	KD106SS	180-111697-9	Soil	Normal	9/29/2020	Stage 2B	Stage 2B
180-111697-1	KD080SS	180-111697-10	Soil	Normal	9/30/2020	Stage 2B	Stage 2B
180-111697-1	KD010SS	180-111697-11	Soil	Normal	9/30/2020	Stage 2B	Stage 2B
180-111697-1	KD860SS	180-111697-12	Soil	Field Duplicate	9/30/2020	Stage 2B	Stage 2B
180-111805-1	KD029SS	180-111805-1	Soil	Normal	9/30/2020	Stage 2B	Stage 2B
180-111805-1	KD045SS	180-111805-2	Soil	Normal	10/1/2020	Stage 2B	Stage 2B
180-111805-1	KD123SS	180-111805-3	Soil	Normal	10/1/2020	Stage 2B	Stage 2B
180-111805-1	KD149SS	180-111805-4	Soil	Normal	10/1/2020	Stage 2B	Stage 2B
180-111805-1	KD225ESS	180-111805-5	Soil	Normal	10/1/2020	Stage 2B	Stage 2B
180-111805-1	KD225WSS	180-111805-6	Soil	Normal	10/1/2020	Stage 2B	Stage 2B
180-111805-1	DW201SS	180-111805-7	Soil	Normal	10/2/2020	Stage 2B	Stage 2B
180-111805-1	KD251SS	180-111805-8	Soil	Normal	10/2/2020	Stage 2B	Stage 2B
180-111805-1	KD275SS	180-111805-9	Soil	Normal	10/2/2020	Stage 2B	Stage 2B
180-111805-1	KD297SS	180-111805-10	Soil	Normal	10/2/2020	Stage 2B	Stage 2B
180-111805-1	KD297SS-MS	180-111805-10 MS	Soil	Matrix Spike	10/2/2020	Stage 2B	Stage 2B
180-111805-1	KD297SS-MSD	180-111805-10 MSD	Soil	Matrix Spike Duplicate	10/2/2020	Stage 2B	Stage 2B
180-111805-1	KD010SS-EB	180-111805-11	Water	Equipment Blank	9/30/2020	Stage 2B	Stage 2B
180-111805-1	KD297SS-EB	180-111805-12	Water	Equipment Blank	10/2/2020	Stage 2B	Stage 2B
180-111805-1	KD225WSS-EB	180-111805-13	Water	Equipment Blank	10/1/2020	Stage 2B	Stage 2B
180-111869-1	DW202SS	180-111869-1	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW202SS-MS	180-111869-1 MS	Soil	Matrix Spike	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW202SS-MSD	180-111869-1 MSD	Soil	Matrix Spike Duplicate	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW203SS	180-111869-2	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW204SS	180-111869-3	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW205SS	180-111869-4	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW206SS	180-111869-5	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW207SS	180-111869-6	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	KD321SS	180-111869-7	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW208SS	180-111869-8	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW209SS	180-111869-9	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW20000	180-111869-10	Soil	Normal	10/3/2020	Stage 2B	Stage 2B
180-111869-1	DW210SS-EB	180-111869-11	Water	Equipment Blank	10/3/2020	Stage 2B	Stage 2B
180-111870-1	BR500SS	180-111870-7	Soil	Normal	10/4/2020	Stage 2B	Stage 4
180-111870-1	BR861SS	180-111870-8	Soil	Field Duplicate	10/4/2020	Stage 4	Stage 4
180-111870-2	BR233SS-EB	180-111870-9	Water	Equipment Blank	10/4/2020	Stage 4	Stage 4
180-111870-3	BREPA21SS	180-111870-1	Soil	Normal Normal	10/4/2020	Stage 2B	Stage 2B
180-111870-3	BR373SS	180-111870-2	Soil	Normal	10/4/2020	Stage 2B	Stage 2B
180-111870-3	BR351SS	180-111870-3	Soil	Normal	10/4/2020	Stage 2B	Stage 2B
180-111870-3	BR315SS	180-111870-4	Soil	Normal	10/4/2020	Stage 2B	Stage 2B Stage 2B
180-111870-3	BR289SS	180-111870-4	Soil	Normal	10/4/2020	Stage 2B	Stage 2B Stage 2B
180-111870-3	BR233SS	180-111870-6	Soil	Normal	10/4/2020	Stage 2B	Stage 2B

Table 4 Validation Qualifiers and Definitions

Validation Qualifier	Definition
EMPC	Chromatographic peaks are present in the expected retention time window; however, the peaks do not meet all of the conditions required for a positive identification. The reported result represents the estimated maximum possible concentration if the compound was present.
J	The analyte was positively identified; the concentration is estimated.
N	Tentative; the result was not detected on a second column necessary to confirm the qualitative identification.
R	The result is unusable. The sample result is rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in sample.
	Analyte was not detected at the reporting limit.
U	The compound should be considered "not detected" because it was detected in the field/equipment blank, trip blank, or laboratory method blank at a similar level.
UJ	The analyte was not detected; the reporting limit may be inaccurate or imprecise.

Table 5 Validation Checks and Stages

Verification and Validation Checks	Stage 2B	Stage 4
Documentation identifies the laboratory receiving and conducting analyses, and includes documentation for all samples submitted by the project or requester for analyses.	Х	Х
Requested analytical methods were performed and the analysis dates are present.	Х	Х
Requested target analyte results are reported along with the original laboratory data qualifiers and data qualifier definitions for each reported result (and the uncertainty of each result and clear indication of the type of uncertainty reported if required, e.g., for radiochemical analyses).	Х	Х
Requested target analyte result units are reported (along with their associated uncertainty units if required, e.g., for radiochemical analyses).	X	Х
Requested reporting limits for all samples are present and results at and below the requested (required) reporting limits are clearly identified (including sample detection limits if required).	Х	Х
Sampling dates (including times if needed), date and time of laboratory receipt of samples, and sample conditions upon receipt at the laboratory (including preservation, pH, and temperature) are documented.	Х	Х
For radiochemical analyses, the sample-specific critical values (sometimes called "critical level," "decision level," or "detection threshold") and sample specific minimum detectable value, activity, or concentration for all samples are reported and results at and below the requested (required) critical values are clearly identified.	Х	Х
For radiochemical analyses, the chemical yield (if applicable to the method) and reference date and time (especially for short lived isotopes) are reported for all samples (as appropriate).	Х	Х
Sample results are evaluated by comparing sample conditions upon receipt at the laboratory (e.g., preservation checks) and sample characteristics (e.g., percent moisture) to the requirements and guidelines present in national or regional data validation documents, analytical method(s), or contract.	Х	X
Requested methods (handling, preparation, cleanup, and analytical) are performed.	Х	Х
Method dates (including dates, times and duration of analysis for radiation counting measurements and other methods, if needed) for handling (e.g., Toxicity Characteristic Leaching Procedure), preparation, cleanup and analysis are present, as appropriate.	Х	Х
Sample-related QC data and QC acceptance criteria (e.g., method blanks, surrogate recoveries, deuterated monitoring compounds (DMC) recoveries, laboratory control sample (LCS) recoveries, duplicate analyses, matrix spike and matrix spike duplicate recoveries, serial dilutions, post digestion spikes, standard reference materials) are provided and linked to the reported field samples (including the field quality control samples such as trip and equipment blanks).	Х	Х
Requested spike analytes or compounds (e.g., surrogate, DMCs, LCS spikes, post digestion spikes) have been added, as appropriate.	Х	Х
Sample holding times (from sampling date to preparation and preparation to analysis) are evaluated.	X	Х
Frequency of QC samples is checked for appropriateness (e.g., one LCS per 20 samples in a preparation batch).	Х	Х

Attachment A

Validation Checklists

Client Name:Beazer East, Inc.SDG/Report No.:180-111697-1Project Site:Grenada, MississippiLab ID:Eurofins TestAmericaNo. of Samples:12Matrix:Soil/Water

Area Reviewed		Anomalies Qualification Required		Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport	X		No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance	X		No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)	X		Yes	KD106SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, OCDD, Total HpCDD, and Total HpCDF "U". KD280SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 2,3,7,8- TCDF, and Total TCDF "U".
8. Isotope Dilution Analytes		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples	X		Yes	KD280SS-EB and KD106SS-EB: Qualify 2,3,4,6,7,8-HxCDF "J" or "UJ".
11. Field Duplicates	X		Yes	KD010SS and KD860SS: Qualify 13 analytes "J".
12. Internal Standards				
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify OCDD "J" where the calibration range was exceeded.
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label		_2B_Va	lidation_Manual	
Verification and Validation Label Code	S2BV	M		

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
KD302SS	180-111697-1	9/28/2020	2.7 °C/0.9 °C	10/06/2020	10/17/2020
KD280SS	180-111697-2	9/28/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD280SS-EB	180-111697-3	9/28/2020	2.7 °C/0.9 °C	10/07/2020	10/10/2020
KD248SS	180-111697-4	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD216SS	180-111697-5	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD132SS	180-111697-6	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KDEPA9SS	180-111697-7	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020; 10/22/2020
KD106SS-EB	180-111697-8	9/29/2020	2.7 °C/0.9 °C	10/07/2020	10/10/2020
KD106SS	180-111697-9	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020; 10/22/2020
KD080SS	180-111697-10	9/30/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD010SS	180-111697-11	9/30/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020; 10/22/2020
KD860SS	180-111697-12	9/30/2020	2.7 °C/0.9 °C	10/06/2020	10/20/2020; 10/22/2020

The following section is intended to specify areas evaluated and to provide an explanation (where applicable) for the areas where problems were identified during review.

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept \leq 6 °C?	Yes
Were samples received in proper condition?	Yes
Notes: The sample receipt at the West Sacramento lab states that corrected temperature at receipt the GOG Lab 111 and 126 control of the Cont	t was 6.9 °C. The
writing on the COC looks like 0.9 °C.	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes
were commence unany zon within acceptance including vinion (to uniformity).	

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	Yes
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
WDM for ICAL on Instrument 3D5 analyzed on 9/23/2020. The standards were analyzed on 10/5/202 Level III package does not provide all information.	0.

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
There is an ICAL sheet (page 579) that says RT and S/N ratio were good for soil ICAL, as were ion ratios. Level	
III package does not provide all ICAL information.	

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A
Were retention time criteria met? Not shown in Level III	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A
Notes: Level III package does not provide all CCV information.	

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes
In MB 320-419261/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,	
1,2,3,4,7,8-HxCDD, OCDD,OCDF, Total HpCDD, and Total HxCDD.	
In MB 320-419525/1-A (water), the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,	
1,2,3,4,6,7,8-HpCDF, 2,3,7,8-TCDF, OCDD, Total HpCDD, Total HpCDF, and Total TCDF.	
In KD106SS-EB, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, OCDD, Total HpCDD, and Total 1	HpCDF were
detected.	
In KD280SS-EB, twenty-one analytes were detected.	

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within laboratory established limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	No
RPD of the LCS 320-419525/LCSD 320-419525 exceeded control limits for 2,3,4,6,7,8-HxCDF.	

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	No
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	No
Notes: REG/FD pair: KD010SS and KD860SS	

12. Internal Standards and Recovery Standards	
Were samples spiked with internal standards and recovery standards?	Yes
Were recoveries within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Were retention times within established limits?	N/A

13. Compound Identification and Quantitation	
Were the retention times within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Was an estimated maximum possible concentration (EMPC) calculated and reported for 2,3,7,8-substituted isomers?	Yes
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of \geq 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/02/2020

$Data\ Validation\ Checklist-Polynuclear\ Aromatic\ Hydrocarbons\ by\ 8270D/8270E$

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111697-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	12	Matrix:	Soil/Water

Area Reviewed	Anon	nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates		X	No	None
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label		Stage_2B_Validation_Manual		
Verification and Validation Label Code	S2BV	M		

Data Validation Checklist – Polynuclear Aromatic Hydrocarbons by 8270D/8270E

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
KD302SS	180-111697-1	9/28/2020	2.7 °C	10/08/2020	10/11/2020
KD280SS	180-111697-2	9/28/2020	2.7 °C	10/08/2020	10/11/2020
KD280SS-EB	180-111697-3	9/28/2020	2.7 °C	10/02/2020	10/12/2020
KD248SS	180-111697-4	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD216SS	180-111697-5	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD132SS	180-111697-6	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KDEPA9SS	180-111697-7	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD106SS-EB	180-111697-8	9/29/2020	2.7 °C	10/05/2020	10/16/2020
KD106SS	180-111697-9	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD080SS	180-111697-10	9/30/2020	2.7 °C	10/14/2020	10/16/2020
KD010SS	180-111697-11	9/30/2020	2.7 °C	10/14/2020	10/16/2020
KD860SS	180-111697-12	9/30/2020	2.7 °C	10/14/2020	10/16/2020

The following section is intended to specify areas evaluated and to provide an explanation (where applicable) for the areas where problems were identified during review.

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

Data Validation Checklist – Polynuclear Aromatic Hydrocarbons by 8270D/8270E

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) ≤ the	Yes
method or Coefficient of Correlation (r) ≥ 0.995 or $r2 \geq 0.99$?	res
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs \geq method requirements?	Yes
Were qualifications required based on this information?	No

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	No
•	

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

Data Validation Checklist – Polynuclear Aromatic Hydrocarbons by 8270D/8270E

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results > $5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	Yes
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	Yes
Notes: One pair was analyzed: KD010SS and KD860SS. All results agreed.	

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	
Do the relative intensities of ions agree within ±20% between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/21/2020

Client Name:Beazer East, Inc.SDG/Report No.:180-111805-1Project Site:Grenada, MississippiLab ID:Eurofins TestAmericaNo. of Samples:15 with MS/MSDMatrix:Soil/Water

Area Reviewed	Anomalies		Anomalies		Qualification Required	Action Required	
	Yes	No	Yes or No				
1. Sample Preservation, Handling, and Transport		X	No	None			
2. Chain-of-Custody	X		No	None			
3. Holding Times		X	No	None			
4. Instrument Performance	X		No	None			
5. Initial Calibration		X	No	None			
6. Continuing Calibration Verification		X	No	None			
7. Blanks (Method and/or Field QC)	X		Yes	KD010SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 2,3,7,8- TCDF, OCDD, Total HpCDD, and Total TCDF "U". KD225WSS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, OCDD, and Total HpCDD "U". KD297SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 2,3,7,8- TCDF, OCDD, Total HpCDD, and Total TCDF "U".			
8. Isotope Dilution Analytes		X	No	None			
9. Matrix Spike/Matrix Spike Duplicate	X		No	None			
10. Laboratory Control Samples	X		Yes	KD010SS-EB, KD297SS-EB, and KD225WSS-EB: Qualify 2,3,4,6,7,8-HxCDF "UJ".			
11. Field Duplicates							
12. Internal Standards							
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify OCDD "J" where the calibration range was exceeded.			
14. Calculations and Raw Data (Stage 4 only)							
Verification and Validation Label	Stage_2B_Validation_Manual						
Verification and Validation Label Code	S2BVM						

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
KD029SS	180-111805-1	9/30/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD045SS	180-111805-2	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD123SS	180-111805-3	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020
KD149SS	180-111805-4	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD225ESS	180-111805-5	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020
KD225WSS	180-111805-6	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
DW201SS	180-111805-7	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD251SS	180-111805-8	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020
KD275SS	180-111805-9	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD297SS	180-111805-10	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD297SS-MS	180-111805-10 MS	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD297SS-MSD	180-111805-10 MSD	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD010SS-EB	180-111805-11	9/30/2020	1.8 °C/3.0 °C/3.6 °C	10/07/2020	10/10/2020
KD297SS-EB	180-111805-12	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/07/2020	10/10/2020
KD225WSS-EB	180-111805-13	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/07/2020	10/10/2020

The following section is intended to specify areas evaluated and to provide an explanation (where applicable) for the areas where problems were identified during review.

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept ≤ 6 °C?	Yes
Were samples received in proper condition?	Yes
Notes:	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes : There is no "relinquished by" time listed on one of the two COCs.	

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	Yes
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
Notes: WDM for ICAL on Instrument 3D5 analyzed on 9/23/2020. The standards were analyzed on	10/5/2020.

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
Notes: Level III package does not provide all ICAL information.	

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A
Were retention time criteria met? (Forms 6A/6B) Not shown in Level III	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A
Notes: Level III package does not provide all CCV information.	

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes

Notes: MB 320-419758/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDF, OCDD, OCDF, and Total HpCDF.

In MB 320-419525/1-A (water), the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,

1,2,3,4,6,7,8-HpCDF, 2,3,7,8-TCDF, OCDD, Total HpCDD, Total HpCDF, and Total TCDF.

In KD010SS-EB, 1,2,3,4,6,7,8-HpCDD, 2,3,7,8-TCDF, OCDD, OCDF, Total HpCDD, and Total TCDF were detected.

In KD225WSS-EB, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD, OCDD, Total HpCDD, and Total HxCDD were detected.

In KD297SS-EB, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD, 2,3,7,8-TCDD, 2,3,7,8-TCDF, OCDD, OCDF, Total HpCDD, Total HxCDD, Total TCDD, and Total TCDF were detected..

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate			
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	Yes		
Were MS/MSD recoveries and RPDs reported correctly on data forms?	Yes		
Were MS/MSD recoveries and RPDs within laboratory established limits?	No		
Were field blanks used for the MS/MSD samples?	No		
Notes : OCDD recovery was high in the MSD of KD297SS. The concentration in the parent sample was > 4x the			
amount spiked, so recovery criteria do not apply. No qualification.	_		

10. Laboratory Control Samples (LCS)		
Was an LCS sample analyzed with each analytical batch?	Yes	
Were LCS recoveries within laboratory limits?	Yes	
Were LCS/LCSD RPDs within laboratory limits?	No	
Notes: RPD of the LCS 320-419525/LCSD 320-419525 exceeded control limits for 2,3,4,6,7,8-HxCDF.		

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Were samples spiked with internal standards?	N/A
Were recoveries within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Were retention times within established limits?	N/A

13. Compound Identification and Quantitation	
Were the retention times within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Was an estimated maximum possible concentration (EMPC) calculated and reported for	Yes
2,3,7,8-substituted isomers?	res
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of \geq 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/03/2020

Data Validation Checklist – Polynuclear Aromatic Hydrocarbons by 8270E

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111805-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	15 with MS/MSD	Matrix:	Soil/Water

Area Reviewed		nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody	X		No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage_2B_Validation_Manual			
Verification and Validation Label Code	S2BVM			

Data Validation Checklist - Polynuclear Aromatic Hydrocarbons by 8270E

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
KD029SS	180-111805-1	9/30/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD045SS	180-111805-2	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD123SS	180-111805-3	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD149SS	180-111805-4	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD225ESS	180-111805-5	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD225WSS	180-111805-6	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
DW201SS	180-111805-7	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD251SS	180-111805-8	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD275SS	180-111805-9	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD297SS	180-111805-10	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD297SS-MS	180-111805-10 MS	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD297SS-MSD	180-111805-10 MSD	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/17/2020
KD010SS-EB	180-111805-11	9/30/2020	1.8 °C/3.6 °C	10/07/2020	10/16/2020
KD297SS-EB	180-111805-12	10/02/2020	1.8 °C/3.6 °C	10/07/2020	10/16/2020
KD225WSS-EB	180-111805-13	10/01/2020	1.8 °C/3.6 °C	10/07/2020	10/16/2020

The following section is intended to specify areas evaluated and to provide an explanation (where applicable) for the areas where problems were identified during review.

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
There is no "relinquished by" time listed on one out of two COCs.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

Data Validation Checklist – Polynuclear Aromatic Hydrocarbons by 8270E

Yes
Yes
res
Yes
Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs ≥ method requirements?	Yes
Were qualifications required based on this information?	No

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

Yes
Yes
Yes
·

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	Yes
Were MS/MSD recoveries and RPDs within the laboratory limits?	No
Were field blanks used for the MS/MSD samples?	No
Notes: Benzo[g,h,i]perylene RPD was high between the MS and MSD of KD297SS. The paren	t is non-detect, so
no qualification is required.	

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A
1 of results 3 x the RE, were differences between the two values = 2x RE for som RE for water.	11/11

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/23/2020

Client Name:Beazer East, Inc.SDG/Report No.:180-111869-1Project Site:Grenada, MississippiLab ID:Eurofins TestAmericaNo. of Samples:13 with MS/MSDMatrix:Soil/Water

Area Reviewed	Anomalies		Anomalies		Anomalies		Anomalies Qualification Required		-	Action Required
	Yes	No	Yes or No							
1. Sample Preservation, Handling, and Transport		X	No	None						
2. Chain-of-Custody	X		No	None						
3. Holding Times		X	No	None						
4. Instrument Performance	X		No	None						
5. Initial Calibration		X	No	None						
6. Continuing Calibration Verification		X	No	None						
7. Blanks (Method and/or Field QC)	X		Yes	DW210SS-EB: Qualify OCDD "U".						
8. Isotope Dilution Analytes		X	No							
9. Matrix Spike/Matrix Spike Duplicate	X		Yes	DW202SS: Qualify 1,2,3,7,8,9- HxCDD "J".						
10. Laboratory Control Samples		X	No							
11. Field Duplicates										
12. Internal Standards										
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify 1,2,3,4,6,7,8-HpCDD, OCDD, and OCDF "J" where the calibration range was exceeded.						
14. Calculations and Raw Data (Stage 4 only)										
Verification and Validation Label	Stage	_2B_Va	lidation_Manual							
Verification and Validation Label Code	S2BV	M								

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
DW202SS	180-111869-1	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW202SS-MS	180-111869-1 MS	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW202SS-MSD	180-111869-1 MSD	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW203SS	180-111869-2	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/19/2020
DW204SS	180-111869-3	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW205SS	180-111869-4	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW206SS	180-111869-5	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/19/2020
DW207SS	180-111869-6	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
KD321SS	180-111869-7	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/19/2020
DW208SS	180-111869-8	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW209SS	180-111869-9	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW210SS	180-111869-10	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW210SS-EB	180-111869-11	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/20/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept \leq 6 °C?	Yes
Were samples received in proper condition?	Yes
Were qualifications required based on this information?	No
Notes:	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes : There is no "relinquished by" time listed on the COC.	

