

Development and Distribution of ToxCast and Tox21 HTS Assay Method Descriptions

Stacie Flood, Oak Ridge Associated Universities (ORAU) and Keith Houck, National Center for Computational Toxicology (NCCT) EPA's Computational Toxicology Communities of Practice January 25th, 2018

U.S. Environmental Protection Agency

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Overview

- ToxCast annotation framework and needs
- Overview of OECD reporting guidelines for *in vitro* assays
- EPA NCCT implementation of OECD recommendations
- Assay Method Descriptions Reporting Template
- Status of Public Distribution
- Future goals

ToxCast Assay Documentation Objectives

- Provide the highest level of accessibility and transparency
- Encourage confidence in assay activity
 - Need for a *comprehensive description* of in vitro assay methods to facilitate knowledgeable / accurate interpretation of results
 - Clearly define the nature of the response measured and its relevance for impacts on biological systems
- Provide detailed assay documentation to aid external evaluation
 - Describe assay reliability (reproducibility), relevance (mechanistic modeling, downstream health effects, AOP applicability, etc.), and fitness-for-purpose (ability to predict outcomes similar to guideline studies)

ToxCast Bioassay Ontology (BAO)-based Annotations

(Image from Phuong, J., *et al.* (2014). ToxCast Assay Annotation Version 1.0 Data User Guide. U.S. Environmental Protection Agency., pp. 36. https://www.epa.gov/sites/production/files/2015-08/documents/ toxcast_assay_annotation_data_users_guide_20141021.pdf).

2/9/2018

U.S. Environmental Protection Agency

ToxCast Annotations

In vitro database (invitrodb) schema and example documentation

CEETOX_H295R

Assay

assay name CEETOX H295R timepoint hr 48 organism_id 9606 organism human tissue adrenal gland cell format NULL cell line cell-based format cell free component source multiplexed cell_short_name H295R cell_growth_mode adherent assay footprint microplate: 96-well plate assay format type cell-based assay format type sub cell-based format content_readout_type multiplexed dilution solvent DMSO dilution_solvent_percent_max 0.1

2/9/2018

Assay Components

assay component name CEETOX H295R ESTRADIOL parameter readout type single assay_design_type NULL assay_design_type_sub_NULL biological_process_target regulation of steroid biosynthetic process detection technology type Spectrophotometry detection technology type sub Absorbance detection_technology HPLC-MS-MS signal direction type both key_assay_reagent_type inducer key assay reagent NULL technological target type hormone technological_target_type_sub Estradiol assay component name CEETOX H295R ESTRADIOL parameter readout type single assay design type NULL

2/9/2018

assay_component_endpoint_name CEETOX_H295R_ESTRADIOL_up assay_function_type steroidogenesis normalized_data_type log2_fold_induction analysis_direction positive key_positive_control Prochloraz;Forskolin signal_direction gain intended_target_type hormone intended_target_type_sub Estradiol intended_target_family steroid hormone intended_target_family_sub estrogens

Assay Component Endpoints

U.S. Environmental Protection Agency

ToxCast Annotations Use Case *Bioinformatics*

ToxCast Annotations - Use Case Data Aggregation

U.S. Environmental Protection Agency

2/9/2018

ToxCast Annotations Regulatory / Chemical Assessment Needs

- Information needs to be assessed as part of a *larger biological context*
- *Gaps in information* exist about how in vitro activity should be considered in relation to in vivo studies
- *High-throughput assay technologies* allow for screening of large (previously untested) chemical libraries, but may not provide same level of information on reproducibility or replication as OECD-validated/PBTG studies

Accurate interpretation of data generated by quickly advancing technologies may be more labor-intensive and not as readily available for end-users as information provided with guideline studies.

"Solna Principles" for the validation of new or updated test methods for hazard assessment

- 1) A rationale for the test method should be available...*a clear statement of scientific need* and *regulatory purpose*.
- The *relationship of the endpoint(s)* determined by the test method *to the in vivo biological effect*
- 3) A *formal detailed protocol* must be provided and should be readily available in the public domain. It should be sufficiently detailed ... and it should include data analysis and decision criteria. Test methods and results should be available preferably in an independent peer reviewed publication.
- 4) Intra-test *variability, repeatability and reproducibility* of the test method within and amongst laboratories should have been demonstrated
- 5) The test method's performance must have been demonstrated using a series of *reference chemicals* preferably coded to exclude bias.
- 6) The performance of test methods should have been *evaluated in relation to existing relevant toxicity data* as well as information from the *relevant target species*.
- 7) *All data* supporting the assessment of the validity of the test methods including the full data set collected in the validation study *must be available for review*.
- 8) Normally, these data should have been obtained in accordance with the OECD Principles of *Good Laboratory Practice* (GLP).

