Climate Change Adaptation

€PA

Wednesday, June 23, 2021, 2:00pm – 4:00pm Eastern

Speakers:

- Michael Craghan, U.S. Environmental Protection Agency
- Mike Molnar, Coastal States Organization
- Will Veatch, U.S. Army Corps of Engineers
- Amanda Babson, National Park Service
- Duane De Freese, Indian River Lagoon (Fla.) National Estuary Program

- The slides for today's presentations are posted on the Watershed Academy webpage.
- A recording of the webcast will be posted within the next month.

www.epa.gov/watershedacademy

 Note: The views expressed in the presentation are those of the authors and do not necessarily represent the views or policies of U.S. EPA. Mention of commercial enterprises, products, or publications does not mean that U.S. EPA endorses them.

Webcast Logistics

- To Ask a Question Type your question into the "Questions" tool box on the right side of your screen and click "Send."
- To Report any Technical Issues (such as audio problems) Type your issue in the "Questions" tool box on the right side of your screen and click "Send" and we will respond by posting an answer in the "Questions" box.

Audience Polling

Speakers

- Michael Craghan, U.S. Environmental Protection Agency
- Mike Molnar, Coastal States Organization
- Will Veatch, U.S. Army Corps of Engineers
- Amanda Babson, National Park Service
- Duane De Freese, Indian River Lagoon (Fla.) National Estuary Program

Will Veatch, PH Hydrologist, New Orleans District Regional Technical Specialist for Climate Adaptation, Mississippi Valley Division Acting Lead, Climate Preparedness and Resilience CoP, US Army Corps of Engineers

EPA Watershed Academy Climate Ready Estuaries Webinar

June 23rd, 2021

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

US Army Corps of Engineers

U.S.ARMY

	DEPARTMENT OF THE ARMY ER 1100-2-8162 Corps of Engineers 411 G Street, NW CECW-CE Washington, DC 20314-1000 CECW-P
a. Research	by climate science experts predict continued or accelerated climate change for the
21st century and	d possibly beyond, which would cause a continued or accelerated rise in global
mean sea level.	(See Appendix B)
b. The result project and syst	ing local relative sea level change (SLC) will likely impact USACE coastal emperformance. As a result, managing, planning, engineering, designing,
operating, and i	naintaining for SLC must consider how sensitive and adaptable 1) natural and
managed ecosy	stems and 2) human and engineered systems are to climate change and other
related global c	hanges.
c Dlanning	studies and angineering designs over the project life cycle. for both existing and
c. Planning	studies and engineering designs over the project life cycle, for both existing and
proposed projec	ts, will consider alternatives that are formulated and evaluated for the entire
c. Planning	studies and engineering designs over the project life cycle, for both existing and
proposed project	ets, will consider alternatives that are formulated and evaluated for the entire
range of possib	the future rates of SLC, represented here by three scenarios of "low,"
"intermediate."	and "high" SLC. These alternatives will include structural nonstructural nature-
c. Planning	studies and engineering designs over the project life cycle, for both existing and
proposed project	ets, will consider alternatives that are formulated and evaluated for the entire
range of possib	future rates of SLC, represented here by three scenarios of "low,"
"intermediate,"	and "high" SLC. These alternatives will include structural, nonstructural, nature-
based, or natura	l solutions, or combinations of these solutions. Alternatives should be evaluated
c. Planning	studies and engineering designs over the project life cycle, for both existing and
proposed project	ts, will consider alternatives that are formulated and evaluated for the entire
range of possib	le future rates of SLC, represented here by three scenarios of "low,"
"intermediate,"	and "high" SLC. These alternatives will include structural, nonstructural, nature-
based, or natura	l solutions, or combinations of these solutions. Alternatives should be evaluated
using "low," "in	attermediate," and "high" rates of future SLC for both "with" and "without"
c. Planning	studies and engineering designs over the project life cycle, for both existing and
proposed project	ts, will consider alternatives that are formulated and evaluated for the entire
range of possib	le future rates of SLC, represented here by three scenarios of "low,"
"intermediate,"	and "high" SLC. These alternatives will include structural, nonstructural, nature-
based, or natura	l solutions, or combinations of these solutions. Alternatives should be evaluated
using "low," "in	attermediate," and "high" rates of future SLC for both "with" and "without"
project condition	ns. The historic rate of SLC (as described in Appendix B) represents the "low"
rate. The "inter	mediate" and "high" rates are based on the following:
c. Planning	studies and engineering designs over the project life cycle, for both existing and
proposed project	ets, will consider alternatives that are formulated and evaluated for the entire
range of possib	the future rates of SLC, represented here by three scenarios of "low,"
"intermediate,"	and "high" SLC. These alternatives will include structural, nonstructural, nature-
based, or natura	l solutions, or combinations of these solutions. Alternatives should be evaluated
using "low," "in	attermediate," and "high" rates of future SLC for both "with" and "without"
project condition	ns. The historic rate of SLC (as described in Appendix B) represents the "low"
rate. The "inter	mediate" and "high" rates are based on the following:

Overview

EXPERIENCE YOUR AMERICA

33

NPS Climate Change Frameworks

Planning for a Changing Climate

Resist-Accept-Direct

Scenario Planning

Cultural Resources Climate Change Strategy

Facilities Management Operational Resilience

Removing barriers to shoreline migration & Retreat

Application examples

Historic Districts Archeology Prioritization Framework Next steps from facility vulnerability assessment to adaptation planning Removing barriers to shoreline migration

Over 11,000 Miles of Shoreline & 2.5 Million Water Acres

Scenario Planning

Acadia National Park

• Scenarios can inform decisions on infrastructure, staffing and ecosystem management

- Emergency response plans for extreme events
- Engagement with community members

Climate Adaptation Planning for Archaeological Stewardship

<u>Goals</u>

NC STATE UNIVERSITY College of Natural Resources

43

• Develop a framework to prioritize archeological resource adaptation based on vulnerability and significance.

• Evaluate threatened cultural resources through a Tribal frame of seeing. Include Tribal perspectives of site significance or importance in decision making.

Facility Management Operational Resilience

Timucuan Adaptation Planning: Fort Caroline

EXPERIENCE YOUR AMERICA

Adaptation Strategies: Option D | Redesign & Reconstruct

- Relocate ~300' southeast to higher elevation outside of the Category 3 hurricane storm surge area
- Remove trees and regrade
- Reconstruct Fort
- Allows the fort to be re-sited and wetlands to be reestablished in previous fort location

IRL COUNCIL/IRLNEP EVOLVING AND EXPANDING FOCUS ON CLIMATE CHANGE

FY 2010: Grant to City of Satellite Beach for climate change/sea level rise planning to be incorporated into the City's Comprehensive Growth Management Plan.

- FY 2011: The Impact of Sea Level Rise to the Indian River Lagoon (Florida): An Application of Ecological and Economic Models. Prepared for IRLNEP and U.S. EPA by Industrial Economics, Inc., Cambridge, MA.
- FY 2013: Grant to Balmoral Group to prioritize TMDLs using seagrass habitat vulnerability to sea level rise.
- FY 2014: Grant to the Balmoral Group to model seagrass restoration success and long-term sustainability under changing conditions of water quality and sea level rise.
- FY 2018: Climate-Ready Estuary Risk-Based Vulnerability Assessment Final draft technical report completed and submitted to IRLNEP October 1, 2018. Work supported by a \$25,000 EPA supplemental award included in the FY 2018 EPA grant award (#00D36215-2).
- FY 2019: Climate-Ready Estuary Action Plan Final draft technical report submitted to IRLNEP March 20, 2020. Work supported by a \$52,050 EPA supplemental award that was combined with the previous FY 2018 EPA grant award (#00D36215-2).