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	No
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
Notes: WDM on Instrument 10D5, analyzed on 10/20/2020 @ 00:34, was analyzed after the CCV.	

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
Notes: Level III package does not provide all ICAL information.	

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A
Were retention time criteria met? (Forms 6A/6B) Not shown in Level III	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A
Notes: Level III package does not provide all CCV information.	

7. Blanks (Method and/or Field QC)		
Does data package include a summary of method blank results?	Yes	
Was a method blank extracted and analyzed for each prep batch?	Yes	
Were target analytes reported in the method blanks?	Yes	
Notes : MB 320-420127/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD, OCDD, OCDF, Total HpCDD, and Total HxCDD.		
In MB 320-420196/1-A (water), the following analytes were detected: 1,2,3,4,7,8-HxCDD, OCDI HxCDD.	O, and Total	
In DW210SS-EB, OCDD was detected.		

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate			
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	Yes		
Were MS/MSD recoveries and RPDs reported correctly on data forms?	Yes		
Were MS/MSD recoveries and RPDs within laboratory established limits?	No		
Were field blanks used for the MS/MSD samples?	No		

Notes: OCDD and 1,2,3,4,6,7,8-HpCD, 1,2,3,4,6,7,8-HpCDF OCDF recoveries were high in the MS and/or MSD of DW202SS. The concentrations in the parent sample were > 4x the amount spiked, so recovery criteria do not apply. No qualification.

1,2,3,7,8,9-HxCDD recovery was high in the MS of DW202SS.

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	Yes
were LCS/LCSD RFDs within iadoratory limits?	1 es

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Were samples spiked with internal standards and recovery standards?	N/A
Were recoveries within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Were retention times within established limits?	N/A

13. Compound Identification and Quantitation	
Were the retention times within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Was an estimated maximum possible concentration (EMPC) calculated and reported for 2,3,7,8-substituted isomers?	Yes
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of ≥ 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/04/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111869-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	13 with MS/MSD	Matrix:	Soil/Water

Area Reviewed		nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody	X		No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds	X		No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage_2B_Validation_Manual			
Verification and Validation Label Code	S2BVM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
DW202SS	180-111869-1	10/03/2020	1.4 °C	10/14/2020	10/16/2020
DW202SS-MS	180-111869-1 MS	10/03/2020	1.4 °C	10/14/2020	10/16/2020
DW202SS-MSD	180-111869-1 MSD	10/03/2020	1.4 °C	10/14/2020	10/16/2020
DW203SS	180-111869-2	10/03/2020	1.4 °C	10/13/2020	10/14/2020
DW204SS	180-111869-3	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW205SS	180-111869-4	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW206SS	180-111869-5	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW207SS	180-111869-6	10/03/2020	1.4 °C	10/13/2020	10/15/2020
KD321SS	180-111869-7	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW208SS	180-111869-8	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW209SS	180-111869-9	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW210SS	180-111869-10	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW210SS-EB	180-111869-11	10/03/2020	1.4 °C	10/08/2020	10/14/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: There is no "relinquished by" time listed on the COC.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

Yes
Yes
Yes
-

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs ≥ method requirements?	Yes
Were qualifications required based on this information?	No

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	No

Notes: No surrogates were detected in DW206SS because of sample dilution. No qualification is needed. Tribromophenol (TBF) recovery was low in DW202SS. The target compounds are all base-neutrals. TBF is an acid compound. No qualification is needed.

No
Yes
Yes
No

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/24/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-1
Project Site:	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	2	Matrix:	Soil

Area Reviewed	Anoi	nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)	X		No	None
8. Isotope Dilution Analytes		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates	X		Yes	BR500SS and BR861SS: Qualify Total TCDD "J".
12. Internal Standards and Recovery Standards		X	No	None
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify 1,2,3,4,6,7,8-HpCDD, OCDD, and OCDF "J" where the calibration range was exceeded.
14. Calculations and Raw Data (Stage 4 only)		X	No	None
Verification and Validation Label	Stage	_4_Vali	dation_Manual	
Verification and Validation Label Code	S4VN	1		

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
BR500SS	180-111870-7	10/04/2020	1.5 °C/2.2 °C	10/09/2020	10/13/2020; 10/13/2020
BR861SS	180-111870-8	10/04/2020	1.4 °C/2.2 °C	10/09/2020	10/13/2020; 10/13/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept ≤ 6 °C?	Yes
Were samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes
	

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	Yes
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series? (Raw QC Data; Tune Data)	Yes
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the ion abundance ratios within established limits?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes
Notes:	

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes
Notes: MB 320-420127/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,	1,2,3,4,7,8-
HxCDD, OCDD, OCDF, Total HpCDD, and Total HxCDD.	
In BR233SS-EB (in SDG 180-111870-2), OCDD was detected.	

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

No
N/A
N/A
N/A

Yes
Yes
Yes

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results > $5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	Yes
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	No
Notes: REG/FD pair: BR500SS and BR861SS	

12. Internal Standards	
Were samples spiked with internal standards? 13C-1,2,3,4-TCDD and 13C-1,2,3,7,8,9-HxCDD	Yes
Were ion abundance ratios within established limits?	Yes
Were retention times within established limits?	Yes

13. Compound Identification and Quantitation	
Were the retention times within established limits? (-1 to +3 seconds from the respective	No
isotope dilution analyte or internal standard signal)	No
Were ion abundance ratios within established limits?	No
Was an estimated maximum possible concentration (EMPC) calculated and reported for	Yes
2,3,7,8-substituted isomers?	1 05
Were the isomers characterized by a response with an S/N of at least 2.5?	Yes

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of \geq 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	Yes

Validated by: Maureen McMyler 12/08/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	2	Matrix:	Soil

Area Reviewed		nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates	X		Yes	BR500SS and BR861SS: Qualify benzo[a]anthracene, benzo[b]fluoranthene, chrysene, fluoranthene, and pyrene "J" or "UJ".
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)	X		Yes	BR500SS: Qualify benzo[g,h,i]perylene "U".
Verification and Validation Label	Stage_4_Validation_Manual			
Verification and Validation Label Code	S4VM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
BR500SS	180-111870-7	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR861SS	180-111870-8	10/04/2020	1.5 °C	10/14/2020	10/17/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in other data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	Yes
Was DDT % breakdown less than 20%?	Yes

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) \leq the method or Coefficient of Correlation (r) \geq 0.995 or r2 \geq 0.99?	Yes
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs \geq method requirements?	Yes

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results > $5x$ the RL, were RPDs between the two values $\leq 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	No
Notes: REG/FD pair: BR500SS and BR861SS	

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ±30 seconds from the RT of the IS in the associated	Yes
CCV or mid-point standard from ICAL?	168

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	Yes
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	No
Do the relative intensities of ions agree within ±20% between the standard and sample spectra? (Stage 4)	Yes
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes
Notes: Benzo[g,h,i]perylene spectrum in BR500SS did not have all the ions of the reference spectrum	1

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	Yes

Validated by: Maureen McMyler 12/07/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-2
Project Site:	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	1	Matrix:	Water

Area Reviewed	Anomalies		Anomalies		Qualification Required	Action Required
	Yes	No	Yes or No			
Sample Preservation, Handling, and Transport		X	No	None		
2. Chain-of-Custody		X	No	None		
3. Holding Times		X	No	None		
4. Instrument Performance	X		No	None		
5. Initial Calibration		X	No	None		
6. Continuing Calibration Verification		X	No	None		
7. Blanks (Method and/or Field QC)	X		Yes	BR233SS-EB: Qualify OCDD "U".		
8. Isotope Dilution Analytes		X	No	None		
9. Matrix Spike/Matrix Spike Duplicate	X		No	None		
10. Laboratory Control Samples		X	No	None		
11. Field Duplicates						
12. Internal Standards		X	No	None		
13. Compound Identification and Quantitation		X	No	None		
14. Calculations and Raw Data (Stage 4 only)		X	No	None		
Verification and Validation Label	Stage	_4_Vali	dation_Manual			
Verification and Validation Label Code	S4VM	1				

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
BR233SS-EB	180-111870-9	10/04/2020	1.5 °C/2.2 °C	10/09/2020	10/19/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept \leq 6 °C?	Yes
Were samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in different data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	No
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series? (Raw QC Data; Tune Data)	Yes
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
Notes: WDM 320-423518/43 was analyzed after the CCV, but before sample.	

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the ion abundance ratios within established limits?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes
Notes: In MB 320-420193/1-A, the following analytes were detected: 1,2,3,4,7,8-HxCDD, OCDI	O, OCDF, and
Total HxCDD.	
OCDD was detected in BR233SS-EB.	

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within laboratory established limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	Yes

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results > $5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Were samples spiked with internal standards? 13C-1,2,3,4-TCDD and 13C-1,2,3,7,8,9-HxCDD	Yes
Were ion abundance ratios within established limits?	Yes
Were retention times within established limits?	Yes

13. Compound Identification and Quantitation	
Were the retention times within established limits? (-1 to +3 seconds from the respective	Yes
isotope dilution analyte or internal standard signal)	1 68
Were ion abundance ratios within established limits?	Yes
Was an estimated maximum possible concentration (EMPC) calculated and reported for	N _a
2,3,7,8-substituted isomers?	No
Were the isomers characterized by a response with an S/N of at least 2.5?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	Yes

Validated by: Maureen McMyler 12/10/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-2
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	1	Matrix:	Water

Area Reviewed	Anomalies		Anomalies		Qualification Required	Action Required
	Yes	No	Yes or No			
1. Sample Preservation, Handling, and Transport		X	No	None		
2. Chain-of-Custody		X	No	None		
3. Holding Times		X	No	None		
4. Instrument Performance	X		No	None		
5. Initial Calibration		X	No	None		
6. Continuing Calibration Verification		X	No	None		
7. Blanks (Method and/or Field QC)		X	No	None		
8. Surrogates/Monitoring Compounds		X	No	None		
9. Matrix Spike/Matrix Spike Duplicate	X		No	None		
10. Laboratory Control Samples		X	No	None		
11. Field Duplicates						
12. Internal Standards		X	No	None		
13. Compound Identification and Quantitation		X	No	None		
14. Calculations and Raw Data (Stage 4 only)		X	No	None		
Verification and Validation Label	Stage_4_Validation_Manual					
Verification and Validation Label Code	S4VM					

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
BR233SS-EB	180-111870-9	10/04/2020	1.5 °C	10/08/2020	10/14/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in other data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	Yes
Was DDT % breakdown less than 20%?	Yes

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) \leq the method or Coefficient of Correlation (r) \geq 0.995 or r2 \geq 0.99?	Yes
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs \geq method requirements?	Yes

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation			
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	Yes		
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A		
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A		
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes		
Notes: There were no target compound detections in the sample. RRTs of surrogates were acceptable.			

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	Yes

Validated by: Maureen McMyler 12/08/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-3
Project Site:	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	6	Matrix:	Soil

Area Reviewed		nalies	Qualification Required	Action Required	
	Yes	No	Yes or No		
1. Sample Preservation, Handling, and Transport		X	No	None	
2. Chain-of-Custody		X	No	None	
3. Holding Times		X	No	None	
4. Instrument Performance	X		No	None	
5. Initial Calibration		X	No	None	
6. Continuing Calibration Verification		X	No	None	
7. Blanks (Method and/or Field QC)	X		No	None	
8. Isotope Dilution Analytes		X	No	None	
9. Matrix Spike/Matrix Spike Duplicate	X		No	None	
10. Laboratory Control Samples		X	No	None	
11. Field Duplicates					
12. Internal Standards					
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify OCDD "J" where the calibration range was exceeded.	
14. Calculations and Raw Data (Stage 4 only)					
Verification and Validation Label	Stage_2B_Validation_Manual				
Verification and Validation Label Code	S2BVM				

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
BREPA21SS	180-111870-1	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020
BR373SS	180-111870-2	10/04/2020	0.0 °C/1.5 °C	10/28/2020	11/05/2020; 11/06/2020
BR351SS	180-111870-3	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020
BR315SS	180-111870-4	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020
BR289SS	180-111870-5	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020
BR233SS	180-111870-6	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept ≤ 6 °C?	Yes
Were samples received in proper condition?	Yes
Notes:	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	No
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
WDM on instrument 4D5 analyzed on 10/29/2020 was analyzed after the CCV. Level III package does not provide all information.	

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
Notes: Level III package does not provide all ICAL information.	

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A
Were retention time criteria met? Not shown in Level III	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A
Notes: Level III package does not provide all CCV information.	

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes
Notes: MB 320-426110/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD	, OCDD, and
Total HpCDD. Concentrations in samples were >10x the amount in the MB.	
In BR233SS-EB (in SDG 180-111870-2), OCDD was detected. No qualification.	

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within laboratory established limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

Yes
Yes
Yes

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

N/A
N/A
N/A
N/A

13. Compound Identification and Quantitation	
Were the retention times within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Was an estimated maximum possible concentration (EMPC) calculated and reported for	Yes
2,3,7,8-substituted isomers?	res
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of ≥ 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

Several analytes exhibited elevated noise or matrix interferences and have elevated EDLs and RLs. They were qualified by the lab, but do not need validation qualification.

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/10/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-3
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	6	Matrix:	Soil

Area Reviewed	Anomalies Qualification Required		Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage_2B_Validation_Manual			
Verification and Validation Label Code	S2BVM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
BREPA21SS	180-111870-1	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR373SS	180-111870-2	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR351SS	180-111870-3	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR315SS	180-111870-4	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR289SS	180-111870-5	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR233SS	180-111870-6	10/04/2020	1.5 °C	10/14/2020	10/17/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in other data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) ≤ the	Yes
method or Coefficient of Correlation (r) ≥ 0.995 or $r2 \geq 0.99$?	1 68
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs ≥ method requirements?	Yes

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/25/2020

Table 5 Validation Checks and Stages

Verification and Validation Checks	Stage 2B	Stage 4
Sample results are evaluated by comparing holding times and sample-related QC data to the requirements and guidelines present in national or regional data validation documents, analytical method(s) or contract.	Х	Х
Initial calibration data (e.g., initial calibration standards, initial calibration verification [ICV] standards, initial calibration blanks [ICBs]) are provided for all requested analytes and linked to field samples reported. For each initial calibration, the calibration type used is present along with the initial calibration equation used including any weighting factor(s) applied and the associated correlation coefficients, as appropriate. Recalculations of the standard concentrations using the initial calibration curve are present, along with their associated percent recoveries, as appropriate (e.g., if required by the project, method, or contract). For the ICV standard, the associated percent recovery (or percent difference, as appropriate) is present.	X	X
Appropriate number and concentration of initial calibration standards are present.	X	Χ
Continuing calibration data (e.g., continuing calibration verification [CCV] standards and continuing calibration blanks [CCBs]) are provided for all requested analytes and linked to field samples reported, as appropriate. For the CCV standard(s), the associated percent recoveries (or percent differences, as appropriate) are present.	Х	x
Reported samples are bracketed by CCV standards and CCBs standards as appropriate.	Х	Χ
Method specific instrument performance checks are present as appropriate (e.g., tunes for mass spectrometry methods, DDT/Endrin breakdown checks for pesticides and aroclors, instrument blanks and interference checks for ICP methods).	Х	x
Frequency of instrument QC samples is checked for appropriateness (e.g., gas chromatography-mass spectroscopy [GC-MS] tunes have been run every 12 hours).	Х	Х
Sample results are evaluated by comparing instrument-related QC data to the requirements and guidelines present in national or regional data validation documents, analytical method(s), or contract.	Х	X
Instrument response data (e.g., GC peak areas, ICP corrected intensities) are reported for requested analytes, surrogates, internal standards, and DMCs for all requested field samples, matrix spikes, matrix spike duplicates, LCS, and method blanks, as well as calibration data and instrument QC checks (e.g., tunes, DDT/Endrin breakdowns, interelement correction factors, and Florisil cartridge checks).		х
Reported target analyte instrument responses are associated with appropriate internal standard analyte(s) for each (or selected) analyte(s) (for methods using internal standard for calibration).		Х
Fit and appropriateness of the initial calibration curve used or required (e.g., mean calibration factor, regression analysis [linear or non-linear, with or without weighting factors, with or without forcing]) is checked with recalculation of the initial calibration curve for each (or selected) analyte(s) from the instrument response.		X
Comparison of instrument response to the minimum response requirements for each (or selected) analyte(s)		Х

Table 5 Validation Checks and Stages

Verification and Validation Checks	Stage 2B	Stage 4
Recalculation of each (or selected) opening and closing CCV (and CCB) response from the peak data reported for each (or selected) analyte(s) from the instrument response, as appropriate		Х
Compliance check of recalculated opening and/or closing CCV (and CCB) response to recalculated initial calibration response for each (or selected) analyte(s)		Х
Recalculation of percent ratios for each (or selected) tune from the instrument response, as appropriate		Х
Compliance check of recalculated percent ratio for each (or selected) tune from the instrument response.		Х
Recalculation of each (or selected) instrument performance check (e.g., DDT/Endrin breakdown for pesticide analysis, instrument blanks, interference checks) from the instrument response		Х
Recalculation and compliance check of retention time windows (for chromatographic methods) for each (or selected) analyte(s) from the laboratory reported retention times		Х
Recalculation of reported results for each reported (or selected) target analyte(s) from the instrument response		Х
Recalculation of each (or selected) reported spike recovery (surrogate recoveries, DMC recoveries, LCS recoveries, duplicate analyses, matrix spike and matrix spike duplicate recoveries, serial dilutions, post digestion spikes, standard reference materials, etc.) from the instrument response		Х
Each (or selected) sample result(s) and spike recovery(ies) are evaluated by comparing the recalculated numbers to the laboratory reported numbers according to the requirements and guidelines present in national or regional data validation documents, analytical method(s) or contract.		Х
All required instrument outputs (e.g., chromatograms, mass spectra, atomic emission spectra, instrument background corrections, and interference corrections) for evaluating sample and instrument performance are present.		Х
Sample results are evaluated by checking each (or selected) instrument output (e.g., chromatograms, mass spectra, atomic emission spectra data, instrument background corrections, interference corrections) for correct identification and quantitation of analytes (e.g., peak integrations, use of appropriate internal standards for quantitation, elution order of analytes, and interferences).		Х
Each (or selected) instrument's output(s) is evaluated for confirmation of non-detected or tentatively identified analytes.		Х