OECD recommendations for describing non-guideline in vitro tests (2014)

Harmonious Descriptions

"The purpose ... is to harmonize the way non-guideline *in vitro* methods are described"

- facilitate an assessment of :
 - the relevance of the test methods for biological activities and responses of interest
 - the quality of data produced and the potential utility in regulatory applications

"How can these methods be practically utilized whilst ensuring that the resulting data are *scientifically robust* and *interpreted in the appropriate context*?"

"This guidance is not intended to be prescriptive nor does it endorse a particular structure for reporting the information"

2/9/2018

OECD Test Method Descriptions

2/9/2018

1		

2.

- 1.1. Assay Name
- 1.2. Summary
- 1.3. Date of Method Description (MD)

General Information

- 1.4. MD author(s) and contact details
- 1.5. Date of MD update(s) and contacts
- 1.6. Assay developer(s)/laboratory and contact details
- 1.7. Date of assay development and/or publication
- 1.8. Reference(s) to main scientific paper
- 1.9. Availability of information about proprietary elements
- 1.10. Information about the throughput of the assay
- 1.11. Status of method development and uses
- 1.12. Abbreviations and Definitions

Test Method Definition

- 2.1. Purpose of the test method
- 2.2. Scientific principle of the method
- 2.3. Tissues, Cells or Extracts utilized in the assay
- 2.4. Metabolic competence of the test system
- 2.5. Description of the experimental system exposure regime
- 2.6. Response and response measurement
- 2.7. Quality / Acceptance criteria
- 2.8. Known technical limitations and strengths
- 2.9. Other related assays that characterize the same event as in Section 2.1

3. Data Interpretation and Prediction Models

- 3.1. Assay response captured by the prediction model
- 3.2. Data analysis
- 3.3. Explicit prediction model
- 3.4. Software name and version for algorithm/prediction model generation

4. Test Method Performance

- 4.1. Robustness of the method
- 4.2. Reference chemicals / chemical libraries, and rationale for selection
- 4.3. Performance measures / predictive capacity (where known)
- 4.4. Scope and limitations of the assay, if known

5. **Potential Regulatory Use**

- 5.1. Context of Use
- 6. Bibliography
- 7. Supporting Information

OECD recommended description format (brief outline)

- General information
- Test method definition
- Data interpretation and prediction model
- Test method performance
- Potential regulatory applications

ToxCast adapted description format (brief outline)

• Assay Summary Information

Assay overview, source lab and contact info, references to publications, experimental design, materials and methods, review of platform biotransformation potential, propriety elements, production status and caveats

• Test Component Definition

Assay objectives, description of technological platform, intended biological targets and scientific basis for how the platform monitors the targets. Provides references for method development and reports test method performance metrics (cv, z', s/b, ssmd). (Protocols to validate performance of reference chemical sets currently under development.)

• Component Endpoint Descriptions

Data interpretation and analytical approaches to effect (hit-call) determinations

• Description Documentation

References, abbreviations and definitions

• Potential regulatory applications

2/9/2018

U.S. Environmental Protection Agency

OEC	D Guidan	ice Document № 211 Template:	EPA NCCT ToxCast Assay Documentation Outline:
1.		General Information	1. Assay Descriptions
	1.1.	Assay Name	Assay Overview (OECD № 211 outline equivalent)
	1.2.	Summary	Assay Title (1.1)
	1.3	Date of Method Description (MD)	Assay Summary (1.2)
	1 4	MD author(s) and contact details	Assay Definition
	15	Date of MD undate(s) and contacts	Assay Throughput (1.10)
	1.5.	Ascay developer(s) (laboratory and contact details	Experimental System (2.3)
	1.0.	Date of assay development and (or publication	Xenobiotic Biotransformation Potential (2.4)
	1.7.	Date of assay development and/or publication	Basic Procedure (2.5)
	1.8.	Reference(s) to main scientific paper	Proprietary Elements (1.9)
	1.9.	Availability of information about proprietary elements	Caveats (2.8)
	1.10.	Information about the throughput of the assay	Assay References
	1.11.	Status of method development and uses	Assay Source Contact Information (1.6)
	1.12.	Abbreviations and Definitions	Assay Publication Year (1.7)
2.		Test Method Definition	Assay Publication Citation (1.8)
	2.1.	Purpose of the test method	Method Updates / Confirmatory Studies (1.11)
	2.2.	Scientific principle of the method	2. Assay Component Descriptions
	2.3	Tissues. Cells or Extracts utilized in the assay	Assay Objectives (2.1; 2.7; 4.2)
	2.0.	Metabolic competence of the test system	Scientific Principles (2.2)
	2.4.	Description of the experimental system exposure regime	Access Endpoint Descriptions
	2.5.	Pesponse and response measurement	3. Assay Endpoint Descriptions
	2.0.	Quality / Accontance criteria	Piological Posponeo (2,6)
	2.7.	Known to chained limitations and strongths	$\Delta nalytical Elements (2.2, 2.4, 4.2)$
	2.0.	Other related access that characterize the same event as in Section 2.1	Related ToyCast Assays (2.9)
	2.9.	Other related assays that characterize the same event as in Section 2.1	Assay Performance
3.		Data Interpretation and Prediction Models	Assay Quality Statistics (Robustness) (4.1)
	3.1.	Assay response captured by the prediction model	Assay Performance Measures (4.3)
	3.2.	Data analysis	Reference Chemicals (4.2)
	3.3.	Explicit prediction model	Rationale For Selection Of Chemical Library (4.2: 4.4)
	3.4.	Software name and version for algorithm/prediction model generation	4. Assay Documentation
4.		Test Method Performance	Assay Documentation Definition
	4.1.	Robustness of the method	References (Section 6)
	4.2.	Reference chemicals / chemical libraries, and rationale for selection	Definitions / Abbreviations (1.12)
	4.3.	Performance measures / predictive capacity (where known)	Assay Documentation Source
	4.4.	Scope and limitations of the assay, if known	Contact Information (1.4)
5		Potential Regulatory Use	Date of Assay Document Creation (1.3)
6		Ribliography	Date/ Author of Revisions (1.5)
0.			5. Supporting Information
7.		Supporting Information	Existing ToxCast Annotations (Section 7)