Adoption of IRL Comprehensive Conservation and Management Plan - Looking Ahead to 2030. Coastal resiliency, climate change and sea level rise issues are incorporated throughout the plan.

	GOAL	WATER TEMPERATURE	CHANGES IN PRECIPITATION	INCREASING STORMINESS	COASTAL ACIDIFICATION	SEA LEVEL RISE	SUM		
A CONTRACT OF A CONTRACT.	SEDIMENT AND WATER QUALITY (ONE LAGOON/ONE COMMUNITY)								
ONE LAGOON	Wastewater	1	1	1	1	1	5		
NUTLINE ALC: NOT THE PARTY OF	Surface Water (Impaired Waters)	3	1	1	1	2	8		
	Hydrology	1	1	0	0	1	3		
	Marina and Boat Pollution	1	1	1	0	1	4		
	Atmospheric Deposition	1	1	1	0	0	3		
	Water Clarity (Impaired Waters)	1	2	3	0	3	9		
SUIVIIVIARY	Dissolved Oxygen (Impaired Waters)	3	2	3	0	2	10		
OF	Chlorophyll a (HABs)	1	2	3	0	2	8		
	Legacy Nutrient Pollution	0	0	1	0	0	1		
RISKS	SUM	12	11	14	2	12	51		
	NATURAL RESOURCES (HABITATS AND LIVING RESOURCES)								
	Biodiversity	3	3	3	1	3	13		
<u>LE330IN</u>	Seagrasses	4	3	3	1	2	13		
LEARNED	Wetlands and Impounded Marshes	3	1	1	0	3	8		
	Rare Threatened and Endangered Species	4	3	3	1	3	14		
DEEINE	Fisheries	3	3	3	1	2	12		
DEFINE	Biotoxins and Infectious Agents	1	2	2	1	2	8		
PROCESS	Invasive exotic species	2	3	2	0	2	9		
	Living shorelines	1	1	1	1	1	5		
AND	Archeological Resources	1	1	1	1	1	5		
QUANTIFY	SUM	22	20	19	7	19	87		
	STAKEHOLDER ENGAGEMENT (ONE VOICE)								
	Public access	3	2	1	0	2	8		
	Public Education and Involvement	2	2	2	1	1	8		
	SUM	5	4	3	1	3	16		
	GRAND TOTAL	39	35	36	10	34	154		

RISK ANALYSIS SCORING MATRIX

Make initial determination of the consequence, likelihood, spatial scale, and urgency of the risks posed to the goals of the IRLNEP by the five climate stressors. Each risk was scored from 1 (low) to 3 (high).

Consequence	Spatial Extent of Impact	Likelihood	Time Horizon
1. Low (could adjust, life will go on)	1. Site (bridge, stormwater outflow)	1. Low	1. > 10 years
2. Medium	2. Place (wildlife refuge)	2. Medium	2. 5-10 years
3. High (catastrophic, major disruption)	3. Region (watershed)	3. High (very likely, predictable)	3. Already occurring or < 5 years