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111697-1	KD302SS	180-111697-1	09/28/20	Benzo[a]anthracene	8270E	ug/Kg	85	51	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Benzo[b]fluoranthene	8270E	ug/Kg	85	83	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Benzo[g,h,i]perylene	8270E	ug/Kg	85	36	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Chrysene	8270E	ug/Kg	85	59	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Fluoranthene	8270E	ug/Kg	85	79	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Naphthalene	8270E	ug/Kg	85	31	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Phenanthrene	8270E	ug/Kg	85	70	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Pyrene	8270E	ug/Kg	85	71	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.5	1.1	J	J .l	Detect < RL
180-111697-1	KD302SS KD302SS	180-111697-1	09/28/20 09/28/20	1,2,3,4,7,8-HxCDD	8290A 8290A	pg/g	6.5	1.7	JB	J	Detect < RL
180-111697-1 180-111697-1	KD302SS	180-111697-1 180-111697-1	09/28/20	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD	8290A 8290A	pg/g	6.5 6.5	3.3	J	J	Detect < RL Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	1,2,3,6,7,8-HxCDF	8290A 8290A	pg/g	6.5	0.85	.l	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	1,2,3,6,7,6-HXCDF 1,2,3,7,8,9-HxCDD	8290A 8290A	pg/g pg/g	6.5	2.9	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	1,2,3,7,8,9-HxCDF	8290A 8290A	pg/g pg/g	6.5	0.29	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.5	0.62	Ja	EMPC	EMPC
180-111697-1	KD302SS	180-111697-1	09/28/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.5	0.45	.1	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.5	0.67	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.5	0.49	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.65	J	J	Detect < RL
180-111697-1	KD302SS	180-111697-1	09/28/20	Total HpCDD	8290A	pg/g	6.5	210	В	J	Quantitation
180-111697-1	KD302SS	180-111697-1	09/28/20	Total HpCDF	8290A	pg/g	6.5	46		J	Quantitation
180-111697-1	KD302SS	180-111697-1	09/28/20	Total HxCDD	8290A	pg/g	6.5	32	q B	J	Quantitation
180-111697-1	KD302SS	180-111697-1	09/28/20	Total HxCDF	8290A	pg/g	6.5	16	·	J	Quantitation
180-111697-1	KD302SS	180-111697-1	09/28/20	Total PeCDD	8290A	pg/g	6.5	4.5	Jq	J	Quantitation
180-111697-1	KD302SS	180-111697-1	09/28/20	Total PeCDF	8290A	pg/g	6.5	5.3	J	J	Quantitation
180-111697-1	KD302SS	180-111697-1	09/28/20	Total TCDD	8290A	pg/g	1.3	1.2	J	J	Quantitation
180-111697-1	KD302SS	180-111697-1	09/28/20	Total TCDF	8290A	pg/g	1.3	1.3		J	Quantitation
180-111697-1	KD080SS	180-111697-10	09/30/20	Acenaphthylene	8270E	ug/Kg	260	110	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Anthracene	8270E	ug/Kg	260	170	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Benzo[a]pyrene	8270E	ug/Kg	260	180	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Benzo[g,h,i]perylene	8270E	ug/Kg	260	190	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Benzo[k]fluoranthene	8270E	ug/Kg	260	140	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Indeno[1,2,3-cd]pyrene	8270E	ug/Kg	260	160	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Naphthalene	8270E	ug/Kg	260	100	J.	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Phenanthrene	8270E	ug/Kg	260	210	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	5.9	1.2	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	5.9	1.5	J B J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	5.9	2	J	J	Detect < RL
180-111697-1 180-111697-1	KD080SS KD080SS	180-111697-10 180-111697-10	09/30/20 09/30/20	1,2,3,6,7,8-HxCDD	8290A 8290A	pg/g	5.9 5.9	3.6 0.97	J	J	Detect < RL Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD	8290A 8290A	pg/g	5.9	2.9	J ,	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	1,2,3,7,8,9-HXCDD 1,2,3,7,8-PeCDF	8290A 8290A	pg/g	5.9	0.51	J 1	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	2,3,4,6,7,8-HxCDF	8290A 8290A	pg/g	5.9	1.1	J	J	Detect < RL
1-1691-11-001	KD080SS	180-111697-10	09/30/20	2,3,4,6,7,8-PeCDF	8290A 8290A	pg/g pg/g	5.9	0.69	J ,	J	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111697-1	KD080SS	180-111697-10	09/30/20	2,3,7,8-TCDF	8290A	pg/g	1.2	1.1	J	J	Detect < RL
180-111697-1	KD080SS	180-111697-10	09/30/20	Total HpCDD	8290A	pg/g	5.9	270	В	J	Quantitation
180-111697-1	KD080SS	180-111697-10	09/30/20	Total HpCDF	8290A	pg/g	5.9	58		J	Quantitation
180-111697-1	KD080SS	180-111697-10	09/30/20	Total HxCDD	8290A	pg/g	5.9	33	В	J	Quantitation
180-111697-1	KD080SS	180-111697-10	09/30/20	Total HxCDF	8290A	pg/g	5.9	19		J	Quantitation
180-111697-1	KD080SS	180-111697-10	09/30/20	Total PeCDD	8290A	pg/g	5.9	3	Jq	J	Quantitation
180-111697-1	KD080SS	180-111697-10	09/30/20	Total PeCDF	8290A	pg/g	5.9	7.2	q	J	Quantitation
180-111697-1	KD080SS	180-111697-10	09/30/20	Total TCDF	8290A	pg/g	1.2	2.3	q	J	Quantitation
180-111697-1	KD010SS	180-111697-11	09/30/20	Acenaphthene	8270E	ug/Kg	82	34	J	J	Detect < RL
180-111697-1	KD010SS	180-111697-11	09/30/20	Fluorene	8270E	ug/Kg	82	56	J	J	Detect < RL
180-111697-1	KD010SS	180-111697-11	09/30/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g	5.8	660	В	J	FD RPD
180-111697-1	KD010SS	180-111697-11	09/30/20	1,2,3,4,6,7,8-HpCDF	8290A	pg/g	5.8	120		J	FD RPD
180-111697-1	KD010SS	180-111697-11	09/30/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	5.8	4.5	J	J	Detect < RL
180-111697-1	KD010SS	180-111697-11	09/30/20	1,2,3,6,7,8-HxCDD	8290A 8290A	pg/g	5.8	20 3.5	1	J	FD DIFF
180-111697-1	KD010SS	180-111697-11	09/30/20	1,2,3,6,7,8-HxCDF		pg/g	5.8		J		Detect < RL
180-111697-1 180-111697-1	KD010SS KD010SS	180-111697-11 180-111697-11	09/30/20 09/30/20	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	8290A 8290A	pg/g	5.8 5.8	2.8 0.75	Ja	J EMPC	Detect < RL EMPC
				1 1-1 1		pg/g			- 1		
180-111697-1	KD010SS KD010SS	180-111697-11	09/30/20	2,3,4,6,7,8-HxCDF	8290A 8290A	pg/g	5.8 5.8	3.1 0.94	J	J J	Detect < RL
180-111697-1		180-111697-11	09/30/20	2,3,4,7,8-PeCDF		pg/g		0.59	J	J	Detect < RL
180-111697-1	KD010SS KD010SS	180-111697-11	09/30/20 09/30/20	2,3,7,8-TCDF OCDD	8290A 8290A	pg/g	1.2 12	6900	E B		Detect < RL
180-111697-1	KD010SS KD010SS	180-111697-11	09/30/20	OCDD	8290A 8290A	pg/g	12	490	В	J	Exceeds calibration range; FD RPD FD RPD
180-111697-1	KD010SS KD010SS	180-111697-11		Total HpCDD		pg/g			В	J	1 = 111 =
180-111697-1 180-111697-1	KD010SS	180-111697-11 180-111697-11	09/30/20 09/30/20	Total HpCDF	8290A 8290A	pg/g	5.8 5.8	1600 410	Ь	J	Quantitation; FD RPD Quantitation; FD RPD
180-111697-1	KD010SS	180-111697-11	09/30/20	Total HxCDD	8290A 8290A	pg/g	5.8	190	В	J	Quantitation, FD RPD Quantitation; FD RPD
180-111697-1	KD010SS	180-111697-11	09/30/20	Total HxCDF	8290A 8290A	pg/g pg/g	5.8	100	ь	J	Quantitation; FD RPD
180-111697-1	KD010SS	180-111697-11	09/30/20	Total PeCDD	8290A 8290A	pg/g pg/q	5.8	31		J J	Quantitation; FD RPD
180-111697-1	KD01033	180-111697-11	09/30/20	Total PeCDF	8290A	pg/g pg/g	5.8	11	q		Quantitation; FD DIFF
180-111697-1	KD01033	180-111697-11	09/30/20	Total TCDD	8290A	pg/g pg/g	1.2	2.5	q q	J	Quantitation; FD DIFF
180-111697-1	KD01033	180-111697-11	09/30/20	Total TCDF	8290A	pg/g	1.2	6.2	a a	J	Quantitation; FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	Acenaphthene	8270E	ug/Kg	81	43	J	J	Detect < RL
180-111697-1	KD860SS	180-111697-12	09/30/20	Fluorene	8270E	ug/Kg	81	44	J	J	Detect < RL
180-111697-1	KD860SS	180-111697-12	09/30/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g	5.7	1200	В	J	FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	1,2,3,4,6,7,8-HpCDF	8290A	pg/g	5.7	210		J	FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	1,2,3,6,7,8-HxCDD	8290A	pg/g	5.7	37		J	FD DIFF
180-111697-1	KD860SS	180-111697-12	09/30/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	5.7	4.8	J	J	Detect < RL
180-111697-1	KD860SS	180-111697-12	09/30/20	1,2,3,7,8-PeCDD	8290A	pg/g	5.7	5.5	J	J	Detect < RL
180-111697-1	KD860SS	180-111697-12	09/30/20	1,2,3,7,8-PeCDF	8290A	pg/g	5.7	1.3	Ja	EMPC	EMPC
180-111697-1	KD860SS	180-111697-12	09/30/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	5.7	5.4	J	J	Detect < RL
180-111697-1	KD860SS	180-111697-12	09/30/20	2,3,4,7,8-PeCDF	8290A	pg/g	5.7	1.2	Jq	EMPC	EMPC
180-111697-1	KD860SS	180-111697-12	09/30/20	OCDD	8290A	pg/g	11	14000	EB	J	Exceeds calibration range; FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	OCDF	8290A	pg/g	11	840	В	J	FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	Total HpCDD	8290A	pg/g	5.7	2800	В	J	Quantitation; FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	Total HpCDF	8290A	pg/g	5.7	710		J	Quantitation; FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	Total HxCDD	8290A	pg/g	5.7	360	В	J	Quantitation; FD RPD

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111697-1	KD860SS	180-111697-12	09/30/20	Total HxCDF	8290A	pg/g	5.7	190		J	Quantitation; FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	Total PeCDD	8290A	pg/g	5.7	72		J	Quantitation; FD RPD
180-111697-1	KD860SS	180-111697-12	09/30/20	Total PeCDF	8290A	pg/g	5.7	37	q	J	Quantitation; FD DIFF
180-111697-1	KD860SS	180-111697-12	09/30/20	Total TCDD	8290A	pg/g	1.1	12		J	Quantitation; FD DIFF
180-111697-1	KD860SS	180-111697-12	09/30/20	Total TCDF	8290A	pg/g	1.1	14		J	Quantitation; FD RPD
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6	1.4	J	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6	1.7	JB	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6	1.2	J	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,6,7,8-HxCDD	8290A	pg/g	6	4.1	J	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6	0.79	Jq	EMPC	EMPC
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	6	3.1	J	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,7,8,9-HxCDF	8290A	pg/g	6	0.24	Jq	EMPC	EMPC
180-111697-1	KD280SS	180-111697-2	09/28/20	1,2,3,7,8-PeCDD	8290A	pg/g	6	0.64	J	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6	0.79	J	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	2,3,4,7,8-PeCDF	8290A	pg/g	6	0.42	J	J	Detect < RL
180-111697-1	KD280SS	180-111697-2	09/28/20	Total HpCDD	8290A	pg/g	6	260	В	J	Quantitation
180-111697-1	KD280SS	180-111697-2	09/28/20	Total HpCDF	8290A	pg/g	6	73	_	J	Quantitation
180-111697-1	KD280SS	180-111697-2	09/28/20	Total HxCDD	8290A	pg/g	6	34	q B	J	Quantitation
180-111697-1	KD280SS	180-111697-2	09/28/20	Total HxCDF	8290A	pg/g	6	24	q	J	Quantitation
180-111697-1	KD280SS	180-111697-2	09/28/20	Total PeCDD	8290A	pg/g	6	4.3	J	J	Quantitation
180-111697-1	KD280SS	180-111697-2	09/28/20	Total PeCDF	8290A	pg/g	6	5.2	J	J	Quantitation
180-111697-1	KD280SS	180-111697-2	09/28/20	Total TCDF	8290A	pg/g	1.2	0.54	Jq	J	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/L	51	2.8	J B	U	Present in the method blank
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,4,6,7,8-HpCDF	8290A	pg/L	51	1.6	JqB	U	Present in the method blank
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/L	51	1.5	J	J	Detect < RL
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,4,7,8-HxCDD	8290A	pg/L	51	1.8	J	J	Detect < RL
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,4,7,8-HxCDF	8290A	pg/L	51	1.2	J	J	Detect < RL
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,6,7,8-HxCDF	8290A	pg/L	51	1	J q	EMPC	EMPC
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,7,8-PeCDD	8290A	pg/L	51	0.65	Jq	EMPC	EMPC
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	1,2,3,7,8-PeCDF	8290A	pg/L	51	1	J	J	Detect < RL
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	2,3,4,6,7,8-HxCDF	8290A	pg/L	51	1.1	J *1	J	Detect < RL, LCS RPD
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	2,3,7,8-TCDD	8290A	pg/L	10	0.78	Jq	EMPC	EMPC
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	2,3,7,8-TCDF	8290A	pg/L	10	0.99	J B	U .I	Present in the method blank
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	OCDD	8290A	pg/L	100	11	J B	EMPC	Detect < RL EMPC
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	OCDF	8290A	pg/L	100	3.8	Jq	EMPC .I	
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total HpCDD	8290A	pg/L	51	3.9	JqB	, ,	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total HpCDF	8290A	pg/L	51	3.1	JqB	J	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total HxCDD	8290A	pg/L	51 51	1.8	J	J	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total HxCDF	8290A 8290A	pg/L		3.4	Jq	J	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total PeCDD		pg/L	51	0.65	Jq	J	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total PeCDF	8290A	pg/L	51	1	J	J	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total TCDD	8290A	pg/L	10	0.78	Jq	J U	Quantitation
180-111697-1	KD280SS-EB	180-111697-3	09/28/20	Total TCDF	8290A	pg/L	10	1.8	JB	_	Present in the method blank
180-111697-1	KD248SS	180-111697-4	09/29/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.3	5.2	J B	J	Detect < RL
180-111697-1	KD248SS	180-111697-4	09/29/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.3	3.7	J	J	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111697-1	KD248SS	180-111697-4	09/29/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.3	2.5	J	J	Detect < RL
180-111697-1	KD248SS	180-111697-4	09/29/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.3	1.5	J	J	Detect < RL
180-111697-1	KD248SS	180-111697-4	09/29/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.3	0.71	J	J	Detect < RL
180-111697-1	KD248SS	180-111697-4	09/29/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.3	1.8	J	J	Detect < RL
180-111697-1	KD248SS	180-111697-4	09/29/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.3	0.56	Jq	EMPC	EMPC
180-111697-1	KD248SS	180-111697-4	09/29/20	OCDD	8290A	pg/g	13	8500	E B	J	Exceeds calibration range
180-111697-1	KD248SS	180-111697-4	09/29/20	Total HpCDD	8290A	pg/g	6.3	1400	В	J	Quantitation
180-111697-1	KD248SS	180-111697-4	09/29/20	Total HpCDF	8290A	pg/g	6.3	630		J	Quantitation
180-111697-1	KD248SS	180-111697-4	09/29/20	Total HxCDD	8290A	pg/g	6.3	120	В	J	Quantitation
180-111697-1	KD248SS	180-111697-4	09/29/20	Total HxCDF	8290A	pg/g	6.3	140		J	Quantitation
180-111697-1	KD248SS	180-111697-4	09/29/20	Total PeCDD	8290A	pg/g	6.3	12	q	J	Quantitation
180-111697-1	KD248SS	180-111697-4	09/29/20	Total PeCDF	8290A	pg/g	6.3	13	q	J	Quantitation
180-111697-1	KD248SS	180-111697-4	09/29/20	Total TCDD	8290A	pg/g	1.3	1.1	J	J	Quantitation
180-111697-1	KD216SS KD216SS	180-111697-5	09/29/20 09/29/20	Benzo[a]anthracene	8270E 8270E	ug/Kg	83 83	75 55	J	J	Detect < RL
180-111697-1		180-111697-5		Benzo[a]pyrene		ug/Kg		67	J		Detect < RL
180-111697-1 180-111697-1	KD216SS KD216SS	180-111697-5 180-111697-5	09/29/20 09/29/20	Benzo[g,h,i]perylene	8270E 8270E	ug/Kg	83 83	53	J	J	Detect < RL Detect < RL
				Benzo[k]fluoranthene		ug/Kg			J	, ,	
180-111697-1	KD216SS KD216SS	180-111697-5 180-111697-5	09/29/20	Indeno[1,2,3-cd]pyrene	8270E 8270E	ug/Kg	83 83	64 32	J	J J	Detect < RL
180-111697-1			09/29/20	Naphthalene		ug/Kg	83	66	J	J	Detect < RL
180-111697-1	KD216SS KD216SS	180-111697-5 180-111697-5	09/29/20 09/29/20	Phenanthrene	8270E 8290A	ug/Kg	5.9	1.4		-	Detect < RL Detect < RL
180-111697-1 180-111697-1	KD216SS	180-111697-5	09/29/20	1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD	8290A 8290A	pg/g	5.9	1.4	J JB	J	Detect < RL
180-111697-1	KD216SS	180-111697-5	09/29/20		8290A 8290A	pg/g	5.9	1.5	J D	J	Detect < RL
180-111697-1	KD216SS	180-111697-5	09/29/20	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD	8290A	pg/g	5.9	3.8	J	J J	Detect < RL
180-111697-1	KD216SS	180-111697-5	09/29/20	1,2,3,6,7,8-HxCDF	8290A 8290A	pg/g	5.9	1.2	J	J	Detect < RL
180-111697-1	KD216SS	180-111697-5	09/29/20	1,2,3,7,8,9-HxCDD	8290A 8290A	pg/g pg/g	5.9	3.4	J	J	Detect < RL
180-111697-1	KD216SS	180-111697-5	09/29/20	1,2,3,7,8-PeCDD	8290A 8290A	pg/g pg/g	5.9	0.68	J	J J	Detect < RL
180-111697-1	KD216SS	180-111697-5	09/29/20	1,2,3,7,8-PeCDF	8290A	pg/g pg/g	5.9	0.37	Jq	EMPC	EMPC
180-111697-1	KD216SS	180-111697-5	09/29/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	5.9	0.95	J	J	Detect < RL
180-111697-1	KD216SS	180-111697-5	09/29/20	Total HpCDD	8290A	pg/g	5.9	280	В	J	Quantitation
180-111697-1	KD216SS	180-111697-5	09/29/20	Total HpCDF	8290A	pg/g	5.9	68		J	Quantitation
180-111697-1	KD216SS	180-111697-5	09/29/20	Total HxCDD	8290A	pg/g pg/g	5.9	37	В	J	Quantitation
180-111697-1	KD216SS	180-111697-5	09/29/20	Total HxCDF	8290A	pg/g	5.9	20		J	Quantitation
180-111697-1	KD216SS	180-111697-5	09/29/20	Total PeCDD	8290A	pg/g	5.9	3.6	Jq	J	Quantitation
180-111697-1	KD216SS	180-111697-5	09/29/20	Total PeCDF	8290A	pg/g	5.9	3.4	Jq	J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Acenaphthylene	8270E	ug/Kg	84	20	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Anthracene	8270E	ug/Kg	84	28	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Benzo[a]anthracene	8270E	ug/Kg	84	79	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Benzo[a]pyrene	8270E	ug/Kg	84	65	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Benzo[g,h,i]perylene	8270E	ug/Kg	84	78	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Benzo[k]fluoranthene	8270E	ug/Kg	84	37	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Indeno[1,2,3-cd]pyrene	8270E	ug/Kg	84	52	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Naphthalene	8270E	ug/Kg	84	45	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Phenanthrene	8270E	ug/Kg	84	76	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.3	2.3	J	J	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.3	2.9	JB	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.3	2.1	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.3	1.3	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	6.3	5.7	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,7,8,9-HxCDF	8290A	pg/g	6.3	0.45	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.3	1	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.3	0.44	J q	EMPC	EMPC
180-111697-1	KD132SS	180-111697-6	09/29/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.3	1.3	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.9	J	J	Detect < RL
180-111697-1	KD132SS	180-111697-6	09/29/20	Total HpCDD	8290A	pg/g	6.3	570	В	J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Total HpCDF	8290A	pg/g	6.3	130		J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Total HxCDD	8290A	pg/g	6.3	65	В	J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Total HxCDF	8290A	pg/g	6.3	34		J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Total PeCDD	8290A	pg/g	6.3	9.4	q	J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Total PeCDF	8290A	pg/g	6.3	5.9	Jq	J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Total TCDD	8290A	pg/g	1.3	2.8	q	J	Quantitation
180-111697-1	KD132SS	180-111697-6	09/29/20	Total TCDF	8290A	pg/g	1.3	3.5		J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Acenaphthylene	8270E	ug/Kg	87	44	J	J	Detect < RL
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Anthracene	8270E	ug/Kg	87	72	J	J	Detect < RL
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Benzo[k]fluoranthene	8270E	ug/Kg	87	74 70	J	J	Detect < RL
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Naphthalene	8270E	ug/Kg	87		J	J	Detect < RL
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.8	4.5 5.2	J JB	J	Detect < RL
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.8		· -	J .l	Detect < RL
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.8	3.1	J	ŭ	Detect < RL
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.8	2.3	J	J	Detect < RL
180-111697-1 180-111697-1	KDEPA9SS	180-111697-7 180-111697-7	09/29/20	1,2,3,7,8,9-HxCDD	8290A 8290A	pg/g	6.8	6.6 1.9	J	J J	Detect < RL Detect < RL
180-111697-1	KDEPA9SS KDEPA9SS	180-111697-7	09/29/20 09/29/20	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	8290A 8290A	pg/g	6.8	0.84	J	J	
180-111697-1	KDEPA9SS KDEPA9SS	180-111697-7	09/29/20	2,3,4,6,7,8-HxCDF	8290A 8290A	pg/g	6.8	2.3	J	J	Detect < RL Detect < RL
180-111697-1	KDEPA9SS KDEPA9SS	180-111697-7	09/29/20	2,3,4,0,7,6-FXCDF 2,3,4,7,8-PeCDF	8290A 8290A	pg/g	6.8	0.85	J	J	Detect < RL
180-111697-1	KDEPA9SS KDEPA9SS	180-111697-7	09/29/20	2,3,4,7,6-PeCDF 2.3.7.8-TCDF	8290A 8290A	pg/g	1.4	0.65	Ja	EMPC	EMPC
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	OCDD	8290A 8290A	pg/g	1.4	6200	E B	LIVIPO	Exceeds calibration range
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total HpCDD	8290A 8290A	pg/g pg/g	6.8	1100	В	J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total HpCDF	8290A	pg/g pg/g	6.8	480	Ь	J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total HxCDD	8290A 8290A	pg/g pg/g	6.8	120	В	J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total HxCDF	8290A	pg/g pg/g	6.8	100	q	J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total PeCDD	8290A	pg/g	6.8	21	q q	J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total PeCDF	8290A 8290A	pg/g pg/g	6.8	14	Ч	J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total TCDD	8290A 8290A	pg/g pg/g	1.4	5.1		J J	Quantitation
180-111697-1	KDEPA9SS	180-111697-7	09/29/20	Total TCDF	8290A	pg/g pg/g	1.4	8.2		J J	Quantitation
	KD106SS-EB	180-111697-8	09/29/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g pg/L	51	0.6	JΒ	U	Present in the method blank
	KD106SS-EB	180-111697-8	09/29/20	1,2,3,4,6,7,8-HpCDF	8290A	pg/L	51	0.33	JaB	U	Present in the method blank
	KD106SS-EB	180-111697-8	09/29/20	2.3.4.6.7.8-HxCDF	8290A	pg/L pg/L	51	ND	*1	UJ	LCS RPD
	KD106SS-EB	180-111697-8	09/29/20	OCDD	8290A	pg/L	100	2.9	JB	U	Present in the method blank
	KD106SS-EB	180-111697-8	09/29/20	Total HpCDD	8290A	pg/L	51	1.5	JB	U	Present in the method blank