CEETOX_H295R_ESTRADIOL_up

Assay Title: CeeTox H295R High-throughput Steroidogenesis Assay – Estradiol Induction

- 1. Assay Descriptions
 - 1.1. Overview

Assay Summary:

Endocrine disrupting chemicals have largely been studied by examining effects on nuclear receptor (primarily estrogen and androgen receptor) ligand binding or signaling pathways, but environmental chemicals can also disrupt endocrine systems by interfering with steroid hormone biosynthesis and metabolism (steroidogenesis). The CeeTox H295R steroidogenesis assays evaluate a humanderived, steroidogenically-competent adenocarcinoma cell line (H295R) in high-throughput (96well) format to detect substances with the potential to disrupt steroid hormone production. To detect interference with steroidogenesis, this assay quantified 13 different steroid hormones using high-throughput HPLC-MS/MS. The assay is a modified version of the OECD H295R test guideline (OECD TG 456). Briefly, cells were seeded into 96-well plates and after overnight incubation were pre-treated with 10 µM forskolin for 48 hours to stimulate steroidogenesis. Following the pretreatment, medium was replaced with test chemical for 48 hours. Following chemical exposure, medium was removed for steroid hormone analysis, and cells were subjected to the MTT assay as an indicator of cell viability. This assay involved a three-tiered screening strategy. The initial stage was designed to identify a maximum tolerated concentration (MTC) of test chemical in H295R cells. Briefly, chemicals were evaluated at up to 100 µM (solubility permitting) using the MTT assay, in order to determine the maximum concentration that maintained \geq 70% cell viability. Following MTC determination, each chemical was screened for effects on steroidogenesis by quantifying changes in hormone levels at the MTC (single test concentration). Chemicals selected for follow-up were evaluated in dose-response to establish whether changes in hormone levels were concentrationdependent. In an initial screening exercise, chemicals were selected for concentration-response follow-up if at least 4 different hormones were significantly affected when screened at the MTC. Concentration-response experiments were conducted using six concentrations, serially diluted down from the MTC at half-log increments.

1.2. Assay Definition

Assay Throughput:

Prior to the steroidogenesis assay, H295R cells were thawed and passed at least 4 times (maximum passage of 10). Cells were seeded into 96-well plates at 50-60% confluency and allowed to adhere overnight. Prior to test chemical exposure, cells were pre-stimulated with forskolin for 48 hours, and chemical exposures were subsequently conducted for 48 hours in forskolin-free media. Following concentration-response and MTC assays, MTT cytotoxicity assays were conducted. The media samples were stored at -80 °C prior to HPLC-MS/MS quantification of steroid hormones.

Experimental System:

H295R is an immortalized cell line derived from an adrenocortical carcinoma isolated in 1980 from a 48-year-old African-American female patient. H295R cells express genes that encode for all the key enzymes involved in steroidogenesis [1, 2]. H295R cells have the physiological characteristics of zonally undifferentiated human fetal adrenal cells. H295R cells represent a unique in vitro system, as the cells retain the ability to produce many of the steroid hormones found in the adult adrenal cortex and the gonads (with the exception of dihydrotestosterone, DHT), which allows for analysis of xenobiotic effects on both corticosteroid synthesis and the production of sex steroid hormones, including androgens and estrogens.

Xenobiotic Biotransformation Potential:

H295R cell line expresses CYPs 1A1, 11A, 17, 19, 21, 1B1 and 11B1, which are differentially induced by endocrine-disrupting chemicals [3, 4].

