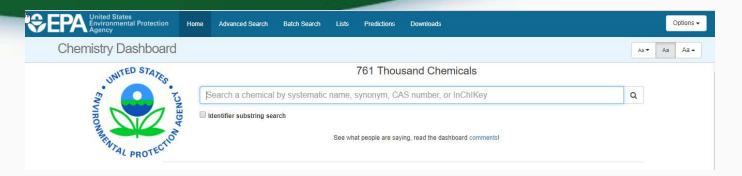


The CompTox Chemistry Dashboard v2.6 – Delivering Improved Access to Data and Real Time Predictions

Antony Williams

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA


Outline

- A very basic intro to the dashboard
- Our latest release Getting to What's New?
- New data and functionality
- From data to real data predictions
- Work in progress

The CompTox Chemistry Dashboard

A publicly accessible website delivering access:

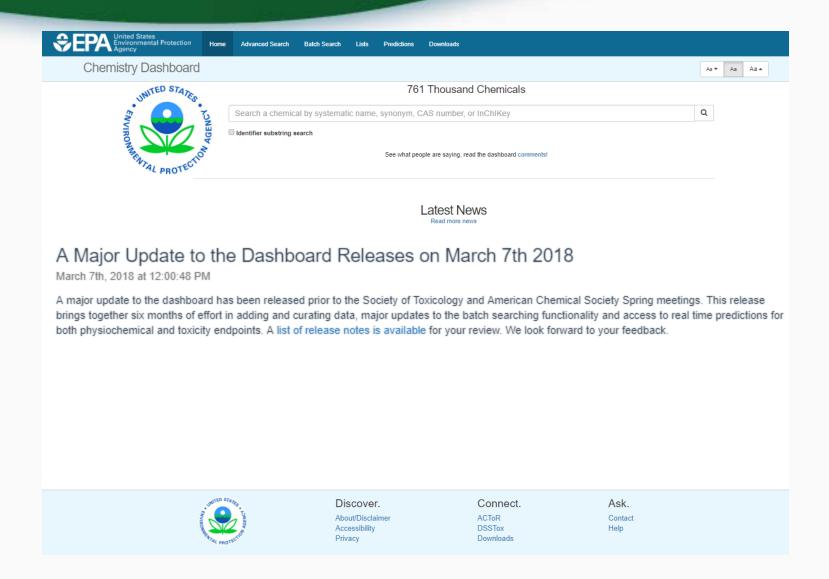
- ~760,000 chemicals with related property data
- Experimental and predicted physicochemical property data
- Experimental Human and Ecological hazard data
- Integration to "biological assay data" for 1000s of chemicals
- Information regarding consumer products containing chemicals
- Links to other agency websites and public data resources
- "Literature" searches for chemicals using public resources
- "Batch searching" for thousands of chemicals
- Real time prediction of physchem and toxicity endpoints

How is it built?