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111697-1	KD106SS-EB	180-111697-8	09/29/20	Total HpCDF	8290A	pg/L	51	0.33	JqB	U	Present in the method blank
180-111697-1	KD106SS	180-111697-9	09/29/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.3	5.2	J	J	Detect < RL
180-111697-1	KD106SS	180-111697-9	09/29/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.3	4.4	JB	J	Detect < RL
180-111697-1	KD106SS	180-111697-9	09/29/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.3	4.1	J	J	Detect < RL
180-111697-1	KD106SS	180-111697-9	09/29/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.3	1.7	J	J	Detect < RL
180-111697-1	KD106SS	180-111697-9	09/29/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.3	1.5	Jq	EMPC	EMPC
180-111697-1	KD106SS	180-111697-9	09/29/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.3	4.3	J	J	Detect < RL
180-111697-1	KD106SS	180-111697-9	09/29/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.3	3 1000	J B	J	Detect < RL Quantitation
180-111697-1	KD106SS	180-111697-9	09/29/20 09/29/20	Total HpCDD Total HpCDF	8290A	pg/g	6.3	270	В	J	
180-111697-1 180-111697-1	KD106SS KD106SS	180-111697-9 180-111697-9	09/29/20	Total HxCDD	8290A 8290A	pg/g	6.3 6.3	120	В	J	Quantitation Quantitation
180-111697-1	KD106SS	180-111697-9	09/29/20	Total HxCDF	8290A 8290A	pg/g pg/g	6.3	100	q	J	Quantitation
180-111697-1	KD106SS	180-111697-9	09/29/20	Total PeCDD	8290A 8290A	pg/g pg/g	6.3	20	Ч	J	Quantitation
180-111697-1	KD106SS	180-111697-9	09/29/20	Total PeCDF	8290A 8290A	pg/g pg/g	6.3	25	q	J	Quantitation
180-111697-1	KD106SS	180-111697-9	09/29/20	Total TCDD	8290A	pg/g pg/g	1.3	3.1	Ч	J	Quantitation
180-111697-1	KD106SS	180-111697-9	09/29/20	Total TCDF	8290A	pg/g	1.3	19		J.J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Acenaphthylene	8270E	ug/Kg	84	61	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	Anthracene	8270E	ug/Kg	84	81	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	Benzo[k]fluoranthene	8270E	ug/Kg	84	78	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	Indeno[1,2,3-cd]pyrene	8270E	ug/Kg	84	82	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	Naphthalene	8270E	ug/Kg	84	51	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.4	4.1	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.4	3.3	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.4	3.1	J	J	Detect < RL
180-111805-1	KD029SS	180-111805-1	09/30/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.4	Jq	EMPC	EMPC
180-111805-1	KD029SS	180-111805-1	09/30/20	OCDD	8290A	pg/g	13	11000	ΕB	J	Exceeds calibration range
180-111805-1	KD029SS	180-111805-1	09/30/20	Total HpCDD	8290A	pg/g	11	3000	G	J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Total HpCDF	8290A	pg/g	6.4	700	В	J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Total HxCDD	8290A	pg/g	6.4	370		J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Total HxCDF	8290A	pg/g	6.4	200	q	J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Total PeCDD	8290A	pg/g	6.4	57		J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Total PeCDF	8290A	pg/g	6.4	47	q	J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Total TCDD	8290A	pg/g	1.3	12	q	J	Quantitation
180-111805-1	KD029SS	180-111805-1	09/30/20	Total TCDF	8290A	pg/g	1.3	20	q	J	Quantitation
180-111805-1	KD297SS	180-111805-10	10/02/20	Benzo[b]fluoranthene	8270E	ug/Kg	82	32	J	J	Detect < RL
180-111805-1	KD297SS	180-111805-10	10/02/20	Fluoranthene	8270E	ug/Kg	82	34	J	J	Detect < RL
180-111805-1	KD297SS	180-111805-10	10/02/20	Naphthalene	8270E	ug/Kg	82	28	J	J	Detect < RL
180-111805-1	KD297SS	180-111805-10	10/02/20 10/02/20	Phenanthrene	8270E 8270E	ug/Kg	82 82	27 40	J	J	Detect < RL Detect < RL
180-111805-1 180-111805-1	KD297SS KD297SS	180-111805-10 180-111805-10	10/02/20	Pyrene 1,2,3,4,7,8,9-HpCDF	8270E 8290A	ug/Kg	6.3	2.3	J J	J	Detect < RL Detect < RL
						pg/g			J J		
									<u> </u>	ŭ	
										, ,	Detect < RL
								-		, ,	
										, ,	
180-111805-1 180-111805-1 180-111805-1 180-111805-1 180-111805-1	KD297SS KD297SS KD297SS KD297SS KD297SS KD297SS	180-111805-10 180-111805-10 180-111805-10 180-111805-10 180-111805-10	10/02/20 10/02/20 10/02/20 10/02/20 10/02/20	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD	8290A 8290A 8290A 8290A 8290A	pg/g pg/g pg/g pg/g pg/g	6.3 6.3 6.3 6.3 6.3	3 2.3 6.2 1.5 5.5]]]]	J J J	Detect < Detect <

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111805-1	KD297SS	180-111805-10	10/02/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.3	1.2	J	J	Detect < RL
180-111805-1	KD297SS	180-111805-10	10/02/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.3	0.55	Jq	EMPC	EMPC
180-111805-1	KD297SS	180-111805-10	10/02/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.3	1.2	J	J	Detect < RL
180-111805-1	KD297SS	180-111805-10	10/02/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.3	0.79	J	J	Detect < RL
180-111805-1	KD297SS	180-111805-10	10/02/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.41	Jq	EMPC	EMPC
180-111805-1	KD297SS	180-111805-10	10/02/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.75	J	J	Detect < RL
180-111805-1	KD297SS	180-111805-10	10/02/20	Total HpCDD	8290A	pg/g	6.3	510	_	J	Quantitation
180-111805-1	KD297SS	180-111805-10	10/02/20	Total HpCDF	8290A	pg/g	6.3	100	В	J	Quantitation
180-111805-1	KD297SS	180-111805-10	10/02/20	Total HxCDD	8290A	pg/g	6.3	64	q	J	Quantitation
180-111805-1	KD297SS	180-111805-10	10/02/20	Total HxCDF	8290A	pg/g	6.3	33	q	J	Quantitation
180-111805-1	KD297SS	180-111805-10	10/02/20 10/02/20	Total PeCDD Total PeCDF	8290A 8290A	pg/g	6.3	13 9.7	q	J J	Quantitation
180-111805-1	KD297SS	180-111805-10				pg/g		-	q	•	Quantitation
180-111805-1	KD297SS	180-111805-10	10/02/20	Total TCDD Total TCDF	8290A	pg/g	1.3	5.2	q	J	Quantitation
180-111805-1 180-111805-1	KD297SS KD010SS-EB	180-111805-10	10/02/20 09/30/20		8290A 8290A	pg/g	1.3 48	11 0.73	q J B	J U	Quantitation
180-111805-1	KD010SS-EB	180-111805-11 180-111805-11	09/30/20	1,2,3,4,6,7,8-HpCDD 2,3,4,6,7,8-HxCDF	8290A 8290A	pg/L	48	0.73 ND	ув *1	UJ	Present in the method blank LCS RPD
180-111805-1	KD010SS-EB	180-111805-11	09/30/20	2,3,4,6,7,8-HXCDF 2.3.7.8-TCDF	8290A 8290A	pg/L pg/L	9.7	0.67	JqB	IJ	Present in the method blank
180-111805-1	KD010SS-EB	180-111805-11	09/30/20	OCDD	8290A 8290A		9.7	2.1	J q B	U	Present in the method blank
180-111805-1	KD010SS-EB	180-111805-11	09/30/20	OCDF	8290A 8290A	pg/L	97	0.62	Ja	EMPC	EMPC
180-111805-1	KD010SS-EB	180-111805-11	09/30/20	Total HpCDD	8290A 8290A	pg/L pg/L	48	1.6	J q B	U	Present in the method blank
180-111805-1	KD010SS-EB	180-111805-11	09/30/20	Total TCDF	8290A 8290A	pg/L pg/L	9.7	0.67	JqB	U	Present in the method blank
180-111805-1	KD297SS-EB	180-111805-11	10/02/20	1,2,3,4,6,7,8-HpCDD	8290A 8290A	pg/L pg/L	50	0.67	J J B	U	Present in the method blank
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	1,2,3,4,7,8-HxCDD	8290A 8290A	pg/L pg/L	50	1.8	J	J	Detect < RL
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	2,3,4,6,7,8-HxCDF	8290A	pg/L pg/L	50	ND	*1	UJ	LCS RPD
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	2,3,7,8-TCDD	8290A	pg/L	9.9	0.86	Jq	EMPC	EMPC
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	2,3,7,8-TCDF	8290A	pg/L	9.9	1	JB	U	Present in the method blank
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	OCDD	8290A	pg/L	99	3.2	JqB	U	Present in the method blank
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	OCDF	8290A	pg/L	99	0.68	Jq	EMPC	EMPC
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	Total HpCDD	8290A	pg/L	50	1.9	JB	U	Present in the method blank
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	Total HxCDD	8290A	pg/L	50	1.8	J	J	Quantitation
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	Total TCDD	8290A	pg/L	9.9	0.86	Jq	J	Quantitation
180-111805-1	KD297SS-EB	180-111805-12	10/02/20	Total TCDF	8290A	pg/L	9.9	1	JB	U	Present in the method blank
180-111805-1	KD225WSS-EB	180-111805-13	10/01/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/L	48	1.1	JB	U	Present in the method blank
180-111805-1	KD225WSS-EB	180-111805-13	10/01/20	1,2,3,4,7,8-HxCDD	8290A	pg/L	48	1	Jq	EMPC	EMPC
180-111805-1	KD225WSS-EE	180-111805-13	10/01/20	2,3,4,6,7,8-HxCDF	8290A	pg/L	48	ND	*1	UJ	LCS RPD
180-111805-1	KD225WSS-EE	180-111805-13	10/01/20	OCDD	8290A	pg/L	96	3.5	JB	U	Present in the method blank
180-111805-1	KD225WSS-EB	180-111805-13	10/01/20	Total HpCDD	8290A	pg/L	48	2.8	JB	U	Present in the method blank
180-111805-1	KD225WSS-EE	180-111805-13	10/01/20	Total HxCDD	8290A	pg/L	48	1	Jq	J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Fluorene	8270E	ug/Kg	84	16	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	Naphthalene	8270E	ug/Kg	84	59	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6	5.1	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6	3.4	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	1,2,3,7,8-PeCDD	8290A	pg/g	6	2.2	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	1,2,3,7,8-PeCDF	8290A	pg/g	6	1.1	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6	3	J	J	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111805-1	KD045SS	180-111805-2	10/01/20	2,3,4,7,8-PeCDF	8290A	pg/g	6	1.4	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	2,3,7,8-TCDD	8290A	pg/g	1.2	0.2	Jq	EMPC	EMPC
180-111805-1	KD045SS	180-111805-2	10/01/20	2,3,7,8-TCDF	8290A	pg/g	1.2	0.69	J	J	Detect < RL
180-111805-1	KD045SS	180-111805-2	10/01/20	OCDD	8290A	pg/g	12	7900	ΕB	J	Exceeds calibration range
180-111805-1	KD045SS	180-111805-2	10/01/20	Total HpCDD	8290A	pg/g	8.6	2000	G	J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Total HpCDF	8290A	pg/g	6	480	В	J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Total HxCDD	8290A	pg/g	6	210		J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Total HxCDF	8290A	pg/g	6	110		J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Total PeCDD	8290A	pg/g	6	26		J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Total PeCDF	8290A	pg/g	6	21	q	J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Total TCDD	8290A	pg/g	1.2	7.1	q	J	Quantitation
180-111805-1	KD045SS	180-111805-2	10/01/20	Total TCDF	8290A	pg/g	1.2	13		J	Quantitation
180-111805-1	KD123SS	180-111805-3	10/01/20	Acenaphthylene	8270E	ug/Kg	86	51	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	Anthracene	8270E	ug/Kg	86	74	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	Naphthalene	8270E	ug/Kg	86	49	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	Phenanthrene	8270E	ug/Kg	86	58	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.4	4.2	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.4	4.1	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.4	2.4	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.4	0.8	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.4	2.9	J	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.4	0.71	Jq	EMPC	EMPC
180-111805-1	KD123SS	180-111805-3	10/01/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.25	Jq	EMPC	EMPC
180-111805-1	KD123SS	180-111805-3	10/01/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.79	J E B	J	Detect < RL
180-111805-1	KD123SS	180-111805-3	10/01/20	OCDD Total Un CDD	8290A	pg/g	13	6500	G	J	Exceeds calibration range
180-111805-1 180-111805-1	KD123SS KD123SS	180-111805-3 180-111805-3	10/01/20 10/01/20	Total HpCDD Total HpCDF	8290A 8290A	pg/g	7.1 6.4	1500 530	B	J	Quantitation Quantitation
180-111805-1	KD123SS KD123SS	180-111805-3	10/01/20	Total HxCDD	8290A 8290A	pg/g pg/g	6.4	170	В	J .l	Quantitation
180-111805-1	KD123SS KD123SS	180-111805-3	10/01/20	Total HxCDF	8290A 8290A		6.4	120		J	Quantitation
180-111805-1	KD123SS KD123SS	180-111805-3	10/01/20	Total PeCDD	8290A 8290A	pg/g pg/g	6.4	18	q	J	Quantitation
180-111805-1	KD123SS	180-111805-3	10/01/20	Total PeCDF	8290A	pg/g	6.4	14	a a	J	Quantitation
180-111805-1	KD123SS	180-111805-3	10/01/20	Total TCDD	8290A 8290A	pg/g pg/g	1.3	3.7	a a	J	Quantitation
180-111805-1	KD123SS KD123SS	180-111805-3	10/01/20	Total TCDF	8290A	pg/g pg/g	1.3	5.5	q	J	Quantitation
180-111805-1	KD12333 KD149SS	180-111805-3	10/01/20	Acenaphthylene	8270E	ug/Kg	82	65	<u> </u>	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	Anthracene	8270E	ug/Kg ug/Kg	82	77	J	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	Naphthalene	8270E	ug/Kg ug/Kg	82	74	J	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.5	4.6	J .i	J J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.5	4.2	J	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.5	3	J.	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.5	1.3	.i	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.5	4.6	J	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	2.3.4.7.8-PeCDF	8290A	pg/g	6.5	1.7	J	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.36	Ja	EMPC	EMPC
180-111805-1	KD149SS	180-111805-4	10/01/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.86	J	J	Detect < RL
180-111805-1	KD149SS	180-111805-4	10/01/20	OCDD	8290A	pg/g	13	11000	ΕB	J	Exceeds calibration range

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111805-1	KD149SS	180-111805-4	10/01/20	Total HpCDD	8290A	pg/g	13	2700	G	J	Quantitation
180-111805-1	KD149SS	180-111805-4	10/01/20	Total HpCDF	8290A	pg/g	6.5	1000	В	J	Quantitation
180-111805-1	KD149SS	180-111805-4	10/01/20	Total HxCDD	8290A	pg/g	6.5	250		J	Quantitation
180-111805-1	KD149SS	180-111805-4	10/01/20	Total HxCDF	8290A	pg/g	6.5	210		J	Quantitation
180-111805-1	KD149SS	180-111805-4	10/01/20	Total PeCDD	8290A	pg/g	6.5	24	q	J	Quantitation
180-111805-1	KD149SS	180-111805-4	10/01/20	Total PeCDF	8290A	pg/g	6.5	27	q	J	Quantitation
180-111805-1	KD149SS	180-111805-4	10/01/20	Total TCDD	8290A	pg/g	1.3	5.8	q	J	Quantitation
180-111805-1	KD149SS	180-111805-4	10/01/20	Total TCDF	8290A	pg/g	1.3	13		J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Fluorene	8270E	ug/Kg	88	24	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.6	5.9	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.6	4.3	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.6	2.7	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.6	2.2	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.6	0.94	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.6	2.3	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.6	1.2	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.34	Jq	EMPC	EMPC
180-111805-1	KD225ESS	180-111805-5	10/01/20	2,3,7,8-TCDF	8290A	pg/g	1.3	1	J	J	Detect < RL
180-111805-1	KD225ESS	180-111805-5	10/01/20	OCDD	8290A	pg/g	13	7700	ΕB	J	Exceeds calibration range
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total HpCDD	8290A	pg/g	6.6	1400		J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total HpCDF	8290A	pg/g	6.6	340	В	J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total HxCDD	8290A	pg/g	6.6	150		J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total HxCDF	8290A	pg/g	6.6	85		J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total PeCDD	8290A	pg/g	6.6	19	q	J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total PeCDF	8290A	pg/g	6.6	15	q	J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total TCDD	8290A	pg/g	1.3	3.5	q	J	Quantitation
180-111805-1	KD225ESS	180-111805-5	10/01/20	Total TCDF	8290A	pg/g	1.3	6.9	q	J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Naphthalene	8270E	ug/Kg	170	140	J	J	Detect < RL
180-111805-1	KD225WSS	180-111805-6	10/01/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.7	6.1	J	J	Detect < RL
180-111805-1	KD225WSS	180-111805-6	10/01/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.7	4.4	J	J	Detect < RL
180-111805-1	KD225WSS	180-111805-6	10/01/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.7	1.5	J	J	Detect < RL
180-111805-1	KD225WSS	180-111805-6	10/01/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.7	2.2	J	J	Detect < RL
180-111805-1	KD225WSS	180-111805-6	10/01/20	2,3,7,8-TCDD	8290A	pg/g	1.3	1.1	J	J	Detect < RL
180-111805-1	KD225WSS	180-111805-6	10/01/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.63	J	J	Detect < RL
180-111805-1	KD225WSS	180-111805-6	10/01/20	OCDD	8290A	pg/g	13	8400	ΕB	J	Exceeds calibration range
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total HpCDD	8290A	pg/g	8.8	2100	G	J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total HpCDF	8290A	pg/g	6.7	1300	В	J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total HxCDD	8290A	pg/g	6.7	280		J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total HxCDF	8290A	pg/g	6.7	330		J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total PeCDD	8290A	pg/g	6.7	33	q	J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total PeCDF	8290A	pg/g	6.7	34	q	J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total TCDD	8290A	pg/g	1.3	5.9	q	J	Quantitation
180-111805-1	KD225WSS	180-111805-6	10/01/20	Total TCDF	8290A	pg/g	1.3	6.9		J	Quantitation
180-111805-1	DW201SS	180-111805-7	10/02/20	Acenaphthene	8270E	ug/Kg	88	37	J	J	Detect < RL
180-111805-1	DW201SS	180-111805-7	10/02/20	Fluorene	8270E	ug/Kg	88	44	J	J	Detect < RL