Basic Procedure:

Cell culture and media preparation procedures were conducted in accordance with OECD Test No. 456 guidelines [1], with minor modifications. H295R cells (ATCC CRL-2128) were expanded for 5 passages and frozen in batches in liquid nitrogen. Prior to the steroidogenesis assay, H295R cells were thawed and passed at least 4 times. The maximum passage was 10. Cells were maintained in a 1:1 mixture of DMEM/F12 supplemented with 5ml/L ITS+ Premix (BD Bioscience) and 12.5 ml/L Nu-Serum (BD Bioscience). After seeding cells into 96-well plates at 50-60% confluency, cells were allowed to adhere overnight. Prior to chemical testing, culture medium was replaced with 175 µL medium containing 10 µM forskolin to stimulate steroidogenesis for 48 hours. Following prestimulation, forskolin medium was replaced with medium containing test chemical solubilized in DMSO (ensuring a final concentration of 0.1% DMSO). Test chemicals were incubated for 48 hours, then the medium was removed and split into 2 vials containing approximately 75µL each, and stored at -80 °C prior to hormone analysis. For steroid quantification, media samples were shipped to OpAns, LLC (Durham, NC) on dry ice, and samples were thawed to room temperature prior to liquidliquid extraction. Steroid hormones were extracted from media samples using methyl tert-butyl ether (MTBE). An extra derivatization with dansyl chloride was included for estrogen (estrone and estradiol) detection only. Steroid hormones were separated by HPLC, eluted using a reverse phase C18 gradient with electrospray positive ionization, followed by quantification by tandem mass spectrometry (MS/MS). Data were acquired on a MassHunter Workstation Acquisition version B03.01 (Agilent Technologies, Inc.) and processed using MassHunter Quantitative Analysis for QQQ. Accuracy was determined for each hormone analyte from 3 standards to determine upper and lower limits of quantification (ULOQ and LLOQ, respectively) using a 7-point standard curve. Precision and accuracy of the extraction and quantification methods were calculated as the percent relative standard deviation (%RSD) of the spiked standards and percent spiked standard recovered, respectively. The goal was to achieve 100% accuracy (i.e., recover all spiked-in standard at quantification with minimal loss during run time) and good precision (i.e., have %RSD <15% to ensure reproducibility). Test medium was removed following chemical exposure, and cell viability was evaluated in the same wells by MTT [5]. MTT procedures were as follows: after removal of test medium, 500 µl of 0.5 mg/ml of 3-[4,5-dimethylthiazol-2-y]2,5-diphenyltetrazoliumbromide solution was added to the cells. Following a 4-hour incubation at 37 °C and 5% CO2 to allow formazan-crystal formation, the MTT solution was removed and blue formazan salt crystals were solubilized using 500µl anhydrous isopropanol with shaking for 20 minutes. Absorbance was read at 570 and 650nm using a Packard Fusion microplate reader. Background correction of absorbance units was used to determine percent change relative to controls. All assay plates contained multiple control wells including four 10 µM forskolin replicates to control for hormone stimulation, four 3 µM procholaz replicates to control for hormone inhibition and 4 digitonin replicates to control for cell death. Cell viability, as indicated by the MTT assay, was used to establish maximum tolerated concentration (MTC) initially using a nominal concentration of 100µM (where feasible within solubility limits of the specific test chemical) and targeting cell viability ≥70%. When a test chemical reduced cell viability to 20% - 70%, the test chemical was diluted 10-fold and re-evaluated, but if cell viability was <20%, then the test chemical was diluted 100-fold and re-evaluated. Test chemical dilutions were made until cell viability was ≥70%. MTT assays were also conducted for duplicates of all concentrations of chemicals tested in concentration-response studies.

MTC Evaluation

Figure 1. Schematic representation of general testing protocol for CeeTox Steroidogenesis assays. (Adapted from Karmaus et al. 2016.)

Proprietary Elements:

This assay is not proprietary; it is a modification of the existing OECD H295R *in vitro* steroidogenesis assay validated in 2011 (Test Guideline No. 456, [1]). NCI-H295R cells (ATCC CRL-2128) are commercially available from American Type Culture Collection with signed Material Transfer Agreement.

Caveats:

The assay described here is intended to provide initial (screening) information about the capacity for a chemical to interfere with endogenous steroidogenesis, and is intended to provide information on a large number of diverse chemicals. Caution is advised with extrapolation of these results to prediction of organism-level responses. The potential for a chemical to elicit adverse health outcomes in living systems is a function of multiple factors, and this assay is not intended to provide predictive details regarding long term or indirect adverse effects in complex biological systems, but can aid in the prioritization of chemical selection for more resource intensive toxicity studies.

1.3. Assay References

Assay Source Contact Information:

Cyprotex (Formerly CeeTox, Inc. in Kalamazoo, MI) 313 Pleasant St. Watertown, MA 02472 1-888-297-7683 Fax: 1-617-812-0712 enquiries@cyprotex.com

Assay Publication Year:

2016

Assay Publication:

Karmaus AL, Toole CM, Filer DL, Lewis KC, Martin MT. 2016. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells. Toxicological Sciences 150:323-332.