https://jcheminf.springeropen.com/articles/10.1186/s13321-017-0247-6

Williams et al. J Cheminform (2017) 9:61 DOI 10.1186/s13321-017-0247-6

DATABASE Open Access

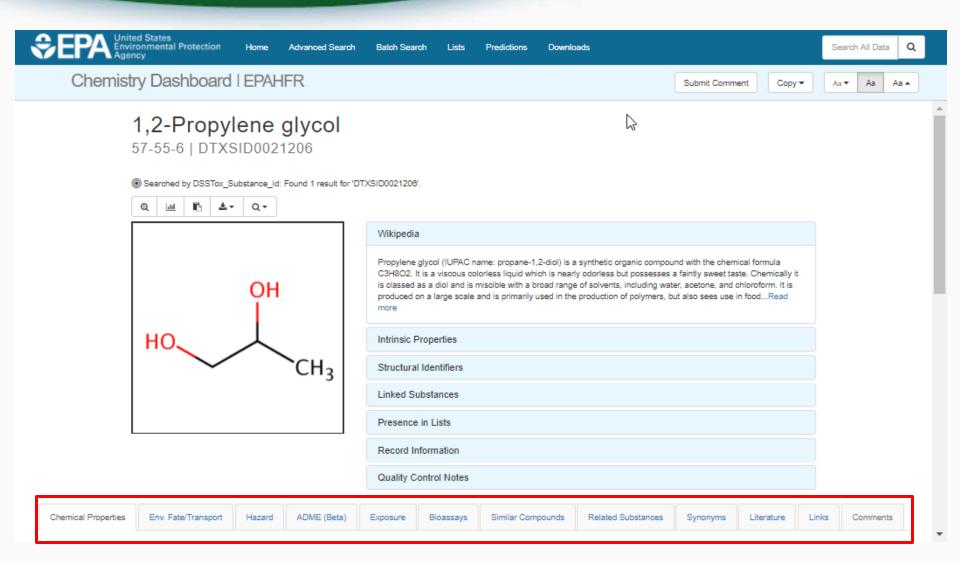

The CompTox Chemistry Dashboard: a community data resource for environmental chemistry

Antony J. Williams^{1*}, Christopher M. Grulke¹, Jeff Edwards¹, Andrew D. McEachran², Kamel Mansouri^{1,2,4}, Nancy C. Baker³, Grace Patlewicz¹, Imran Shah¹, John F. Wambaugh¹, Richard S. Judson¹ and Ann M. Richard¹

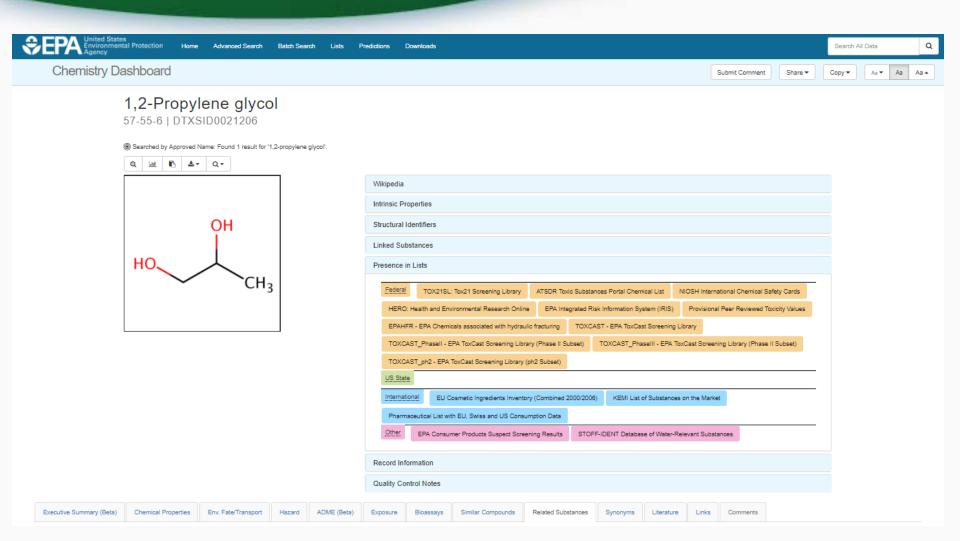
Release Notes

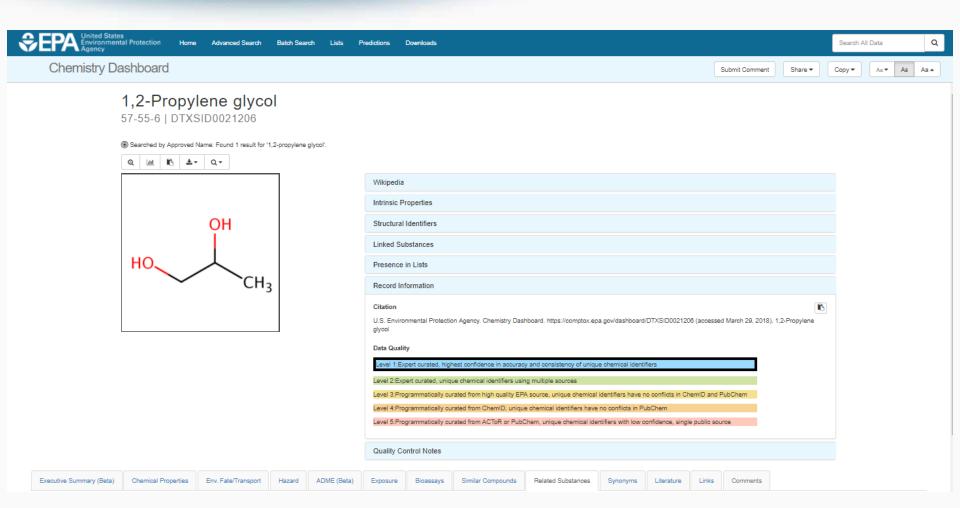
A detailed list of new functionality and fixes