Table 6 Results Qualified During Validation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111805-1	DW201SS	180-111805-7	10/02/20	1,2,3,7,8-PeCDD	8290A	pg/g	7	5.1	Jq	EMPC	EMPC
180-111805-1	DW201SS	180-111805-7	10/02/20	1,2,3,7,8-PeCDF	8290A	pg/g	7	1.6	Jq	EMPC	EMPC
180-111805-1	DW201SS	180-111805-7	10/02/20	2,3,4,7,8-PeCDF	8290A	pg/g	7	2.6	J	J	Detect < RL
180-111805-1	DW201SS	180-111805-7	10/02/20	2,3,7,8-TCDF	8290A	pg/g	1.4	0.7	J	J	Detect < RL
180-111805-1	DW201SS	180-111805-7	10/02/20	OCDD	8290A	pg/g	14	22000	ΕB	J	Exceeds calibration range
180-111805-1	DW201SS	180-111805-7	10/02/20	Total HpCDD	8290A	pg/g	10	4600	G	J	Quantitation
180-111805-1	DW201SS	180-111805-7	10/02/20	Total HpCDF	8290A	pg/g	7	1700	В	J	Quantitation
180-111805-1	DW201SS	180-111805-7	10/02/20 10/02/20	Total HxCDD Total HxCDF	8290A	pg/g	7	460 400		J J	Quantitation Quantitation
180-111805-1	DW201SS	180-111805-7			8290A	pg/g	7		~	J .l	
180-111805-1 180-111805-1	DW201SS DW201SS	180-111805-7 180-111805-7	10/02/20 10/02/20	Total PeCDD Total PeCDF	8290A 8290A	pg/g	7	46 64	q	J	Quantitation Quantitation
180-111805-1	DW201SS	180-111805-7	10/02/20	Total TCDD	8290A 8290A	pg/g pg/g	1.4	9.7	q q	J	Quantitation
180-111805-1	DW201SS	180-111805-7	10/02/20	Total TCDF	8290A	pg/g	1.4	20	Ч	J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Benzo[b]fluoranthene	8270E	ug/Kg	78	48	1	J	Detect < RL
180-111805-1	KD251SS	180-111805-8	10/02/20	Benzo[g,h,i]perylene	8270E	ug/Kg ug/Kg	78	29	J	J	Detect < RL
180-111805-1	KD251SS	180-111805-8	10/02/20	Fluoranthene	8270E	ug/Kg	78	51	.I	J	Detect < RL
180-111805-1	KD251SS	180-111805-8	10/02/20	Pyrene	8270E	ug/Kg	78	51	J	J	Detect < RL
180-111805-1	KD251SS	180-111805-8	10/02/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	5.7	3	J	J	Detect < RL
180-111805-1	KD251SS	180-111805-8	10/02/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	5.7	3.1	Ja	EMPC	EMPC
180-111805-1	KD251SS	180-111805-8	10/02/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	5.7	2	Jq	EMPC	EMPC
180-111805-1	KD251SS	180-111805-8	10/02/20	1,2,3,6,7,8-HxCDD	8290A	pg/g	5.7	7.7	q	EMPC	EMPC
180-111805-1	KD251SS	180-111805-8	10/02/20	1,2,3,7,8-PeCDD	8290A	pg/g	5.7	0.77	Jq	EMPC	EMPC
180-111805-1	KD251SS	180-111805-8	10/02/20	1,2,3,7,8-PeCDF	8290A	pg/g	5.7	0.47	Jq	EMPC	EMPC
180-111805-1	KD251SS	180-111805-8	10/02/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	5.7	1.1	J	J	Detect < RL
180-111805-1	KD251SS	180-111805-8	10/02/20	2,3,4,7,8-PeCDF	8290A	pg/g	5.7	0.4	Jq	EMPC	EMPC
180-111805-1	KD251SS	180-111805-8	10/02/20	2,3,7,8-TCDF	8290A	pg/g	1.1	0.65	Jq	EMPC	EMPC
180-111805-1	KD251SS	180-111805-8	10/02/20	Total HpCDD	8290A	pg/g	5.7	510		J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Total HpCDF	8290A	pg/g	5.7	140	В	J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Total HxCDD	8290A	pg/g	5.7	66	q	J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Total HxCDF	8290A	pg/g	5.7	36	q	J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Total PeCDD	8290A	pg/g	5.7	4.2	Jq	J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Total PeCDF	8290A	pg/g	5.7	5.9	q	J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Total TCDD	8290A	pg/g	1.1	1.3	q	J	Quantitation
180-111805-1	KD251SS	180-111805-8	10/02/20	Total TCDF	8290A	pg/g	1.1	4.1	q	J	Quantitation
180-111805-1	KD275SS	180-111805-9	10/02/20	Acenaphthylene	8270E	ug/Kg	85	36	J	J	Detect < RL
180-111805-1	KD275SS	180-111805-9	10/02/20	Anthracene	8270E	ug/Kg	85	44	J	J .I	Detect < RL
180-111805-1	KD275SS	180-111805-9	10/02/20	Benzo[a]pyrene	8270E	ug/Kg	85	83	J	ŭ	Detect < RL
180-111805-1	KD275SS	180-111805-9 180-111805-9	10/02/20 10/02/20	Benzo[g,h,i]perylene	8270E	ug/Kg	85	66 62	J	J J	Detect < RL Detect < RL
180-111805-1 180-111805-1	KD275SS KD275SS	180-111805-9 180-111805-9	10/02/20	Benzo[k]fluoranthene	8270E 8270E	ug/Kg ug/Kg	85 85	62	J	J	Detect < RL Detect < RL
180-111805-1	KD275SS KD275SS	180-111805-9	10/02/20	Indeno[1,2,3-cd]pyrene Naphthalene	8270E 8270E	0 0	85 85	64	J	J	Detect < RL
180-111805-1	KD275SS KD275SS	180-111805-9	10/02/20	1,2,3,4,6,7,8-HpCDF	8270E 8290A	ug/Kg	6.5	47	Ba	EMPC	EMPC
180-111805-1	KD275SS	180-111805-9	10/02/20	1,2,3,4,7,8,9-HpCDF	8290A 8290A	pg/g pg/g	6.5	2.7	J	J	Detect < RL
180-111805-1	KD275SS	180-111805-9	10/02/20	1,2,3,4,7,8-HxCDD	8290A 8290A	pg/g pg/g	6.5	4.3	J	J	Detect < RL
180-111805-1	KD275SS	180-111805-9	10/02/20	1,2,3,4,7,6-HXCDD 1,2,3,7,8,9-HxCDD	8290A 8290A	pg/g pg/g	6.5	6.2	J	J	Detect < RL
1-600111-001	ND21000	100-111005-9	10/02/20	1,2,3,1,0,8-MXCDD	029UA	pg/g	0.0	0.2	J	J	Detect < KL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111805-1	KD275SS	180-111805-9	10/02/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.5	2.1	J	J	Detect < RL
180-111805-1	KD275SS	180-111805-9	10/02/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.94	J	J	Detect < RL
180-111805-1	KD275SS	180-111805-9	10/02/20	Total HpCDD	8290A	pg/g	6.5	550		J	Quantitation
180-111805-1	KD275SS	180-111805-9	10/02/20	Total HpCDF	8290A	pg/g	6.5	130	Βq	J	Quantitation
180-111805-1	KD275SS	180-111805-9	10/02/20	Total HxCDD	8290A	pg/g	6.5	65		J	Quantitation
180-111805-1	KD275SS	180-111805-9	10/02/20	Total HxCDF	8290A	pg/g	6.5	36	q	J	Quantitation
180-111805-1	KD275SS	180-111805-9	10/02/20	Total PeCDD	8290A	pg/g	6.5	11	q	J	Quantitation
180-111805-1	KD275SS	180-111805-9	10/02/20	Total PeCDF	8290A	pg/g	6.5	2.7	Jq	J	Quantitation
180-111805-1	KD275SS	180-111805-9	10/02/20	Total TCDF	8290A	pg/g	1.3	6.1	q	J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Fluorene	8270E	ug/Kg	420	100	J	J	Detect < RL
180-111869-1	DW202SS	180-111869-1	10/03/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g	27	5100	EBG	J	Exceeds calibration range
180-111869-1	DW202SS	180-111869-1	10/03/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	8.3	21	q G	EMPC	EMPC
180-111869-1	DW202SS	180-111869-1	10/03/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	6.1	140	F1	J	MS recovery
180-111869-1	DW202SS	180-111869-1	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.1	2.1	J	J	Detect < RL
180-111869-1	DW202SS	180-111869-1	10/03/20	2,3,7,8-TCDF	8290A	pg/g	1.2	0.58	J	J	Detect < RL
180-111869-1	DW202SS	180-111869-1	10/03/20	OCDD	8290A	pg/g	13	54000	EBG	J	Exceeds calibration range
180-111869-1	DW202SS	180-111869-1	10/03/20	Total HpCDD	8290A	pg/g	27	9200	BG	J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Total HpCDF	8290A	pg/g	12	3300	G	J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Total HxCDD	8290A	pg/g	6.1	1100	В	J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Total HxCDF	8290A	pg/g	8.1	900	q G	J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Total PeCDD	8290A	pg/g	6.1	68		J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Total PeCDF	8290A	pg/g	6.1	110	q	J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Total TCDD	8290A	pg/g	1.2	11	q	J	Quantitation
180-111869-1	DW202SS	180-111869-1	10/03/20	Total TCDF	8290A	pg/g	1.2	21	q	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	7.4	1.3	J	J	Detect < RL
180-111869-1	DW210SS	180-111869-10	10/03/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	7.4	1.8	J B	J	Detect < RL
180-111869-1	DW210SS	180-111869-10	10/03/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	7.4	3.3	J	J	Detect < RL
180-111869-1	DW210SS	180-111869-10	10/03/20	1,2,3,6,7,8-HxCDD	8290A	pg/g	7.4	3.1	J	J .l	Detect < RL
180-111869-1	DW210SS	180-111869-10	10/03/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	7.4	1.3	J	ŭ	Detect < RL
180-111869-1	DW210SS	180-111869-10	10/03/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	7.4 7.4	3 0.57	J	J EMPC	Detect < RL EMPC
180-111869-1	DW210SS	180-111869-10	10/03/20 10/03/20	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	8290A 8290A	pg/g	7.4	0.57	Jq	EIVIPC	
180-111869-1 180-111869-1	DW210SS DW210SS	180-111869-10 180-111869-10	10/03/20	2,3,4,6,7,8-HxCDF	8290A 8290A	pg/g pg/g	7.4	1.5	J	J	Detect < RL Detect < RL
180-111869-1	DW210SS	180-111869-10	10/03/20	2,3,4,6,7,8-PeCDF	8290A 8290A	pg/g pg/g	7.4	0.81	Ja	EMPC	EMPC
180-111869-1	DW210SS	180-111869-10	10/03/20	2,3,7,8-TCDF	8290A	pg/g pg/g	1.5	0.45	J	LIVIFO	Detect < RL
180-111869-1	DW210SS	180-111869-10	10/03/20	Total HpCDD	8290A	pg/g	7.4	230	В	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	Total HpCDF	8290A	pg/g	7.4	60	Ь	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	Total HxCDD	8290A 8290A	pg/g pg/g	7.4	40	αВ	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	Total HxCDF	8290A	pg/g pg/g	7.4	24	q	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	Total PeCDD	8290A 8290A	pg/g pg/g	7.4	5.9	Jq	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	Total PeCDF	8290A	pg/g pg/g	7.4	9.3	a	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	Total TCDD	8290A	pg/g pg/g	1.5	1.5	q q	J	Quantitation
180-111869-1	DW210SS	180-111869-10	10/03/20	Total TCDF	8290A	pg/g	1.5	7.4	q q	J. I	Quantitation
180-111869-1	DW210SS-EB	180-111869-11	10/03/20	OCDD	8290A	pg/g pg/L	97	15	J B	U	Present in the method blank
180-111869-1	DW203SS	180-111869-2	10/03/20	Naphthalene	8270E	ug/Kg	88	81	.1	. .j	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111869-1	DW203SS	180-111869-2	10/03/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.3	3.6	J	J	Detect < RL
180-111869-1	DW203SS	180-111869-2	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.3	0.72	Jq	EMPC	EMPC
180-111869-1	DW203SS	180-111869-2	10/03/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.3	4.5	J	J	Detect < RL
180-111869-1	DW203SS	180-111869-2	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.3	1.1	J	J	Detect < RL
180-111869-1	DW203SS	180-111869-2	10/03/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.29	Jq	EMPC	EMPC
180-111869-1	DW203SS	180-111869-2	10/03/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.65	J	J	Detect < RL
180-111869-1	DW203SS	180-111869-2	10/03/20	OCDD	8290A	pg/g	13	17000	ΕB	J	Exceeds calibration range
180-111869-1	DW203SS	180-111869-2	10/03/20	Total HpCDD	8290A	pg/g	14	3000	BG	J	Quantitation
180-111869-1	DW203SS	180-111869-2	10/03/20	Total HpCDF	8290A	pg/g	7.1	1000	G	J	Quantitation
180-111869-1	DW203SS	180-111869-2	10/03/20	Total HxCDD	8290A	pg/g	6.3	300	В	J	Quantitation
180-111869-1	DW203SS	180-111869-2	10/03/20	Total HxCDF	8290A	pg/g	6.3	210		J	Quantitation
180-111869-1	DW203SS	180-111869-2	10/03/20	Total PeCDD	8290A	pg/g	6.3	29	q	J	Quantitation
180-111869-1	DW203SS	180-111869-2	10/03/20	Total PeCDF	8290A	pg/g	6.3	29	q	J	Quantitation
180-111869-1	DW203SS	180-111869-2	10/03/20	Total TCDD	8290A	pg/g	1.3	4.7	q	J	Quantitation
180-111869-1	DW203SS	180-111869-2	10/03/20	Total TCDF	8290A	pg/g	1.3	4.1	q	J	Quantitation
180-111869-1	DW204SS	180-111869-3	10/03/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g	21	4700	EBG	J	Exceeds calibration range
180-111869-1	DW204SS	180-111869-3	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.3	2.7	J	J	Detect < RL
180-111869-1	DW204SS	180-111869-3	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.3	3.5	J	J	Detect < RL
180-111869-1	DW204SS	180-111869-3	10/03/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.7	Jq	EMPC	EMPC
180-111869-1	DW204SS	180-111869-3	10/03/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.72	J	J	Detect < RL
180-111869-1	DW204SS	180-111869-3	10/03/20	OCDD	8290A	pg/g	13	51000	E B	J	Exceeds calibration range
180-111869-1	DW204SS	180-111869-3	10/03/20	Total HpCDD	8290A	pg/g	21	9900	B G	J	Quantitation
180-111869-1	DW204SS	180-111869-3	10/03/20	Total HpCDF	8290A	pg/g	7.1	2900	G B	J	Quantitation
180-111869-1	DW204SS DW204SS	180-111869-3 180-111869-3	10/03/20	Total HxCDD Total HxCDF	8290A 8290A	pg/g	6.3	900 700	В	J	Quantitation
180-111869-1			10/03/20			pg/g	6.3	66			Quantitation
180-111869-1 180-111869-1	DW204SS DW204SS	180-111869-3 180-111869-3	10/03/20 10/03/20	Total PeCDD Total PeCDF	8290A 8290A	pg/g	6.3	82		J	Quantitation Quantitation
180-111869-1	DW204SS	180-111869-3	10/03/20	Total TCDD	8290A 8290A	pg/g pg/g	1.3	9.1	q	J	Quantitation
180-111869-1	DW204SS	180-111869-3	10/03/20	Total TCDF	8290A 8290A		1.3	15		J	Quantitation
180-111869-1	DW205SS	180-111869-4	10/03/20	Fluorene	8270E	pg/g ug/Kg	390	95	q	J	Detect < RL
180-111869-1	DW205SS	180-111869-4	10/03/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g	24	6700	EBG	J	Exceeds calibration range
180-111869-1	DW205SS	180-111869-4	10/03/20	1,2,3,6,7,8-HxCDF	8290A 8290A	pg/g pg/g	6.5	22	q G	EMPC	EMPC
180-111869-1	DW205SS	180-111869-4	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.1	3.8	1	I	Detect < RL
180-111869-1	DW205SS	180-111869-4	10/03/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.8	17	q G	EMPC	EMPC
180-111869-1	DW205SS	180-111869-4	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.1	4.8	J	.l	Detect < RL
180-111869-1	DW205SS	180-111869-4	10/03/20	2.3.7.8-TCDD	8290A	pg/g	1.2	0.95	Ja	EMPC	EMPC
180-111869-1	DW205SS	180-111869-4	10/03/20	OCDD	8290A	pg/g	26	76000	EBG	.1	Exceeds calibration range
180-111869-1	DW205SS	180-111869-4	10/03/20	OCDF	8290A	pg/g	12	5800	EB	J	Exceeds calibration range
180-111869-1	DW205SS	180-111869-4	10/03/20	Total HpCDD	8290A	pg/g	24	15000	BG	J	Quantitation
180-111869-1	DW205SS	180-111869-4	10/03/20	Total HpCDF	8290A	pg/g	11	4800	G	J	Quantitation
180-111869-1	DW205SS	180-111869-4	10/03/20	Total HxCDD	8290A	pg/g	6.1	1600	В	J	Quantitation
180-111869-1	DW205SS	180-111869-4	10/03/20	Total HxCDF	8290A	pg/g	6.9	1100	q G	J	Quantitation
180-111869-1	DW205SS	180-111869-4	10/03/20	Total PeCDD	8290A	pg/g	9.5	54	G	J	Quantitation
180-111869-1	DW205SS	180-111869-4	10/03/20	Total PeCDF	8290A	pg/g	6.1	100	q	J	Quantitation
180-111869-1	DW205SS	180-111869-4	10/03/20	Total TCDD	8290A	pg/g	1.2	15	q	J	Quantitation

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111869-1	DW205SS	180-111869-4	10/03/20	Total TCDF	8290A	pg/g	1.2	16		J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Acenaphthene	8270E	ug/Kg	3100	1300	J	J	Detect < RL
180-111869-1	DW206SS	180-111869-5	10/03/20	Fluorene	8270E	ug/Kg	3100	1100	J	J	Detect < RL
180-111869-1	DW206SS	180-111869-5	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6	1.2	Jq	EMPC	EMPC
180-111869-1	DW206SS	180-111869-5	10/03/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6	5.4	J	J	Detect < RL
180-111869-1	DW206SS	180-111869-5	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	6	1.8	J	J	Detect < RL
180-111869-1	DW206SS	180-111869-5	10/03/20	2,3,7,8-TCDD	8290A	pg/g	1.2	1	J	J	Detect < RL
180-111869-1	DW206SS	180-111869-5	10/03/20	2,3,7,8-TCDF	8290A	pg/g	1.2	0.97	J	J	Detect < RL
180-111869-1	DW206SS	180-111869-5	10/03/20	OCDD	8290A	pg/g	12	21000	ΕB	J	Exceeds calibration range
180-111869-1	DW206SS	180-111869-5	10/03/20	Total HpCDD	8290A	pg/g	9.5	4100	ВG	J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Total HpCDF	8290A	pg/g	6	1300		J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Total HxCDD	8290A	pg/g	6	380	В	J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Total HxCDF	8290A	pg/g	6	290		J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Total PeCDD	8290A	pg/g	6	31	q	J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Total PeCDF	8290A	pg/g	6	37	q	J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Total TCDD	8290A	pg/g	1.2	3.5	q	J	Quantitation
180-111869-1	DW206SS	180-111869-5	10/03/20	Total TCDF	8290A	pg/g	1.2	7.3		J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Fluorene	8270E	ug/Kg	410	100	J	J	Detect < RL
180-111869-1	DW207SS	180-111869-6	10/03/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g	50	6500	EBG	J	Exceeds calibration range
180-111869-1	DW207SS	180-111869-6	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.2	4.1	J	J	Detect < RL
180-111869-1	DW207SS	180-111869-6	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.2	5	J	J	Detect < RL
180-111869-1	DW207SS	180-111869-6	10/03/20	2,3,7,8-TCDD	8290A	pg/g	1.2	0.83	Jq	EMPC	EMPC
180-111869-1	DW207SS	180-111869-6	10/03/20	OCDD	8290A	pg/g	18	72000	EBG	J	Exceeds calibration range
180-111869-1	DW207SS	180-111869-6	10/03/20	OCDF	8290A	pg/g	12	6200	ΕB	J	Exceeds calibration range
180-111869-1	DW207SS	180-111869-6	10/03/20	Total HpCDD	8290A	pg/g	50	16000	ВG	J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Total HpCDF	8290A	pg/g	11	4400	G	J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Total HxCDD	8290A	pg/g	6.2	1500	В	J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Total HxCDF	8290A	pg/g	6.2	940		J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Total PeCDD	8290A	pg/g	6.5	82	q G	J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Total PeCDF	8290A	pg/g	6.2	90		J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Total TCDD	8290A	pg/g	1.2	22	q	J	Quantitation
180-111869-1	DW207SS	180-111869-6	10/03/20	Total TCDF	8290A	pg/g	1.2	20	q	J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Acenaphthylene	8270E	ug/Kg	84	36	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	Anthracene	8270E	ug/Kg	84	40	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	Benzo[g,h,i]perylene	8270E	ug/Kg	84	72	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	Benzo[k]fluoranthene	8270E	ug/Kg	84	76	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	Indeno[1,2,3-cd]pyrene	8270E	ug/Kg	84	68	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	Naphthalene	8270E	ug/Kg	84	46	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	Phenanthrene	8270E	ug/Kg	84	79	J .	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.1	2.1	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.1	3.4	J B	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.1	1.5	Jq	EMPC	EMPC
180-111869-1	KD321SS	180-111869-7	10/03/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.1	1.5	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	6.1	5.8	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.1	1.1	L J	J	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111869-1	KD321SS	180-111869-7	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.1	0.63	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.1	1.4	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.1	0.56	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	2,3,7,8-TCDD	8290A	pg/g	1.2	0.29	Jq	EMPC	EMPC
180-111869-1	KD321SS	180-111869-7	10/03/20	2,3,7,8-TCDF	8290A	pg/g	1.2	0.8	J	J	Detect < RL
180-111869-1	KD321SS	180-111869-7	10/03/20	Total HpCDD	8290A	pg/g	6.1	520	В	J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Total HpCDF	8290A	pg/g	6.1	110		J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Total HxCDD	8290A	pg/g	6.1	71	В	J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Total HxCDF	8290A	pg/g	6.1	35	q	J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Total PeCDD	8290A	pg/g	6.1	11	q	J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Total PeCDF	8290A	pg/g	6.1	7.8	q	J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Total TCDD	8290A	pg/g	1.2	2.5	q	J	Quantitation
180-111869-1	KD321SS	180-111869-7	10/03/20	Total TCDF	8290A	pg/g	1.2	4.1	q	J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	1,2,3,4,6,7,8-HpCDD	8290A	pg/g	50	6400	GEB	J	Exceeds calibration range
180-111869-1	DW208SS	180-111869-8	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	5.9	4.5	J	J	Detect < RL
180-111869-1	DW208SS	180-111869-8	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	5.9	5.3	J	J	Detect < RL
180-111869-1	DW208SS	180-111869-8	10/03/20	2,3,7,8-TCDD	8290A	pg/g	1.2	0.89	Jq	EMPC	EMPC
180-111869-1	DW208SS	180-111869-8	10/03/20	OCDD	8290A	pg/g	28	72000	GEB	J	Exceeds calibration range
180-111869-1	DW208SS	180-111869-8	10/03/20	OCDF	8290A	pg/g	12	6000	ΕB	J	Exceeds calibration range
180-111869-1	DW208SS	180-111869-8	10/03/20	Total HpCDD	8290A	pg/g	50	16000	GB	J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	Total HpCDF	8290A	pg/g	10	4100	G	J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	Total HxCDD	8290A	pg/g	5.9	1500	В	J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	Total HxCDF	8290A	pg/g	5.9	1000	q	J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	Total PeCDD	8290A	pg/g	5.9	120	q	J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	Total PeCDF	8290A	pg/g	5.9	110		J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	Total TCDD	8290A	pg/g	1.2	31	q	J	Quantitation
180-111869-1	DW208SS	180-111869-8	10/03/20	Total TCDF	8290A	pg/g	1.2	33		J	Quantitation
180-111869-1	DW209SS	180-111869-9	10/03/20	Benzo[b]fluoranthene	8270E	ug/Kg	91	41	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	Fluoranthene	8270E	ug/Kg	91	37	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	Pyrene	8270E	ug/Kg	91	38	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.5	3.4	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.5	5.2	JB	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.5	3	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.5	2.5	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	6.5	6	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.5	1.8	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.5	1	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.5	2.1	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.5	0.99	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	2,3,7,8-TCDD	8290A	pg/g	1.3	0.29	Jq	EMPC	EMPC
180-111869-1	DW209SS	180-111869-9	10/03/20	2,3,7,8-TCDF	8290A	pg/g	1.3	0.8	J	J	Detect < RL
180-111869-1	DW209SS	180-111869-9	10/03/20	Total HpCDD	8290A	pg/g	6.5	910	В	J	Quantitation
180-111869-1	DW209SS	180-111869-9	10/03/20	Total HpCDF	8290A	pg/g	6.5	200		J	Quantitation
180-111869-1	DW209SS	180-111869-9	10/03/20	Total HxCDD	8290A	pg/g	6.5	140	В	J	Quantitation
180-111869-1	DW209SS	180-111869-9	10/03/20	Total HxCDF	8290A	pg/g	6.5	58		J	Quantitation