Method Updates / Confirmatory Studies:

None reported.

2. Assay Component Descriptions

Assay Objectives:

The CeeTox H295R estradiol assay was used to screen a large chemical library for changes in estradiol levels resulting from interference with steroidogenesis in H295R human adrenocortical carcinoma cells. For an initial screening application, a three-tiered screening approach was employed. The first stage involved establishing the maximum tolerated concentration (MTC) for each test chemical, respectively, which was identified using the MTT assay as an indicator of cell viability. Once MTC was determined, cells were treated with that concentration to evaluate steroid hormone changes at the MTC. In this single concentration "MTC screening" assay, any response ≥ [1.5-fold] relative to DMSO controls was considered to represent significant effects on hormone production. Following the MTC single concentration screen, those chemicals with significant effects on at least 4 hormones were considered active and subsequently assessed in concentrationresponse format using a 6-concentration series. After chemical treatment, which consists of 48hr forskolin pre-stimulation followed by 48hr chemical treatment, medium was subjected to MBTE and dansyl chloride derivatization for estradiol quantification. HPLC-MS/MS spectra were resolved and the absolute quantity of estradiol from the medium sample was reported in ng/mL. Chemicals were tested in duplicate, and each plate included duplicated controls for stimulation (10µM forskolin) and inhibition (3 µM procholaz) of steroidogenesis. 4 replicates per plate of DMSO-only solvent controls served as neutral controls. The LLOQ and LLOD for estradiol were reported as 0.03 ng/mL and 6 ng/mL, respectively, using 0.4, 1, and 16 ng/mL standards, with precision of 6.3% and accuracy of 101.4% (Karmaus et al., 2016, Table 1).

Scientific Principles:

The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes. Environmentally-relevant chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis), resulting in adverse reproductive and developmental effects. The ToxCast HTS program adapted the OECD-validated H295R steroidogenesis assay using human adrenocortical carcinoma cells (TG No. 456; which established performance-based testing guidelines for the quantification of two steroid hormones, testosterone and estradiol) to quantitatively assess the concentration-dependent effects of chemicals on 13 steroid hormones in 4 hormone classes including progestagens, androgens, estrogens and glucocorticoids.

To identify xenobiotics with the capacity to disrupt the steroid hormone biosynthetic pathway, this assay quantitatively assesses changes in steroid hormone levels. The CeeTox Steroidogenesis assay also demonstrates a novel implementation of H295R cells as a high-throughput and multiplexed screening platform for screening a diverse chemical library for xenobiotic interference with steroidogenesis.

Figure 2. Subset of the steroidogenesis pathway targeted by the CeeTox H295R Steroidogenesis assays. (Modified from Karmaus et al. 2016.)

Method Development Reference:

Nielsen FK, Hansen CH, Fey JA, Hansen M, Jacobsen NW, Halling-Sørensen B, Björklund E, Styrishave B. (2012). "H295R cells as a model for steroidogenic disruption: a broader perspective using simultaneous chemical analysis of 7 key steroid hormones". Toxicology In Vitro 26:343-350.
 OECD (2011). Test No. 456 H295R Steroidogenesis Assay. OECD Publishing, Paris
 USEPA (2011). Steroidogenesis (Human Cell Line – H295R) OCSPP Guideline 890.1550. Standard Evaluation Procedure (SEP) Endocrine Disruptor Screening Program.

3. Assay Endpoint Descriptions

3.1. Data Interpretation

Biological Response:

Increased production of estradiol following interference with steroidogenesis as quantified by HPLC-MS/MS.

Analytical Elements:

CEETOX H295R ESTRADIOL up readout data was analyzed in the positive (gain of signal) fitting direction using the DMSO controls as the baseline signal, and was reported as log2 fold-change increase in estradiol activity (compared between duplicate chemical treatment and plate-matched guadruplet DMSO controls). Data were log₂-transformed, and all statistical analyses were conducted using R programming language, employing tcpl package to generate model parameters and confidence intervals. Each chemical concentration series is fitted to three models; a constant function (no activity), a 4-parameter Hill function and a gain-loss function (two sequential Hill functions, which allows for curves with both increasing and decreasing trajectories). The model which produces the lowest AIC value is considered the winning model and used in further analysis as the most appropriate predictor of assay effects. Estradiol stimulation was determined based on chemical-response data fulfilling the following criteria: the median of normalized response values at a single concentration exceeded the signal noise band (in this assay, any response over 6 times the baseline median absolute deviation in log₂ fold-change, which was approximately a 2.05 foldchange cut-off); the modeled top (modl tp) of the curve was above the established response cutoff; and the Hill or Gain-Loss model had a lower AIC value than the Constant model. An AC₅₀ (concentration in µM at 50% of maximum activity; modl_ga), Hill-slope (modl_gw for Hill, modl_gw (gain) and modl lw (loss) for Gain-Loss functions), and maximum activity (modl tp) were determined for each active test chemical. Winning model probability (modl prob) and RMSE (modl_rmse) are also generated for each active chemical response series and all data are publically available on the ToxCast data download page (https://www.epa.gov/chemical-research/toxicityforecaster-toxcasttm-data).