472 risks posed by the five climate change stressors

PHASE 2: ADAPTATION PLANNING

Category and Vital Sign	Temperature	Precipitation	Storms	рН	Sea Level Rise	Sum	Accept	Higher Risk	High Risk	Moderate Risk	Sum
Water Quality	-			-	-	-	-	-	-		-
Impaired waters (IW)	5	54	57	0	55	171	5	162	4	0	166
Wastewater (WW)	1	10	10	1	10	32	2	30		0	30
Stormwater and surface water (SW)	5	8	8	1	9	31	3	24	2	2	28
Hydrology and hydrodynamics (HH)	3	3	0	0	3	9	0	3	6	0	9
Legacy loads and healthy sediments (LL)	0	0	1	0	0	1	0	0	1	0	1
Atmospheric deposition (AD)	1	1	1	0	0	3	3	0	0	0	0
Sum	15	76	77	2	77	247	13	219	13	2	234
Habitats	-	-	-	-	-	-	-	-	-	-	-
Seagrass (S)	6	16	15	1	14	52	5	47	0	0	47
Living shorelines (LS)	1	1	2	1	2	7	3	0	4	0	4
Wetlands and impounded/ altered marshes (W)	3	1	0	0	2	6	5	1	0	0	1
Sum	10	18	17	2	18	65	13	48	4	0	52
Living Resources	-	-	-	-	-	-	-	-	-	-	-
Biodiversity (B)	3	16	11	1	17	48	5	33	10	0	43
Species of concern (SoC)	10	15	18	1	19	63	4	47	12	0	59
Invasive species (InS)	2	15	14	0	14	45	3	14	28	0	42
Commercial and recreational fisheries (CRF)	3	15	19	1	14	52	4	42	6	0	48
Sum	15	45	51	2	47	160	11	103	46	0	149
Grand Total	40	139	145	6	142	472	37	370	63	2	<mark>435</mark>

Lesson Learned:

Focus on Local and State Adaptation Actions Nine Adaptation Actions that would Reduce Risk to IRL from Climate Change Stressors

I NATIONAL ESTUARY PROCEAM	Stressor	Adaptation Action
	Precipitation	Reduce pollutant loadings from WWTP during high rainfall events
	Precipitation	Reduce pollutant loadings from OSTDS during high rainfall events
	Procinitation	Reduce pollutant loadings from surface water storage and conveyance
	Trecipitation	infrastructure during high rainfall events
	Storms	Reduce pollutant loadings from WWTP due to more frequent and intense
	51011115	storms
	Storms	Reduce pollutant loadings from OSTDS due to more frequent and intense
-	5(0) 1115	storms
	Storms	Reduce pollutant loadings from surface water storage and conveyance
-	5(0) 1113	infrastructure due to more frequent and intense storms
	Sea Level Rise	Reduce pollutant loadings from WWTP caused by rising water table and sea
-	Sea Dever Rise	level (inundation, erosion)
	Sea Level Rise	Reduce pollutant loadings from OSTDS caused by rising water table and sea
_	beu hever hibe	level (inundation, erosion)
	Sea Level Rise	Reduce pollutant loadings from surface water storage and conveyance infrastructure caused by rising water table and sea level (inundation, erosion)

MOVING FORWARD - EXPAND PARTNERSHIPS/ADDRESS GAPS

• Expand engagement in climate change planning at local, state and federal levels.

- Southeast and Caribbean Disaster Resilience Partnership/SECOORA
- U.S. Geological Survey/Southeast Ocean and Coastal Acidification Network
- East Central Florida Regional Resilience Collaborative

• Address climate change in each of the 32 vital signs of IRL health with a focus on issues beyond water quality.

- Projects funded with IRLNEP annual competitive grants program should consider climate change and sea level rise.
- Address significant gaps in knowledge (i.e., coastal acidification, habitat restoration and planning restoration activities for future outcomes)

Contact Information

Michael Craghan, U.S. Environmental Protection Agency, Craghan.Michael@epa.gov

Mike Molnar, Coastal States Organization, mmolnar@coastalstates.org

Will Veatch, U.S. Army Corps of Engineers, William.C.Veatch@usace.army.mil

Amanda Babson, National Park Service, Amanda Babson@nps.gov

Duane De Freese, Indian River Lagoon (Fla.) National Estuary Program, <u>ddefreese@irlcouncil.org</u>

Participation Certificate

• If you would like to obtain a participation certificate you can access the PDF in the **Handouts** section of your control panel.

Watershed Academy Webcasts

More webcasts coming soon!

The slides from today's presentations are posted on the Watershed Academy webpage.

A recording of the webcast will be posted within the next month.

www.epa.gov/watershedacademy