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111869-1	DW209SS	180-111869-9	10/03/20	Total PeCDD	8290A	pg/g	6.5	22	q	J	Quantitation
180-111869-1	DW209SS	180-111869-9	10/03/20	Total PeCDF	8290A	pg/g	6.5	15	q	J	Quantitation
180-111869-1	DW209SS	180-111869-9	10/03/20	Total TCDD	8290A	pg/g	1.3	6.6	q	J	Quantitation
180-111869-1	DW209SS	180-111869-9	10/03/20	Total TCDF	8290A	pg/g	1.3	9.5	q	J	Quantitation
180-111870-1	BR500SS	180-111870-7	10/04/20	Benzo[a]anthracene	8270E	ug/Kg	330	ND		UJ	FD DIFF
180-111870-1	BR500SS	180-111870-7	10/04/20	Benzo[b]fluoranthene	8270E	ug/Kg	330	180	J	J	FD DIFF; <rl< td=""></rl<>
180-111870-1	BR500SS	180-111870-7	10/04/20	Benzo[g,h,i]perylene	8270E	ug/Kg	330	77	J	U	Did not meet identification criteria
180-111870-1	BR500SS	180-111870-7	10/04/20	Chrysene	8270E	ug/Kg	330	ND		UJ	FD DIFF
180-111870-1	BR500SS	180-111870-7	10/04/20	Fluoranthene	8270E	ug/Kg	330	98	J	J	FD DIFF; <rl< td=""></rl<>
180-111870-1	BR500SS	180-111870-7	10/04/20	Pyrene	8270E	ug/Kg	330	130	J	J	FD DIFF; <rl< td=""></rl<>
180-111870-1	BR500SS	180-111870-7	10/04/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.3	5.3 5.4	J JB	J	Detect < RL
180-111870-1	BR500SS	180-111870-7	10/04/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.3		J B		Detect < RL
180-111870-1	BR500SS	180-111870-7	10/04/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.3	5.9	J	J	Detect < RL
180-111870-1	BR500SS	180-111870-7	10/04/20	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	8290A 8290A	pg/g	6.3	3 4.6	J	J	Detect < RL Detect < RL
180-111870-1	BR500SS	180-111870-7	10/04/20			pg/g	6.3		E B		
180-111870-1 180-111870-1	BR500SS BR500SS	180-111870-7 180-111870-7	10/04/20 10/04/20	OCDD Total HpCDD	8290A 8290A	pg/g	13 6.3	5200 980	B	J	Exceeds calilbration Quantitation
						pg/g			В	J	
180-111870-1	BR500SS	180-111870-7 180-111870-7	10/04/20 10/04/20	Total HpCDF	8290A 8290A	pg/g	6.3	260 130	В	J .l	Quantitation
180-111870-1	BR500SS			Total HxCDD		pg/g	6.3		В	J	Quantitation
180-111870-1	BR500SS BR500SS	180-111870-7 180-111870-7	10/04/20 10/04/20	Total HxCDF Total PeCDD	8290A 8290A	pg/g	6.3	110 20	_		Quantitation
180-111870-1 180-111870-1	BR500SS	180-111870-7	10/04/20	Total PeCDF	8290A 8290A	pg/g	6.3	48	q	J	Quantitation Quantitation
				Total TCDD		pg/g			q	J	
180-111870-1 180-111870-1	BR500SS BR500SS	180-111870-7 180-111870-7	10/04/20 10/04/20	Total TCDF	8290A 8290A	pg/g	1.3 1.3	3.1 25	q	J .l	FD DIFF; Quantitation Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Anthracene	8270E	pg/g ug/Kg	410	310	q	J	Detect < RL
180-111870-1	BR861SS	180-111870-8	10/04/20	Benzo[a]anthracene	8270E	ug/Kg ug/Kg	410	1100	J	J	FD DIFF
180-111870-1	BR861SS	180-111870-8	10/04/20	Benzo[b]fluoranthene	8270E	ug/Kg ug/Kg	410	1400		J .l	FD DIFF
180-111870-1	BR861SS	180-111870-8	10/04/20	Chrysene	8270E	ug/Kg ug/Kg	410	1700		J	FD DIFF
180-111870-1	BR861SS	180-111870-8	10/04/20	Fluoranthene	8270E	ug/Kg ug/Kg	410	1600		J	FD DIFF
180-111870-1	BR861SS	180-111870-8	10/04/20	Pyrene	8270E	ug/Kg ug/Kg	410	1700		J	FD DIFF
180-111870-1	BR861SS	180-111870-8	10/04/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.3	5.2	J	J	Detect < RL
180-111870-1	BR861SS	180-111870-8	10/04/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.3	5.6	JB	J	Detect < RL
180-111870-1	BR861SS	180-111870-8	10/04/20	2,3,4,7,8-PeCDF	8290A	pg/g	6.3	4.8	.I	J	Detect < RL
180-111870-1	BR861SS	180-111870-8	10/04/20	OCDD	8290A	pg/g	13	6300	ΕB	J	Exceeds calilbration
180-111870-1	BR861SS	180-111870-8	10/04/20	Total HpCDD	8290A	pg/g	6.3	1300	В	J	Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Total HpCDF	8290A	pg/g	6.3	280	_	J	Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Total HxCDD	8290A	pg/g	6.3	160	В	J	Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Total HxCDF	8290A	pg/g	6.3	120		J	Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Total PeCDD	8290A	pg/g	6.3	20	q	J	Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Total PeCDF	8290A	pg/g	6.3	50	q	J	Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Total TCDD	8290A	pg/g	1.3	6.7	q	J	FD DIFF; Quantitation
180-111870-1	BR861SS	180-111870-8	10/04/20	Total TCDF	8290A	pg/g	1.3	31	q	J	Quantitation
180-111870-2	BR233SS-EB	180-111870-9	10/04/20	OCDD	8290A	pg/L	97	35	JВ	U	Present in the method blank
180-111870-3	BREPA21SS	180-111870-1	10/04/20	Benzo[b]fluoranthene	8270E	ug/Kg	80	25	J	J	Detect < RL
180-111870-3	BREPA21SS	180-111870-1	10/04/20	Pyrene	8270E	ug/Kg	80	21	J	J	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111870-3	BREPA21SS	180-111870-1	10/04/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.1	1.7	J	J	Detect < RL
180-111870-3	BREPA21SS	180-111870-1	10/04/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.1	1.3	J	J	Detect < RL
180-111870-3	BREPA21SS	180-111870-1	10/04/20	1,2,3,6,7,8-HxCDD	8290A	pg/g	6.1	3.8	J	J	Detect < RL
180-111870-3	BREPA21SS	180-111870-1	10/04/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.1	0.82	J	J	Detect < RL
180-111870-3	BREPA21SS	180-111870-1	10/04/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	6.1	3.4	J	J	Detect < RL
180-111870-3	BREPA21SS	180-111870-1	10/04/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.1	0.74	Jq	EMPC	EMPC
180-111870-3	BREPA21SS	180-111870-1	10/04/20	Total HpCDD	8290A	pg/g	6.1	330	В	J	Quantitation
180-111870-3	BREPA21SS	180-111870-1	10/04/20	Total HpCDF	8290A	pg/g	6.1	65		J	Quantitation
180-111870-3	BREPA21SS	180-111870-1	10/04/20	Total HxCDD	8290A	pg/g	6.1	40		J	Quantitation
180-111870-3	BREPA21SS	180-111870-1	10/04/20	Total HxCDF	8290A	pg/g	6.1	16	q	J	Quantitation
180-111870-3	BREPA21SS	180-111870-1	10/04/20	Total PeCDD	8290A	pg/g	6.1	3.1	J	J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Acenaphthylene	8270E	ug/Kg	84	40	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	Anthracene	8270E	ug/Kg	84	35	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	Benzo[g,h,i]perylene	8270E	ug/Kg	84	79	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	Indeno[1,2,3-cd]pyrene	8270E	ug/Kg	84	74	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	Naphthalene	8270E	ug/Kg	84	21	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	Phenanthrene	8270E	ug/Kg	84	42	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.3	2.3	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.3	2.3	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.3	4.5	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.3	2.1	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	1,2,3,7,8,9-HxCDD	8290A	pg/g	6.3	5	J	J	Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	1,2,3,7,8-PeCDD	8290A 8290A	pg/g	6.3	0.95 0.76	J	J EMPC	Detect < RL EMPC
180-111870-3	BR373SS BR373SS	180-111870-2 180-111870-2	10/04/20 10/04/20	1,2,3,7,8-PeCDF	8290A 8290A	pg/g	6.3	2.1	Jq		Detect < RL
180-111870-3				2,3,4,6,7,8-HxCDF		pg/g	6.3		J	J	
180-111870-3 180-111870-3	BR373SS BR373SS	180-111870-2 180-111870-2	10/04/20 10/04/20	2,3,4,7,8-PeCDF 2,3,7,8-TCDF	8290A 8290A	pg/g	6.3 1.3	1.3 0.93	J	J	Detect < RL Detect < RL
180-111870-3	BR373SS	180-111870-2	10/04/20	Total HpCDD	8290A 8290A	pg/g pg/g	6.3	460	В	J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Total HpCDF	8290A 8290A		6.3	120	ь	J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Total HxCDD	8290A	pg/g pg/g	6.3	61		J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Total HxCDF	8290A 8290A	pg/g pg/g	6.3	39		J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Total PeCDD	8290A 8290A	pg/g pg/g	6.3	4	J	J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Total PeCDF	8290A	pg/g pg/g	6.3	11	q	J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Total TCDD	8290A	pg/g	1.3	2.6	q	J	Quantitation
180-111870-3	BR373SS	180-111870-2	10/04/20	Total TCDF	8290A	pg/g	1.3	8.8	q	J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Benzo[b]fluoranthene	8270E	ug/Kg	83	56	<u>ч</u> .I	J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	Benzo[g,h,i]perylene	8270E	ug/Kg	83	21	.i	.J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	Benzo[k]fluoranthene	8270E	ug/Kg	83	25	J	J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	Chrysene	8270E	ug/Kg	83	51	,J	J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	Phenanthrene	8270E	ug/Kg	83	40	J	J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	5.8	3.1	J	Ĵ	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	5.8	5.2	J	Ĵ	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	1,2,3,7,8-PeCDD	8290A	pg/g	5.8	1.3	J	J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	1,2,3,7,8-PeCDF	8290A	pg/g	5.8	1.8	J	J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	2,3,4,7,8-PeCDF	8290A	pg/g	5.8	4.2	J	J	Detect < RL

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111870-3	BR351SS	180-111870-3	10/04/20	2,3,7,8-TCDF	8290A	pg/g	1.2	1.1	J	J	Detect < RL
180-111870-3	BR351SS	180-111870-3	10/04/20	Total HpCDD	8290A	pg/g	5.8	500	В	J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Total HpCDF	8290A	pg/g	5.8	130		J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Total HxCDD	8290A	pg/g	5.8	77	q	J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Total HxCDF	8290A	pg/g	5.8	77		J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Total PeCDD	8290A	pg/g	5.8	9.4		J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Total PeCDF	8290A	pg/g	5.8	41		J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Total TCDD	8290A	pg/g	1.2	0.76	Jq	J	Quantitation
180-111870-3	BR351SS	180-111870-3	10/04/20	Total TCDF	8290A	pg/g	1.2	25	q	J	Quantitation
180-111870-3	BR315SS	180-111870-4	10/04/20	Acenaphthylene	8270E	ug/Kg	81	49	J	J	Detect < RL
180-111870-3	BR315SS	180-111870-4	10/04/20	Anthracene	8270E	ug/Kg	81	46	J	J	Detect < RL
180-111870-3	BR315SS	180-111870-4	10/04/20	Phenanthrene	8270E	ug/Kg	81	35	J	J	Detect < RL
180-111870-3	BR315SS	180-111870-4	10/04/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6.2	5.9	J	J	Detect < RL
180-111870-3	BR315SS	180-111870-4	10/04/20	1,2,3,4,7,8-HxCDD	8290A	pg/g	6.2	4.4	J	J	Detect < RL
180-111870-3	BR315SS	180-111870-4	10/04/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.2	2	J.	J	Detect < RL
180-111870-3	BR315SS	180-111870-4	10/04/20	1,2,3,7,8-PeCDF	8290A	pg/g	6.2	4.2	J	J	Detect < RL
180-111870-3	BR315SS	180-111870-4	10/04/20	2,3,7,8-TCDF	8290A	pg/g	1.2	2.5	q	EMPC	EMPC
180-111870-3	BR315SS	180-111870-4	10/04/20	Total HpCDD	8290A	pg/g	6.6	1100	BG	J	Quantitation
180-111870-3	BR315SS	180-111870-4	10/04/20	Total HpCDF	8290A	pg/g	6.2	350		J	Quantitation
180-111870-3	BR315SS	180-111870-4	10/04/20	Total HxCDD	8290A	pg/g	6.2	130		J	Quantitation
180-111870-3	BR315SS	180-111870-4	10/04/20	Total HxCDF	8290A	pg/g	6.2	170		J	Quantitation
180-111870-3	BR315SS	180-111870-4	10/04/20	Total PeCDD	8290A 8290A	pg/g	6.2	23 95	q	J	Quantitation
180-111870-3	BR315SS BR315SS	180-111870-4	10/04/20 10/04/20	Total PeCDF Total TCDD	8290A 8290A	pg/g	6.2		_	J	Quantitation
180-111870-3	BR315SS BR315SS	180-111870-4	10/04/20	Total TCDD Total TCDF	8290A 8290A	pg/g	1.2 1.2	4.5 52	q	J	Quantitation Quantitation
180-111870-3 180-111870-3	BR289SS	180-111870-4 180-111870-5	10/04/20	Acenaphthylene	8270E	pg/g	79	58	q J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	Acenaphinylene Anthracene	8270E	ug/Kg ug/Kg	79	48	.l	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	Phenanthrene	8270E	ug/Kg ug/Kg	79	27	J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	1,2,3,4,7,8,9-HpCDF	8290A	pg/g	6	4.9	J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	1,2,3,4,7,8-HxCDD	8290A	pg/g pg/g	6	5.3	Jq	EMPC	EMPC
180-111870-3	BR289SS	180-111870-5	10/04/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6	5.1	J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6	5.6	J J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	1,2,3,7,8,9-HxCDF	8290A	pg/g pg/g	6	0.75	J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	1,2,3,7,8-PeCDD	8290A	pg/g pg/g	6	2.2	J.J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	1,2,3,7,8-PeCDF	8290A	pg/g	6	2.1	Ja	EMPC	EMPC
180-111870-3	BR289SS	180-111870-5	10/04/20	2.3.4.6.7.8-HxCDF	8290A	pg/g	6	5.4	J	J	Detect < RL
180-111870-3	BR289SS	180-111870-5	10/04/20	2,3,4,7,8-PeCDF	8290A	pg/g	6	3.4	Ja	EMPC	EMPC
180-111870-3	BR289SS	180-111870-5	10/04/20	OCDD	8290A	pg/g	19	8700	GEB	J	Exceeds calibration range
180-111870-3	BR289SS	180-111870-5	10/04/20	Total HpCDD	8290A	pg/g	6.7	1000	G B	J	Quantitation
180-111870-3	BR289SS	180-111870-5	10/04/20	Total HpCDF	8290A	pg/g	6	290		J	Quantitation
180-111870-3	BR289SS	180-111870-5	10/04/20	Total HxCDD	8290A	pg/g	6	160	q	J	Quantitation
180-111870-3	BR289SS	180-111870-5	10/04/20	Total HxCDF	8290A	pg/g	6	110	i i	J	Quantitation
180-111870-3	BR289SS	180-111870-5	10/04/20	Total PeCDD	8290A	pg/g	6	26		J	Quantitation
180-111870-3	BR289SS	180-111870-5	10/04/20	Total PeCDF	8290A	pg/g	6	33	q	J	Quantitation
180-111870-3	BR289SS	180-111870-5	10/04/20	Total TCDD	8290A	pg/g	1.2	5.7	q	J	Quantitation

Table 6 Results Qualified During Valiidation

SDG	Sample ID	Lab Sample ID	Sample Date	Parameter	Method	Units	RL	Result	Lab Qualifier	Validator Qualifier	Reason for Qualifier
180-111870-3	BR289SS	180-111870-5	10/04/20	Total TCDF	8290A	pg/g	1.2	28		J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Acenaphthylene	8270E	ug/Kg	1200	470	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	Benzo[a]pyrene	8270E	ug/Kg	1200	540	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	Benzo[b]fluoranthene	8270E	ug/Kg	1200	800	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	Benzo[g,h,i]perylene	8270E	ug/Kg	1200	450	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	Fluoranthene	8270E	ug/Kg	1200	770	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	Phenanthrene	8270E	ug/Kg	1200	630	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	Pyrene	8270E	ug/Kg	1200	770	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	1,2,3,4,7,8-HxCDF	8290A	pg/g	6.1	5.5	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	1,2,3,6,7,8-HxCDF	8290A	pg/g	6.1	4.2	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	1,2,3,7,8-PeCDD	8290A	pg/g	6.1	2.3	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	2,3,4,6,7,8-HxCDF	8290A	pg/g	6.1	3.4	J	J	Detect < RL
180-111870-3	BR233SS	180-111870-6	10/04/20	OCDD	8290A	pg/g	17	7900	EBG	J	Exceeds calibration range
180-111870-3	BR233SS	180-111870-6	10/04/20	Total HpCDD	8290A	pg/g	7.9	1400	BG	J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Total HpCDF	8290A	pg/g	6.1	380		J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Total HxCDD	8290A	pg/g	6.1	180		J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Total HxCDF	8290A	pg/g	6.1	110		J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Total PeCDD	8290A	pg/g	6.1	25	q	J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Total PeCDF	8290A	pg/g	6.1	30	q	J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Total TCDD	8290A	pg/g	1.2	2		J	Quantitation
180-111870-3	BR233SS	180-111870-6	10/04/20	Total TCDF	8290A	pg/g	1.2	34	q	J	Quantitation