CEETOX H295R 11DCORT dn CEETOX H295R 11DCORT up CEETOX H295R ANDR dn CEETOX H295R ANDR up CEETOX H295R CORTIC dn CEETOX H295R CORTIC up CEETOX H295R CORTISOL dn CEETOX H295R CORTISOL up CEETOX H295R DHEA dn CEETOX H295R DHEA up CEETOX H295R DOC dn CEETOX H295R DOC up CEETOX H295R ESTRADIOL dn CEETOX H295R ESTRONE dn CEETOX H295R ESTRONE up CEETOX H295R MTT Cytotoxicity dn CEETOX H295R MTT Cytotoxicity up CEETOX H295R OHPREG dn CEETOX H295R OHPREG up CEETOX H295R OHPROG dn CEETOX H295R OHPROG up CEETOX H295R PREG dn CEETOX H295R PREG up CEETOX H295R PROG dn CEETOX H295R PROG up CEETOX H295R TESTO dn CEETOX H295R TESTO up

3.2. Assay Performance

Assay Performance Measures:

One measure of assay performance is reproducibility. For the initial screening exercise that employed single-concentration and concentration-response phases, a Pearson's linear correlation test, using the median \log_2 -fold change results from the MTC, was performed to demonstrate the concordance between the single-concentration and multi-concentration phases of screening. The correlation of maximum fold-change (r²) is presented in Karmaus et al. 2016, Table 2. The correlation coefficients for each hormone between the two phases of that study, conducted independently, are presented by an average r² = 0.70. For estradiol, the r² = 0.64. These values demonstrate that the assay is highly reproducible.

Assay Quality Statistics:

Robust Z-prime (Z') was calculated per hormone analyte using the median of the raw response values across plates for the baseline control (DMSO) and positive control (forskolin and prochloraz) wells. The Z' for forskolin and prochloraz are presented in Table 2 of Karmaus et al. 2016, with separate values presented for each hormone to reflect the different positive control wells present on the plate included in the analysis of specific hormones. Z'-forskolin ranged from 0.57-0.81, with a Z'-forskolin of 0.73 for estradiol. Z'-prochloraz ranged from 0.51-0.88, with a Z'-prochloraz of 0.72 for estradiol. Z' values ranging between 0.5 and 1 demonstrate that an assay signal can be reliably identified from variability around the baseline control.

The strictly standardized mean difference (SSMD) values were calculated per hormone analyte using the median of the raw response values across plates for the baseline control (DMSO) and positive control (forskolin and prochloraz) wells. The SSMD for forskolin and prochloraz are presented in Table 2 of Karmaus et al. 2016, with separate values presented for each hormone to reflect the different positive control wells present on the plate included in the analysis of specific hormones. SSMD-forskolin ranged from 1-18, with a SSMD-forskolin of 13 for estradiol. SSMD-prochloraz ranged from -27-7, with a SSMD-prochloraz of -11 for estradiol. SSMD is a measure of effect size and a means of demonstrating directionality, i.e. differences between positive and negative control response; values $\geq |7|$ demonstrate excellent dynamic range and robust responses with the positive and negative controls.

Reference Chemicals / Predictive Capacity:

(Ongoing project to develop reference chemical performance metrics for a wide variety of assays currently in progress)

3.3. Assay Scope and Limitations

Chemical Library:

The ToxCast chemical library was designed to capture a large spectrum of structurally and physicochemically diverse compounds. EPA's ToxCast inventory incorporates toxicity data-rich chemicals, chemicals spanning major use-categories, and chemicals with exposure potential, including but not limited to pesticides, antimicrobials, fragrances, green chemistry alternatives, food additives, toxicity reference compounds and failed pharmaceuticals. In addition to environmental or exposure concerns, chemical selection criteria also considered practical constraints, such as commercial availability, dimethyl sulfoxide (DMSO) solubility and stability, and suitability for testing in automated or semi-automated systems (e.g., low volatility and moderate LogP values). Operating within these constraints, there were three major, interrelated drivers for chemical selection: availability of animal toxicity data or mechanistic knowledge, exposure potential, and EPA regulatory interest. The first driver would provide the necessary in vivo and mechanistic data to anchor and validate subsequent prediction modeling efforts, whereas the latter two were intended to provide coverage of the chemical landscape to which humans and ecosystems are potentially exposed and for which toxicity data are mostly lacking [6].

4. Assay Documentation

4.1. References

[1] OECD (2011). Test No. 456 H295r Steroidogenesis Assay. Paris, OECD Publishing.

[2] Gracia, T., et al. (2006). Ecotoxicol Environ Saf 65(3): 293-305.

[3] Sanderson, J. T., et al. (2001). Toxicol Sci 61(1): 40-48. (PMID: 11294972)

[4] Jacobs, M., et al. (2008). Curr Drug Metab 9(8): 796-826. (PMID: 18855613)

[5] Mosmann, T. (1983). J Immunol Methods 65(1-2): 55-63.

[6] Richard, A. M., et al. (2016). Chem Res Toxicol Article ASAP. (PMID: 27367298)

4.2. Abbreviations and Definitions

AIC, Akaike Information Criterion

ATCC, American Type Culture Collection

DMSO, Dimethyl Sulfoxide

HPLC-MS/MS, High-Performance Liquid Chromatography, with tandem Mass Spectrometry

MTC, Maximum Tolerated Concentration

MTT, 3-[4,5-dimethylthiazol-2-y]2,5-diphenyltetrazoliumbromide

R², correlation coefficient, R-squared

SSMD, strictly standardized mean difference

Z', Robust Z-prime

4.3. Assay Documentation Source

Contact Information:

U.S. EPA National Center for Computational Toxicology (NCCT)

109 T.W. Alexander Drive (MD-B-205-01)

Research Triangle Park, NC 27711

919-541-4219

Date of Assay Document Creation:

17 January 2017

Date of Revisions:

Author of Revisions:

5. Supporting Information:

ToxCast Assay Annotation Structure

Assay Name: NovaScreen Small Molecule Screening for Nuclear Receptor Activity - Bovine Estrogen Receptor Assay

1. Assay Descriptions

1. Overview

Assay Summary:

NVS_NR_bER is a biochemical, single-readout assay that uses extracted gene-proteins from Bovine uterine membranes in a tissue-based cell-free assay. Measurements were taken 18 hours after chemical dosing in a 96-well plate.

1. Assay Definition

Assay Throughput:

High throughput: 96-well plate microplate

Experimental System:

tissue-based cell-free; Source: Bovine uterine membranes

Xenobiotic Biotransformation Potential:

None

Basic Procedure:

Materials:

Receptor Source: Bovine uterine membranes

Radioligand: [3H] Estradiol

Final ligand concentration - [0.7 nM]

Non-specific Determinant: 17β-Estradiol - [10 nM]

Positive Control: 17β-Estradiol

Methods:

Incubation Conditions: Reactions are carried out in 10 mM TRIS-HCI (pH 7.4 containing 1.5 mM EDTA, 1.0 mM DTT, and 25 mM sodium molybdate at 0-4 °C for 18 hours. The reaction is terminated by the addition of dextran-coated charcoal and incubated for 20 minutes at 0-4 °C. The reaction mixtures are centrifuged and the radioactivity bound in the supernatant is assessed and compared to control values in order to ascertain any interactions of test compound with the estradiol binding site.

Proprietary Elements:

This assay is not proprietary.

Caveats:

The assay described here is intended to provide initial (screening) information on chemical activity, and is intended to provide information on a large number of diverse chemicals. Caution is advised with extrapolation of these results to prediction of organism-level responses. The potential for a chemical to elicit adverse health outcomes in living systems is a function of multiple factors, and this assay is not intended to provide predictive details regarding long term or indirect adverse effects in complex biological systems, but can aid in the prioritization of chemical selection for more resource intensive toxicity studies.

Status:

Assay is mature, and data are publicly available.

ToxCast Assay Description Document Database; Integration into *invitrodb*

Commission

JOINT RESEARCH CENTRE

EURL ECVAM DataBase service on ALternative Methods to animal experimentation (DB-ALM)

About the DB-ALM

Welcome to the DB-ALM version with an entirely revised data retrieval approach

The DB-ALM is a **public**, **factual** database service that provides **evaluated information** on development and applications of advanced and alternative methods to animal experimentation in biomedical sciences and toxicology, both in research and for regulatory purposes.

News

Updated statistics of DB-ALM usage available. More

Comprehensive DB-ALM Activity Report can be accessed from here

EURL ECVAM Status Report 2017 on alternative methods now available online

Starting from 2015, method summaries are provided in a format compliant with the new OECD Guidance. Read more

The service is operated by the **European Commission's Joint Research Centre** and implements a mandate of the EURL ECVAM (EU Reference Laboratory on Alternatives to Animal Testing) in relation to Directive 2010/63/EU^{1,2} on the protection of animals used for scientific purposes

The current version of the DB-ALM covers the following Data Sectors:

Topic Summaries: Thematic review data sheets in a form of an executive summary on alternative methods, available in the DB-ALM for an entire topic area (e.g. Percutaneous Absorption, Eye Irritation).

Method Descriptions: Two levels of detail: i) method summaries covering the scientific principle, the needs addressed, main applications, and current status of the development, validation or acceptance; ii) protocols include detailed technical instructions to enable the transfer of a method to a laboratory.