Table 7 Field Duplicate Summary

SDG	Parent Sample ID	Field Duplicate	Method	Analyte	Units	Parent Result	FD Result	RPD (%)	Difference	Criteria (2x RL or RPD)	Exceeds Criteria	Qualifier Applied
180-111697-1	KD010SS	KD860SS	8270E	Acenaphthene	ug/Kg	34	43	N/A	9	164	No	None
180-111697-1	KD010SS	KD860SS	8270E	Acenaphthylene	ug/Kg	490	480	2	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Anthracene	ug/Kg	650	640	2	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Benzo[a]anthracene	ug/Kg	920	1200	26	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Benzo[a]pyrene	ug/Kg	1100	990	11	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Benzo[b]fluoranthene	ug/Kg	2100	2200	5	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Benzo[g,h,i]perylene	ug/Kg	830	760	9	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Benzo[k]fluoranthene	ug/Kg	720	740	3	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Chrysene	ug/Kg	1200	1500	22	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Dibenz(a,h)anthracene	ug/Kg	310	280	N/A	30	164	No	None
180-111697-1	KD010SS	KD860SS	8270E	Fluoranthene	ug/Kg	1400	2000	35	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Fluorene	ug/Kg	56	44	N/A	12	164	No	None
180-111697-1	KD010SS	KD860SS	8270E	Indeno[1,2,3-cd]pyrene	ug/Kg	850	790	7	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Naphthalene	ug/Kg	490	480	2	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Phenanthrene	ug/Kg	710	660	7	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8270E	Pyrene	ug/Kg	1800	2600	36	N/A	40%	No	None
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,4,6,7,8-HpCDD	pg/g	660	1200	58	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,4,6,7,8-HpCDF	pg/g	120	210	55	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,4,7,8,9-HpCDF	pg/g	7.6	13	N/A	5.4	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,4,7,8-HxCDD	pg/g	7.6	14	N/A	6.4	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,4,7,8-HxCDF	pg/g	4.5	7.1	N/A	2.6	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,6,7,8-HxCDD	pg/g	20	37	N/A	17	11.6	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,6,7,8-HxCDF	pg/g	3.5	4.8	N/A	1.3	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,7,8,9-HxCDD	pg/g	14	25	N/A	11	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,7,8-PeCDD	pg/g	2.8	5.5	N/A	2.7	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	1,2,3,7,8-PeCDF	pg/g	0.75	1.3	N/A	0.55	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	2,3,4,6,7,8-HxCDF	pg/g	3.1	5.4	N/A	2.3	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	2,3,4,7,8-PeCDF	pg/g	0.94	1.2	N/A	0.26	11.6	No	None
180-111697-1	KD010SS	KD860SS	8290A	2,3,7,8-TCDF	pg/g	0.59	1.2	N/A	0.61	2.4	No	None
180-111697-1	KD010SS	KD860SS	8290A	OCDD	pg/g	6900	14000	68	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	OCDF	pg/g	490	840	53	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total HpCDD	pg/g	1600	2800	55	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total HpCDF	pg/g	410	710	54	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total HxCDD	pg/g	190	360	62	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total HxCDF	pg/g	100	190	62	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total PeCDD	pg/g	31	72	80	N/A	40%	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total PeCDF	pg/g	11	37	N/A	26	11.6	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total TCDD	pg/g	2.5	12	N/A	9.5	2.4	Yes	J
180-111697-1	KD010SS	KD860SS	8290A	Total TCDF	pg/g	6.2	14	77	N/A	40%	Yes	J

Table 7 Field Duplicate Summary

SDG	Parent Sample ID	Field Duplicate	Method	Analyte	Units	Parent Result	FD Result	RPD (%)	Difference	Criteria (2x RL or RPD)	Exceeds Criteria	Qualifier Applied
180-111870-1	BR500SS	BR861SS	8270E	Acenaphthylene	ug/Kg	330 U	420	N/A	90	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Anthracene	ug/Kg	330 U	310	N/A	20	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Benzo[a]anthracene	ug/Kg	330 U	1100	N/A	770	660	Yes	UJ, J
180-111870-1	BR500SS	BR861SS	8270E	Benzo[a]pyrene	ug/Kg	330 U	840	N/A	510	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Benzo[b]fluoranthene	ug/Kg	180	1400	N/A	1220	660	Yes	J
180-111870-1	BR500SS	BR861SS	8270E	Benzo[g,h,i]perylene	ug/Kg	77	560	N/A	483	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Benzo[k]fluoranthene	ug/Kg	330 U	730	N/A	400	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Chrysene	ug/Kg	330 U	1700	N/A	1370	660	Yes	UJ, J
180-111870-1	BR500SS	BR861SS	8270E	Dibenz(a,h)anthracene	ug/Kg	330 U	490	N/A	160	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Fluoranthene	ug/Kg	98	1600	N/A	1502	660	Yes	J
180-111870-1	BR500SS	BR861SS	8270E	Indeno[1,2,3-cd]pyrene	ug/Kg	330 U	570	N/A	240	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Phenanthrene	ug/Kg	330 U	510	N/A	180	660	No	None
180-111870-1	BR500SS	BR861SS	8270E	Pyrene	ug/Kg	130	1700	N/A	1570	660	Yes	J
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,4,6,7,8-HpCDD	pg/g	390	570	38	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,4,6,7,8-HpCDF	pg/g	100	120	18	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,4,7,8,9-HpCDF	pg/g	5.3	5.2	N/A	0.1	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,4,7,8-HxCDD	pg/g	5.4	5.6	N/A	0.2	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,4,7,8-HxCDF	pg/g	10	11	N/A	1	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,6,7,8-HxCDD	pg/g	15	18	N/A	3	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,6,7,8-HxCDF	pg/g	5.9	6.9	N/A	1	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,7,8,9-HxCDD	pg/g	8.3	10	N/A	1.7	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	1,2,3,7,8-PeCDF	pg/g	3	6.3 U	N/A	3.3	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	2,3,4,6,7,8-HxCDF	pg/g	9.4	9.8	N/A	0.4	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	2,3,4,7,8-PeCDF	pg/g	4.6	4.8	N/A	0.2	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	2,3,7,8-TCDF	pg/g	1.6	1.7	N/A	0.1	2.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	OCDD	pg/g	5200	6300	19	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	OCDF	pg/g	270	280	4	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	Total HpCDD	pg/g	980	1300	28	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	Total HpCDF	pg/g	260	280	7	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	Total HxCDD	pg/g	130	160	21	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	Total HxCDF	pg/g	110	120	9	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	Total PeCDD	pg/g	20	20	N/A	0	12.6	No	None
180-111870-1	BR500SS	BR861SS	8290A	Total PeCDF	pg/g	48	50	4	N/A	40%	No	None
180-111870-1	BR500SS	BR861SS	8290A	Total TCDD	pg/g	3.1	6.7	N/A	3.6	2.6	Yes	J
180-111870-1	BR500SS	BR861SS	8290A	Total TCDF	pg/g	25	31	21	N/A	40%	No	None

Attachment A

Validation Checklists

Client Name:Beazer East, Inc.SDG/Report No.:180-111697-1Project Site:Grenada, MississippiLab ID:Eurofins TestAmericaNo. of Samples:12Matrix:Soil/Water

Area Reviewed	Anoi	malies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport	X		No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance	X		No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)	X		Yes	KD106SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, OCDD, Total HpCDD, and Total HpCDF "U". KD280SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, 2,3,7,8- TCDF, and Total TCDF "U".
8. Isotope Dilution Analytes		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples	X		Yes	KD280SS-EB and KD106SS-EB: Qualify 2,3,4,6,7,8-HxCDF "J" or "UJ".
11. Field Duplicates	X		Yes	KD010SS and KD860SS: Qualify 13 analytes "J".
12. Internal Standards				
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify OCDD "J" where the calibration range was exceeded.
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage	_2B_Va	lidation_Manual	
Verification and Validation Label Code	S2BV	M		

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
KD302SS	180-111697-1	9/28/2020	2.7 °C/0.9 °C	10/06/2020	10/17/2020
KD280SS	180-111697-2	9/28/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD280SS-EB	180-111697-3	9/28/2020	2.7 °C/0.9 °C	10/07/2020	10/10/2020
KD248SS	180-111697-4	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD216SS	180-111697-5	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD132SS	180-111697-6	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KDEPA9SS	180-111697-7	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020; 10/22/2020
KD106SS-EB	180-111697-8	9/29/2020	2.7 °C/0.9 °C	10/07/2020	10/10/2020
KD106SS	180-111697-9	9/29/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020; 10/22/2020
KD080SS	180-111697-10	9/30/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020
KD010SS	180-111697-11	9/30/2020	2.7 °C/0.9 °C	10/06/2020	10/18/2020; 10/22/2020
KD860SS	180-111697-12	9/30/2020	2.7 °C/0.9 °C	10/06/2020	10/20/2020; 10/22/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept \leq 6 °C?	Yes
Were samples received in proper condition?	Yes
Notes: The sample receipt at the West Sacramento lab states that corrected temperature at receip	ot was 6.9 °C. The
writing on the COC looks like 0.9 °C.	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes
were commence unany zon within acceptance including vinion (to uniformity).	

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	Yes
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
WDM for ICAL on Instrument 3D5 analyzed on 9/23/2020. The standards were analyzed on 10/5/202 Level III package does not provide all information.	0.

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
There is an ICAL sheet (page 579) that says RT and S/N ratio were good for soil ICAL, as were in III package does not provide all ICAL information.	n ratios. Level

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A
Were retention time criteria met? Not shown in Level III	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A
Notes: Level III package does not provide all CCV information.	

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes
In MB 320-419261/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,	
1,2,3,4,7,8-HxCDD, OCDD,OCDF, Total HpCDD, and Total HxCDD.	
In MB 320-419525/1-A (water), the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,	
1,2,3,4,6,7,8-HpCDF, 2,3,7,8-TCDF, OCDD, Total HpCDD, Total HpCDF, and Total TCDF.	
In KD106SS-EB, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,6,7,8-HpCDF, OCDD, Total HpCDD, and Total 1	HpCDF were
detected.	
In KD280SS-EB, twenty-one analytes were detected.	

8. Isotope Dilution Analytes			
Were samples spiked with the correct analytes?	Yes		
Were isotope dilution recoveries reported on data forms?	Yes		
Were recoveries within laboratory limits?	Yes		

9. Matrix Spike/Matrix Spike Duplicate				
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	No			
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A			
Were MS/MSD recoveries and RPDs within laboratory established limits?	N/A			
Were field blanks used for the MS/MSD samples?	N/A			

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	No
RPD of the LCS 320-419525/LCSD 320-419525 exceeded control limits for 2,3,4,6,7,8-HxCDF.	

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	No
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	No
Notes: REG/FD pair: KD010SS and KD860SS	

12. Internal Standards and Recovery Standards				
Were samples spiked with internal standards and recovery standards?	Yes			
Were recoveries within established limits?	N/A			
Were ion abundance ratios within established limits?	N/A			
Were retention times within established limits?	N/A			

13. Compound Identification and Quantitation	
Were the retention times within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Was an estimated maximum possible concentration (EMPC) calculated and reported for 2,3,7,8-substituted isomers?	Yes
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of \geq 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/02/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111697-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	12	Matrix:	Soil/Water

Area Reviewed	Anomalies		Anomalies				Qualification Required	Action Required
	Yes	No	Yes or No					
1. Sample Preservation, Handling, and Transport		X	No	None				
2. Chain-of-Custody		X	No	None				
3. Holding Times		X	No	None				
4. Instrument Performance		X	No	None				
5. Initial Calibration		X	No	None				
6. Continuing Calibration Verification		X	No	None				
7. Blanks (Method and/or Field QC)		X	No	None				
8. Surrogates/Monitoring Compounds		X	No	None				
9. Matrix Spike/Matrix Spike Duplicate	X		No	None				
10. Laboratory Control Samples		X	No	None				
11. Field Duplicates		X	No	None				
12. Internal Standards		X	No	None				
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".				
14. Calculations and Raw Data (Stage 4 only)								
Verification and Validation Label	Stage_2B_Validation_Manual							
Verification and Validation Label Code	S2BVM							

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
KD302SS	180-111697-1	9/28/2020	2.7 °C	10/08/2020	10/11/2020
KD280SS	180-111697-2	9/28/2020	2.7 °C	10/08/2020	10/11/2020
KD280SS-EB	180-111697-3	9/28/2020	2.7 °C	10/02/2020	10/12/2020
KD248SS	180-111697-4	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD216SS	180-111697-5	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD132SS	180-111697-6	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KDEPA9SS	180-111697-7	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD106SS-EB	180-111697-8	9/29/2020	2.7 °C	10/05/2020	10/16/2020
KD106SS	180-111697-9	9/29/2020	2.7 °C	10/08/2020	10/11/2020
KD080SS	180-111697-10	9/30/2020	2.7 °C	10/14/2020	10/16/2020
KD010SS	180-111697-11	9/30/2020	2.7 °C	10/14/2020	10/16/2020
KD860SS	180-111697-12	9/30/2020	2.7 °C	10/14/2020	10/16/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

5. Initial Calibration		
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes	
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) ≤ the	V	
method or Coefficient of Correlation (r) ≥ 0.995 or $r2 \geq 0.99$?	Yes	
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes	
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes	

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs ≥ method requirements?	Yes
Were qualifications required based on this information?	No

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	No
Were recoveries within laboratory limits?	No

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

$Data\ Validation\ Checklist-Polynuclear\ Aromatic\ Hydrocarbons\ by\ 8270D/8270E$

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results > $5x$ the RL, were RPDs between the two values $\leq 40\%$ for soil/20% for water?	Yes
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	Yes
Notes: One pair was analyzed: KD010SS and KD860SS. All results agreed.	

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within ±20% between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/21/2020

Client Name:Beazer East, Inc.SDG/Report No.:180-111805-1Project Site:Grenada, MississippiLab ID:Eurofins TestAmericaNo. of Samples:15 with MS/MSDMatrix:Soil/Water

Area Reviewed	Anomalies		Anomalies		Anomalies		Qualification Required	Action Required
	Yes	No	Yes or No					
1. Sample Preservation, Handling, and Transport		X	No	None				
2. Chain-of-Custody	X		No	None				
3. Holding Times		X	No	None				
4. Instrument Performance	X		No	None				
5. Initial Calibration		X	No	None				
6. Continuing Calibration Verification		X	No	None				
7. Blanks (Method and/or Field QC)	X		Yes	KD010SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 2,3,7,8- TCDF, OCDD, Total HpCDD, and Total TCDF "U". KD225WSS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, OCDD, and Total HpCDD "U". KD297SS-EB: Qualify 1,2,3,4,6,7,8-HpCDD, 2,3,7,8- TCDF, OCDD, Total HpCDD, and Total TCDF "U".				
8. Isotope Dilution Analytes		X	No	None				
9. Matrix Spike/Matrix Spike Duplicate	X		No	None				
10. Laboratory Control Samples	X		Yes	KD010SS-EB, KD297SS-EB, and KD225WSS-EB: Qualify 2,3,4,6,7,8-HxCDF "UJ".				
11. Field Duplicates								
12. Internal Standards								
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify OCDD "J" where the calibration range was exceeded.				
14. Calculations and Raw Data (Stage 4 only)								
Verification and Validation Label	Stage_2B_Validation_Manual							
Verification and Validation Label Code	S2BVM							

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
KD029SS	180-111805-1	9/30/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD045SS	180-111805-2	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD123SS	180-111805-3	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020
KD149SS	180-111805-4	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD225ESS	180-111805-5	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020
KD225WSS	180-111805-6	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
DW201SS	180-111805-7	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD251SS	180-111805-8	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020
KD275SS	180-111805-9	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD297SS	180-111805-10	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD297SS-MS	180-111805-10 MS	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD297SS-MSD	180-111805-10 MSD	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/08/2020	10/20/2020; 10/23/2020
KD010SS-EB	180-111805-11	9/30/2020	1.8 °C/3.0 °C/3.6 °C	10/07/2020	10/10/2020
KD297SS-EB	180-111805-12	10/02/2020	1.8 °C/3.0 °C/3.6 °C	10/07/2020	10/10/2020
KD225WSS-EB	180-111805-13	10/01/2020	1.8 °C/3.0 °C/3.6 °C	10/07/2020	10/10/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept \leq 6 °C?	Yes
Were samples received in proper condition?	Yes
Notes:	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes : There is no "relinquished by" time listed on one of the two COCs.	

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	Yes
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
Notes: WDM for ICAL on Instrument 3D5 analyzed on 9/23/2020. The standards were analyzed on	10/5/2020.

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
Notes: Level III package does not provide all ICAL information.	

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A
Were retention time criteria met? (Forms 6A/6B) Not shown in Level III	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A
Notes: Level III package does not provide all CCV information.	

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes

Notes: MB 320-419758/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDF, OCDD, OCDF, and Total HpCDF.

In MB 320-419525/1-A (water), the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,

1,2,3,4,6,7,8-HpCDF, 2,3,7,8-TCDF, OCDD, Total HpCDD, Total HpCDF, and Total TCDF.

In KD010SS-EB, 1,2,3,4,6,7,8-HpCDD, 2,3,7,8-TCDF, OCDD, OCDF, Total HpCDD, and Total TCDF were detected.

In KD225WSS-EB, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD, OCDD, Total HpCDD, and Total HxCDD were detected.

In KD297SS-EB, 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD, 2,3,7,8-TCDD, 2,3,7,8-TCDF, OCDD, OCDF, Total HpCDD, Total HxCDD, Total TCDD, and Total TCDF were detected..

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate		
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	Yes	
Were MS/MSD recoveries and RPDs reported correctly on data forms?	Yes	
Were MS/MSD recoveries and RPDs within laboratory established limits?	No	
Were field blanks used for the MS/MSD samples?	No	
Notes : OCDD recovery was high in the MSD of KD297SS. The concentration in the parent sample was > 4x the		
	_	

amount spiked, so recovery criteria do not apply. No qualification.

10. Laboratory Control Samples (LCS)		
Was an LCS sample analyzed with each analytical batch?	Yes	
Were LCS recoveries within laboratory limits?	Yes	
Were LCS/LCSD RPDs within laboratory limits?	No	
Notes: RPD of the LCS 320-419525/LCSD 320-419525 exceeded control limits for 2,3,4,6,7,8-HxCDF.		

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Were samples spiked with internal standards?	N/A
Were recoveries within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Were retention times within established limits?	N/A

13. Compound Identification and Quantitation	
Were the retention times within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Was an estimated maximum possible concentration (EMPC) calculated and reported for	Yes
2,3,7,8-substituted isomers?	res
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of \geq 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/03/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111805-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	15 with MS/MSD	Matrix:	Soil/Water

Area Reviewed	Anomalies		Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody	X		No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage_2B_Validation_Manual			
Verification and Validation Label Code	S2BVM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
KD029SS	180-111805-1	9/30/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD045SS	180-111805-2	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD123SS	180-111805-3	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD149SS	180-111805-4	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD225ESS	180-111805-5	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD225WSS	180-111805-6	10/01/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
DW201SS	180-111805-7	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD251SS	180-111805-8	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD275SS	180-111805-9	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD297SS	180-111805-10	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD297SS-MS	180-111805-10 MS	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/16/2020
KD297SS-MSD	180-111805-10 MSD	10/02/2020	1.8 °C/3.6 °C	10/14/2020	10/17/2020
KD010SS-EB	180-111805-11	9/30/2020	1.8 °C/3.6 °C	10/07/2020	10/16/2020
KD297SS-EB	180-111805-12	10/02/2020	1.8 °C/3.6 °C	10/07/2020	10/16/2020
KD225WSS-EB	180-111805-13	10/01/2020	1.8 °C/3.6 °C	10/07/2020	10/16/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
There is no "relinquished by" time listed on one out of two COCs.	•

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) ≤ the	Yes
method or Coefficient of Correlation (r) ≥ 0.995 or $r2 \geq 0.99$?	res
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs ≥ method requirements?	Yes
Were qualifications required based on this information?	No

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate		
Was one MS/MSD pair analyzed for each batch of 20 samples?	No	
Were MS/MSD recoveries and RPDs reported correctly on data forms?	Yes	
Were MS/MSD recoveries and RPDs within the laboratory limits?	No	
Were field blanks used for the MS/MSD samples?	No	
Notes: Benzo[g,h,i]perylene RPD was high between the MS and MSD of KD297SS. The parent is non-detect, so		
no qualification is required.		

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A
1 of results 3 x the RE, were differences between the two values = 2x RE for som RE for water.	11/11

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/23/2020

Client Name:Beazer East, Inc.SDG/Report No.:180-111869-1Project Site:Grenada, MississippiLab ID:Eurofins TestAmericaNo. of Samples:13 with MS/MSDMatrix:Soil/Water

Area Reviewed	Anor	nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody	X		No	None
3. Holding Times		X	No	None
4. Instrument Performance	X		No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)	X		Yes	DW210SS-EB: Qualify OCDD "U".
8. Isotope Dilution Analytes		X	No	
9. Matrix Spike/Matrix Spike Duplicate	X		Yes	DW202SS: Qualify 1,2,3,7,8,9- HxCDD "J".
10. Laboratory Control Samples		X	No	
11. Field Duplicates				
12. Internal Standards				
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify 1,2,3,4,6,7,8-HpCDD, OCDD, and OCDF "J" where the calibration range was exceeded.
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage_2B_Validation_Manual			
Verification and Validation Label Code	S2BV	M		

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
DW202SS	180-111869-1	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW202SS-MS	180-111869-1 MS	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW202SS-MSD	180-111869-1 MSD	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW203SS	180-111869-2	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/19/2020
DW204SS	180-111869-3	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW205SS	180-111869-4	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW206SS	180-111869-5	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/19/2020
DW207SS	180-111869-6	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
KD321SS	180-111869-7	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/19/2020
DW208SS	180-111869-8	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW209SS	180-111869-9	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW210SS	180-111869-10	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/15/2020; 10/19/2020
DW210SS-EB	180-111869-11	10/03/2020	1.4 °C/2.2 °C	10/09/2020	10/20/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept \leq 6 °C?	Yes
Were samples received in proper condition?	Yes
Were qualifications required based on this information?	No
Notes:	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes : There is no "relinquished by" time listed on the COC.	

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	No
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
Notes: WDM on Instrument 10D5, analyzed on 10/20/2020 @ 00:34, was analyzed after the CCV.	

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
Notes: Level III package does not provide all ICAL information.	

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A
Were retention time criteria met? (Forms 6A/6B) Not shown in Level III	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A
Notes: Level III package does not provide all CCV information.	