Project & Study Descriptions: Evaluations of methods, including EU integrated projects and selected formal validation studies as summary records, cross-referenced with related data sectors.

Compounds & Test Results: Lists of substances and selected individual investigations performed with methods included in the DB-ALM.

People & Institutions: Information on people and institutions active in the field of alternative methods is provided based on voluntary participation.

Bibliography: All references analysed for the compilation of the data sheets.

U.S. Environmental Protection Agency

Other public repositories of published Methods :

Suggested Sites	▼ € Web Slice Gallery ▼		
	NIH U.S. National Library of Medicine	National Lenter for Biotechnology Information	
		N RY Search BioAssays Q	
	BioAssay Record for AID 25359	€ Help	
	PubChem AID: (unassigned) External ID: ATG_AR_TRANS_up Source: BioAssay Type: Confirmatory		
	Gene Target: AR More Tested Substances: All(3392) Ac NOTE: PREVIEW RECORD. Some functionality n Contents L Description	tive(41) • Inactive(3351) # Data Table hay not be available. 1 Description Assay Summary : The Attagene TRANS assay tracks changes in transcription factor (TF) activity in response to chemical perturbations by utilizing a library of multiple reporter transcription unit (MRTU) constructs	
	Gene Target: AR More Tested Substances: ● All(3392) ● Ac NOTE: PREVIEW RECORD. Some functionality of ● Contents ● Contents ● Protocol □ BioAscay Target □ Data Table □ Categorized Comment □ Information Sources 	tive(4) • Inactive(335)) # Data Table has not be available. Assay Summary : The Attagene TRANS assay tracks changes in transcription factor (TP) activity in response to chemical perturbations by utilizing a library of multiple reporter transcription multiple RTU constructs for the available by individual Tresponse elements. This family of Attagene assays employ a necently developed profiling technology (FACTORIAL) which consists of trans-activity for Multiple reporter transcription factor (TP) activity in response to chemical perturbations by utilizing a library of multiple reporter transcription multiple RTU constructs for the available by individual Tresponse elements. This family of Attagene assays employ a necently developed profiling technology (FACTORIAL) which consists of trans-activity for Multiple RTUs are transfected into an in-house clone of human liver hepatom cell line hep62 (variant HG20) and each RTU expresses a chimeric GAL4-NR protein that regulates transcription of a reporter sequences. Nuclear receptor binding by exogenous compounds alters the transactivation function of Gal4-NR and multiple RTUs. The transcription function of Baray SM employments assays employ and constitut sequences are identical with the exception of processing tag sequences assigned to each TF which create a unique cleavage site for individual RTUs, and allow for precise determination of NR activity. The MRTUs are transfected into an in-house clone of human liver hepatom cell line hep62 (variant HG20) and each RTU expresses a chimeric GAL4-NR protein that regulates transcription of a reporter sequences. Nuclear receptor binding by exogenous compounds alters the transactivation function of Gal4-NR and modulates reporter transcription. The chemical AN activity is monitored by examining fluorescent activity produced by transcribed mRNA. This trans-format FACTORIAL assay was used to evaluate agonistic/antagonistic properties of the ToxCast chemical library against 25 human nuclear receptors following a treporter sequences ar	
	Gene Target: AR More Tested Substances: ● All(3392) ● Ac NOTE: PREVIEW RECORD. Some functionality n ● Contents ≪ 1 Description 2 Protocol 3 3 BloAscay Target 4 Data Table 5 Categorized Comment 6 Information Sources	tive(q1) • Inactive(3351) • Lot Table to the available. A post point of a report of many first format FACTORAL assay was used to evaluate agoinstic/antagonistic properties of the TacCat chemical Pharactivity is monitored by easying and properties of the TacCat chemical Pharactivity is monitored by easying and properties of the TacCat chemical Pharactivity is monitored by easying and properties of the TacCat chemical Pharactivity is monitored by easying and the report of the many and the secoption of monocoling and the transcription nuclei (MRUL) construct the transfected into an in-house clone of human liver hepdatom cancel and properties of the TacCat chemical Pharactivity is monitored by easying fuor sector of SAL ANR properties and the transcription reporters are detected simultaneously in the same assay well and by single reaction creating highly to resolute the transcription sector of SAL ANR properties of the TacCat chemical Pharactivity is monitored by easying fuor sector for the concentration sector. All reporters are detected simultaneously in the same assay well and by single reaction creating highly to resolute the transcription and the transcription much SMRUL is for sector fuor and the properties of the TacCat chemical Pharactivity is monitored by easying fuor sector fuor inclustors with the resolute in a single replicate B point concentration sectors. All reporters are detected simultaneously in the same assay well and by single reaction creating highly to resolute the single sector in and the sector of the fuor sector of the taccat chemical Pharactivity is fuor sector fuor sector of the sector o	

U.S. Environmental Protection Agency

Acknowledgments

National Center for Computational Toxicology, US EPA