7. Blanks (Method and/or Field QC)		
Does data package include a summary of method blank results?	Yes	
Was a method blank extracted and analyzed for each prep batch?	Yes	
Were target analytes reported in the method blanks?	Yes	
Notes : MB 320-420127/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD, 1,2,3,4,7,8-HxCDD, OCDD, OCDF, Total HpCDD, and Total HxCDD.		
In MB 320-420196/1-A (water), the following analytes were detected: 1,2,3,4,7,8-HxCDD, OCDD, and Total HxCDD.		
In DW210SS-EB, OCDD was detected.		

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	Yes
Were MS/MSD recoveries and RPDs reported correctly on data forms?	Yes
Were MS/MSD recoveries and RPDs within laboratory established limits?	No
Were field blanks used for the MS/MSD samples?	No

Notes: OCDD and 1,2,3,4,6,7,8-HpCD, 1,2,3,4,6,7,8-HpCDF OCDF recoveries were high in the MS and/or MSD of DW202SS. The concentrations in the parent sample were > 4x the amount spiked, so recovery criteria do not apply. No qualification.

1,2,3,7,8,9-HxCDD recovery was high in the MS of DW202SS.

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	Yes
were LCS/LCSD RFDs within iadoratory limits?	1 es

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Were samples spiked with internal standards and recovery standards?	N/A
Were recoveries within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Were retention times within established limits?	N/A

13. Compound Identification and Quantitation	
Were the retention times within established limits?	N/A
Were ion abundance ratios within established limits?	N/A
Was an estimated maximum possible concentration (EMPC) calculated and reported for 2,3,7,8-substituted isomers?	Yes
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of ≥ 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/04/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111869-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	13 with MS/MSD	Matrix:	Soil/Water

Area Reviewed		nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody	X		No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds	X		No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage_2B_Validation_Manual			
Verification and Validation Label Code	S2BVM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
DW202SS	180-111869-1	10/03/2020	1.4 °C	10/14/2020	10/16/2020
DW202SS-MS	180-111869-1 MS	10/03/2020	1.4 °C	10/14/2020	10/16/2020
DW202SS-MSD	180-111869-1 MSD	10/03/2020	1.4 °C	10/14/2020	10/16/2020
DW203SS	180-111869-2	10/03/2020	1.4 °C	10/13/2020	10/14/2020
DW204SS	180-111869-3	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW205SS	180-111869-4	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW206SS	180-111869-5	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW207SS	180-111869-6	10/03/2020	1.4 °C	10/13/2020	10/15/2020
KD321SS	180-111869-7	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW208SS	180-111869-8	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW209SS	180-111869-9	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW210SS	180-111869-10	10/03/2020	1.4 °C	10/13/2020	10/15/2020
DW210SS-EB	180-111869-11	10/03/2020	1.4 °C	10/08/2020	10/14/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: There is no "relinquished by" time listed on the COC.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

Yes
Yes
res
Yes
Yes
-

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs ≥ method requirements?	Yes
Were qualifications required based on this information?	No

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds		
Were samples spiked with the correct surrogate compounds?	Yes	
Were surrogate recoveries reported on data forms?	Yes	
Were recoveries within laboratory limits?	No	

Notes: No surrogates were detected in DW206SS because of sample dilution. No qualification is needed. Tribromophenol (TBF) recovery was low in DW202SS. The target compounds are all base-neutrals. TBF is an acid compound. No qualification is needed.

No
Yes
Yes
No

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/24/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-1
Project Site:	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	2	Matrix:	Soil

Area Reviewed	Anomalies		Qualification Required	Action Required	
	Yes	No	Yes or No		
1. Sample Preservation, Handling, and Transport		X	No	None	
2. Chain-of-Custody		X	No	None	
3. Holding Times		X	No	None	
4. Instrument Performance		X	No	None	
5. Initial Calibration		X	No	None	
6. Continuing Calibration Verification		X	No	None	
7. Blanks (Method and/or Field QC)	X		No	None	
8. Isotope Dilution Analytes		X	No	None	
9. Matrix Spike/Matrix Spike Duplicate	X		No	None	
10. Laboratory Control Samples		X	No	None	
11. Field Duplicates	X		Yes	BR500SS and BR861SS: Qualify Total TCDD "J".	
12. Internal Standards and Recovery Standards		X	No	None	
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify 1,2,3,4,6,7,8-HpCDD, OCDD, and OCDF "J" where the calibration range was exceeded.	
14. Calculations and Raw Data (Stage 4 only)		X	No	None	
Verification and Validation Label	Stage_4_Validation_Manual				
Verification and Validation Label Code	S4VN	1			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
BR500SS	180-111870-7	10/04/2020	1.5 °C/2.2 °C	10/09/2020	10/13/2020; 10/13/2020
BR861SS	180-111870-8	10/04/2020	1.4 °C/2.2 °C	10/09/2020	10/13/2020; 10/13/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept ≤ 6 °C?	Yes
Were samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes
	

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	Yes
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series? (Raw QC Data; Tune Data)	Yes
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the ion abundance ratios within established limits?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes
Notes:	

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes
Notes: MB 320-420127/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD,	1,2,3,4,7,8-
HxCDD, OCDD, OCDF, Total HpCDD, and Total HxCDD.	
In BR233SS-EB (in SDG 180-111870-2), OCDD was detected.	

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

No
N/A
N/A
N/A

Yes
Yes
Yes

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results > $5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	Yes
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	No
Notes: REG/FD pair: BR500SS and BR861SS	

12. Internal Standards	
Were samples spiked with internal standards? 13C-1,2,3,4-TCDD and 13C-1,2,3,7,8,9-HxCDD	Yes
Were ion abundance ratios within established limits?	Yes
Were retention times within established limits?	Yes

13. Compound Identification and Quantitation	
Were the retention times within established limits? (-1 to +3 seconds from the respective	No
isotope dilution analyte or internal standard signal)	No
Were ion abundance ratios within established limits?	No
Was an estimated maximum possible concentration (EMPC) calculated and reported for	Yes
2,3,7,8-substituted isomers?	1 05
Were the isomers characterized by a response with an S/N of at least 2.5?	Yes

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of \geq 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4) Yes	

Validated by: Maureen McMyler 12/08/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-1
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	2	Matrix:	Soil

Area Reviewed	Anon	nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance		X	No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates	X		Yes	BR500SS and BR861SS: Qualify benzo[a]anthracene, benzo[b]fluoranthene, chrysene, fluoranthene, and pyrene "J" or "UJ".
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".
14. Calculations and Raw Data (Stage 4 only)	X		Yes	BR500SS: Qualify benzo[g,h,i]perylene "U".
Verification and Validation Label	Stage_4_Validation_Manual			
Verification and Validation Label Code	S4VM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
BR500SS	180-111870-7	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR861SS	180-111870-8	10/04/2020	1.5 °C	10/14/2020	10/17/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in other data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	Yes
Was DDT % breakdown less than 20%?	Yes

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) \leq the method or Coefficient of Correlation (r) \geq 0.995 or r2 \geq 0.99?	Yes
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs \geq method requirements?	Yes

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	Yes
For REG/FD results > $5x$ the RL, were RPDs between the two values $\leq 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	No
Notes: REG/FD pair: BR500SS and BR861SS	

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ±30 seconds from the RT of the IS in the associated	Yes
CCV or mid-point standard from ICAL?	168

13. Compound Identification and Quantitation		
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	Yes	
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	No	
Do the relative intensities of ions agree within ±20% between the standard and sample spectra? (Stage 4)	Yes	
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes	
Notes: Benzo[g,h,i]perylene spectrum in BR500SS did not have all the ions of the reference spectrum		

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	Yes

Validated by: Maureen McMyler 12/07/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-2
Project Site:	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	1	Matrix:	Water

Area Reviewed	Anomalies		Qualification Required	Action Required
	Yes	No	Yes or No	
Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance	X		No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)	X		Yes	BR233SS-EB: Qualify OCDD "U".
8. Isotope Dilution Analytes		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	No	None
14. Calculations and Raw Data (Stage 4 only)		X	No	None
Verification and Validation Label	Stage_4_Valida		dation_Manual	
Verification and Validation Label Code	S4VM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
BR233SS-EB	180-111870-9	10/04/2020	1.5 °C/2.2 °C	10/09/2020	10/19/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept \leq 6 °C?	Yes
Were samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in different data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	No
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series? (Raw QC Data; Tune Data)	Yes
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
Notes: WDM 320-423518/43 was analyzed after the CCV, but before sample.	

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes

6. Continuing Calibration Verification (CCV)	
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date	Yes
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were the ion abundance ratios within established limits?	Yes
Were retention time criteria met? (Quant sheet: Δ Sec between -1 and +3)	Yes
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	Yes

7. Blanks (Method and/or Field QC)		
Does data package include a summary of method blank results?	Yes	
Was a method blank extracted and analyzed for each prep batch?	Yes	
Were target analytes reported in the method blanks?	Yes	
Notes: In MB 320-420193/1-A, the following analytes were detected: 1,2,3,4,7,8-HxCDD, OCDD, OCDF, and		
Total HxCDD.		
OCDD was detected in BR233SS-EB.		

8. Isotope Dilution Analytes	
Were samples spiked with the correct analytes?	Yes
Were isotope dilution recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within laboratory established limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	Yes

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results > $5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Were samples spiked with internal standards? 13C-1,2,3,4-TCDD and 13C-1,2,3,7,8,9-HxCDD	Yes
Were ion abundance ratios within established limits?	Yes
Were retention times within established limits?	Yes

13. Compound Identification and Quantitation	
Were the retention times within established limits? (-1 to +3 seconds from the respective	Yes
isotope dilution analyte or internal standard signal)	1 68
Were ion abundance ratios within established limits?	Yes
Was an estimated maximum possible concentration (EMPC) calculated and reported for	N _a
2,3,7,8-substituted isomers?	No
Were the isomers characterized by a response with an S/N of at least 2.5?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	Yes

Validated by: Maureen McMyler 12/10/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-2
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	1	Matrix:	Water

Area Reviewed	Anon	nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance	X		No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)		X	No	None
8. Surrogates/Monitoring Compounds		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards		X	No	None
13. Compound Identification and Quantitation		X	No	None
14. Calculations and Raw Data (Stage 4 only)		X	No	None
Verification and Validation Label	Stage_4_Validation_Manual			
Verification and Validation Label Code	S4VM			

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
BR233SS-EB	180-111870-9	10/04/2020	1.5 °C	10/08/2020	10/14/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in other data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	Yes
Was DDT % breakdown less than 20%?	Yes

5. Initial Calibration	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) \leq the method or Coefficient of Correlation (r) \geq 0.995 or r2 \geq 0.99?	Yes
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs \geq method requirements?	Yes

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $\leq 5x$ the RL, were differences between the two values $\leq 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	Yes
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes
Notes: There were no target compound detections in the sample. RRTs of surrogates were acceptable).

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	Yes

Validated by: Maureen McMyler 12/08/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-3
Project Site:	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	6	Matrix:	Soil

Area Reviewed	Anor	nalies	Qualification Required	Action Required
	Yes	No	Yes or No	
1. Sample Preservation, Handling, and Transport		X	No	None
2. Chain-of-Custody		X	No	None
3. Holding Times		X	No	None
4. Instrument Performance	X		No	None
5. Initial Calibration		X	No	None
6. Continuing Calibration Verification		X	No	None
7. Blanks (Method and/or Field QC)	X		No	None
8. Isotope Dilution Analytes		X	No	None
9. Matrix Spike/Matrix Spike Duplicate	X		No	None
10. Laboratory Control Samples		X	No	None
11. Field Duplicates				
12. Internal Standards				
13. Compound Identification and Quantitation	X		Yes	Qualify detected "Total" isomers "J", where applicable. Qualify all compounds detected below the RL "J". Qualify applicable compounds "EMPC". Qualify OCDD "J" where the calibration range was exceeded.
14. Calculations and Raw Data (Stage 4 only)				
Verification and Validation Label	Stage	_2B_Va	lidation_Manual	
Verification and Validation Label Code	S2BV	M		

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date Analyzed
BREPA21SS	180-111870-1	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020
BR373SS	180-111870-2	10/04/2020	0.0 °C/1.5 °C	10/28/2020	11/05/2020; 11/06/2020
BR351SS	180-111870-3	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020
BR315SS	180-111870-4	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020
BR289SS	180-111870-5	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020
BR233SS	180-111870-6	10/04/2020	0.0 °C/1.5 °C	10/28/2020	10/29/2020; 10/30/2020

1. Sample Preservation, Handling, and Transport	
Were sample temperatures kept ≤ 6 °C?	Yes
Were samples received in proper condition?	Yes
Notes:	

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes

3. Holding Times	
Were samples extracted within acceptable holding times (30 days)?	Yes
Were samples analyzed within acceptable holding times (45 days after extraction)?	Yes

4. Instrument Performance	
Was perflurokerosene (PFK) analyzed before sample analysis? (in calibration sections)	Yes
Was mass spectrometer resolution set to ≥10,000? (Apparent for 2 of 3 instruments)	Yes
Was a Window Defining Mixture (WDM) analyzed before calibration and within 12 hours of sample analysis?	No
Were switching times optimized properly, demonstrated by complete elution of the first and last isomers in each homologous series?	N/A
Was the chromatographic peak separation between the 2,3,7,8-TCDD peak and the 1,2,3,8-TCDD peak resolved with a valley of \leq 25%.	Yes
WDM on instrument 4D5 analyzed on 10/29/2020 was analyzed after the CCV. Level III package does not provide all information.	

5. Initial Calibration (RRF Summary)	
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes
Were retention time criteria met?	N/A
Was signal-to-noise ratio ≥ 10 for all reported analyte ions?	N/A
Notes: Level III package does not provide all ICAL information.	

6. Continuing Calibration Verification (CCV)			
Were calibrations compared to the correct initial calibrations? Form VII shows ICAL date			
Were Percent Differences (%Ds) of the Response Factors (RFs) < 20% for unlabeled and < 30% for labeled RFs?	Yes		
Were the relative ion abundances for CDDs/CDFs met? Not shown in Level III	N/A		
Were retention time criteria met? Not shown in Level III	N/A		
Was signal-to-noise ratio ≥ 10 for all reported analyte ions? Not shown in Level III	N/A		
Notes: Level III package does not provide all CCV information.			

7. Blanks (Method and/or Field QC)	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the method blanks?	Yes
Notes: MB 320-426110/1-A (solids) the following analytes were detected: 1,2,3,4,6,7,8-HpCDD	, OCDD, and
Total HpCDD. Concentrations in samples were >10x the amount in the MB.	
In BR233SS-EB (in SDG 180-111870-2), OCDD was detected. No qualification.	

8. Isotope Dilution Analytes		
Were samples spiked with the correct analytes?	Yes	
Were isotope dilution recoveries reported on data forms?	Yes	
Were recoveries within laboratory limits?	Yes	

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair extracted and analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within laboratory established limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)			
Yes			
Yes			
Yes			

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

N/A
N/A
N/A
N/A

13. Compound Identification and Quantitation				
Were the retention times within established limits?	N/A			
Were ion abundance ratios within established limits?	N/A			
Was an estimated maximum possible concentration (EMPC) calculated and reported for	Yes			
2,3,7,8-substituted isomers?				
Were the isomers characterized by a response with an S/N of at least 2.5?	N/A			

Notes: Total PCDD/PCDFs concentrations were determined from detected calibrated compounds and non-calibrated compounds and are considered estimated. They were qualified "J".

EMPCs were calculated by the lab for 2,3,7,8-substituted isomers that had a signal to noise ratio of ≥ 2.5 for quantitation ions and met all the identification criteria in the method except the ion abundance ratio. They were qualified "EMPC".

Analytes that exceeded the calibration range were qualified "J".

Several analytes exhibited elevated noise or matrix interferences and have elevated EDLs and RLs. They were qualified by the lab, but do not need validation qualification.

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 12/10/2020

Client Name:	Beazer East, Inc.	SDG/Report No.:	180-111870-3
Project Site	Grenada, Mississippi	Lab ID:	Eurofins TestAmerica
No. of Samples:	6	Matrix:	Soil

Area Reviewed		nalies	Qualification Required	Action Required	
	Yes	No	Yes or No		
1. Sample Preservation, Handling, and Transport		X	No	None	
2. Chain-of-Custody		X	No	None	
3. Holding Times		X	No	None	
4. Instrument Performance		X	No	None	
5. Initial Calibration		X	No	None	
6. Continuing Calibration Verification		X	No	None	
7. Blanks (Method and/or Field QC)		X	No	None	
8. Surrogates/Monitoring Compounds		X	No	None	
9. Matrix Spike/Matrix Spike Duplicate	X		No	None	
10. Laboratory Control Samples		X	No	None	
11. Field Duplicates					
12. Internal Standards		X	No	None	
13. Compound Identification and Quantitation		X	Yes	Qualify results detected between the MDL and RL "J".	
14. Calculations and Raw Data (Stage 4 only)					
Verification and Validation Label	Stage_2B_Validation_Manual				
Verification and Validation Label Code	S2BVM				

Sample Information:

Field Sample Number	Lab Sample ID	Date Collected	Cooler Temperature(s)	Date Prepared	Date(s) Analyzed
BREPA21SS	180-111870-1	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR373SS	180-111870-2	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR351SS	180-111870-3	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR315SS	180-111870-4	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR289SS	180-111870-5	10/04/2020	1.5 °C	10/14/2020	10/17/2020
BR233SS	180-111870-6	10/04/2020	1.5 °C	10/14/2020	10/17/2020

1. Sample Preservation, Handling, and Transport	
Were all samples preserved correctly?	Yes
Were sample temperatures kept \leq 6 °C?	Yes
Were semivolatile samples received in proper condition?	Yes

2. Chain-of-Custody (COC)	
Were samples recorded on the COCs?	Yes
Were correct analyses performed on the samples?	Yes
Notes: Some samples on the COC were reported in other data packages.	

3. Holding Times	
Were samples extracted within acceptable holding times (7 days for water/14 days for soil)?	Yes
Were samples analyzed within acceptable holding times (40 days after extraction)?	Yes

4. Instrument Performance	
Was DFTPP analyzed before and within 12 hours of calibration or sample analysis?	Yes
Were mass assignments correct and normalized to m/z 198?	Yes
Were ion abundance criteria met?	Yes
Were benzidine and pentachlorophenol peak tailing factors less than 2%?	N/A
Was DDT % breakdown less than 20%?	N/A

5. Initial Calibration		
Were at least 5 standards injected to establish the calibration curve for each compound?	Yes	
Were Percent Relative Standard Deviations (%RSDs) of the Response Factors (RFs) ≤ the	Vac	
method or Coefficient of Correlation (r) ≥ 0.995 or $r2 \geq 0.99$?	Yes	
Were Relative Response Factors (RRFs) and average RRFs ≥ method requirements?	Yes	
Were initial calibration verifications (ICVs) percent differences (%D) \leq 30%, per method.	Yes	

6. Continuing Calibration Verification (CCV)	
Were CCVs analyzed before and within 12 hours of sample analysis?	Yes
Were calibrations compared to the correct initial calibrations?	Yes
Were Percent Differences (%D) or % drift ≤ method requirements?	Yes
Were RRFs ≥ method requirements?	Yes

7. Blanks	
Does data package include a summary of method blank results?	Yes
Was a method blank extracted and analyzed for each prep batch?	Yes
Were target analytes reported in the equipment, field, and/or method blanks?	No

8. Surrogates/Monitoring Compounds	
Were samples spiked with the correct surrogate compounds?	Yes
Were surrogate recoveries reported on data forms?	Yes
Were recoveries within laboratory limits?	Yes

9. Matrix Spike/Matrix Spike Duplicate	
Was one MS/MSD pair analyzed for each batch of 20 samples?	No
Were MS/MSD recoveries and RPDs reported correctly on data forms?	N/A
Were MS/MSD recoveries and RPDs within the laboratory limits?	N/A
Were field blanks used for the MS/MSD samples?	N/A
Were field blanks used for the MS/MSD samples?	N/A

10. Laboratory Control Samples (LCS)	
Was an LCS sample analyzed with each analytical batch?	Yes
Were LCS recoveries within laboratory limits?	Yes
Were LCS/LCSD RPDs within laboratory limits?	N/A

11. Field Duplicates	
Were any field duplicate pairs analyzed in this work order?	No
For REG/FD results $> 5x$ the RL, were RPDs between the two values $\le 40\%$ for soil/20% for water?	N/A
For results $< 5x$ the RL, were differences between the two values $\le 2x$ RL for soil/RL for water?	N/A

12. Internal Standards	
Is an Internal Standard (IS) Summary form present?	Yes
Were ISs added to each sample in the run, including calibrations, samples, and QC samples?	Yes
Were IS area counts for all samples and blanks within 50% and 200% of its response in the CCV?	Yes
Was the Retention Time (RT) of the IS within ± 30 seconds from the RT of the IS in the associated CCV or mid-point standard from ICAL?	Yes

13. Compound Identification and Quantitation	
Are the Relative Retention Times (RRTs) within ±0.06 RRT units of the standard RRT? (Stage 4)	N/A
Are all ions that are present in the standard mass spectrum at a relative intensity greater than 10% present in the sample spectrum? (Stage 4)	N/A
Do the relative intensities of ions agree within $\pm 20\%$ between the standard and sample spectra? (Stage 4)	N/A
Were quantitation limits (RLs) adjusted to reflect dilutions, cleanup, and other factors?	Yes

14. Calculations and Raw Data	
Did calculated results and raw data match the reported data? (Stage 4)	N/A

Validated by: Maureen McMyler 11/25/2020