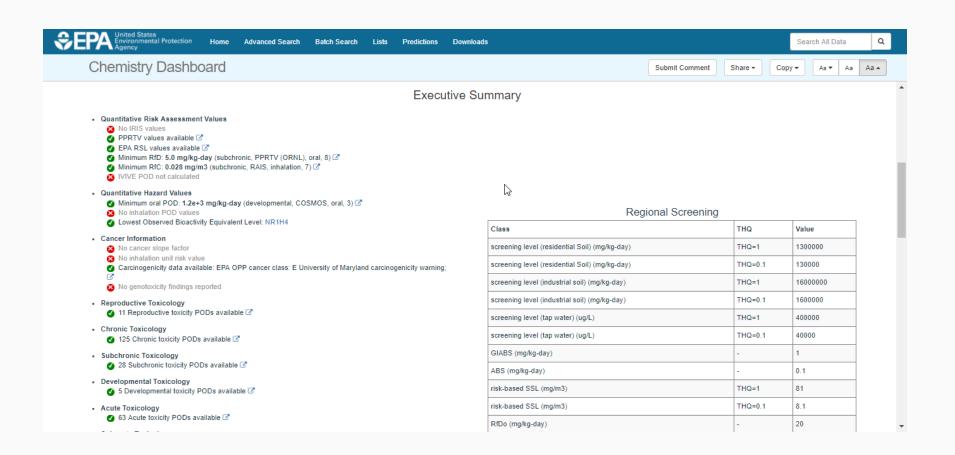
- ** New Functionality
 - * [ICD-756] Produce link from ToxCast In Vitro Data Assay into AOP
 - * [ICD-851] Improve generation of molecular formulae
 - * [ICD-929] Include Monoisotopic Mass as Input for Batch Searching
 - * [ICD-975] Batch Search export for Batch Mass searching of MS Ready Structures
 - [ICD-977] Add ability to download "QSAR-Ready SMILES" presently used by OPERA in the batch search
 - * [ICD-1011] Provide Download of PubMed ID and Article Title from Abstract Sifter Page
 - * [ICD-1070] Provide ability to perform batch search based on First Layer of InChIKey Only
 - * [ICD-1106] Add option to search MS-Ready Formulae or Exact Formulae
 - * [ICD-1136] Add Bioassay data plot display for selected assays
 - * [ICD-1192] Add Ponking Based on number of articles found in PubMed

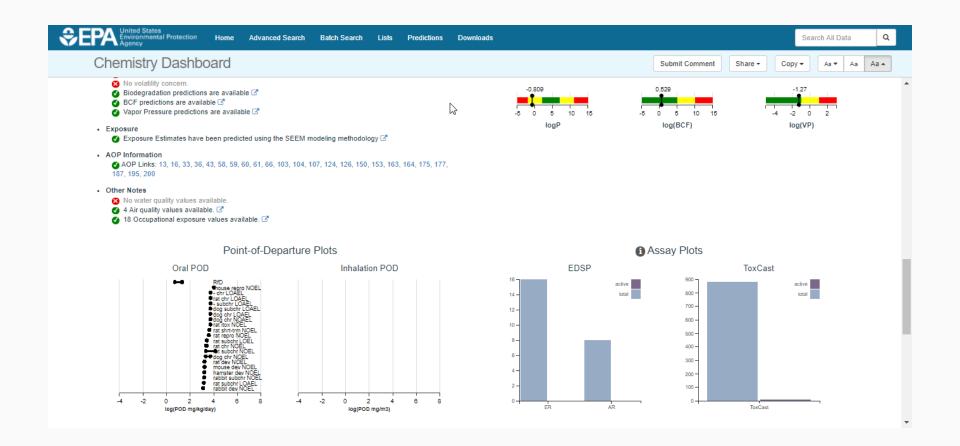

New Data

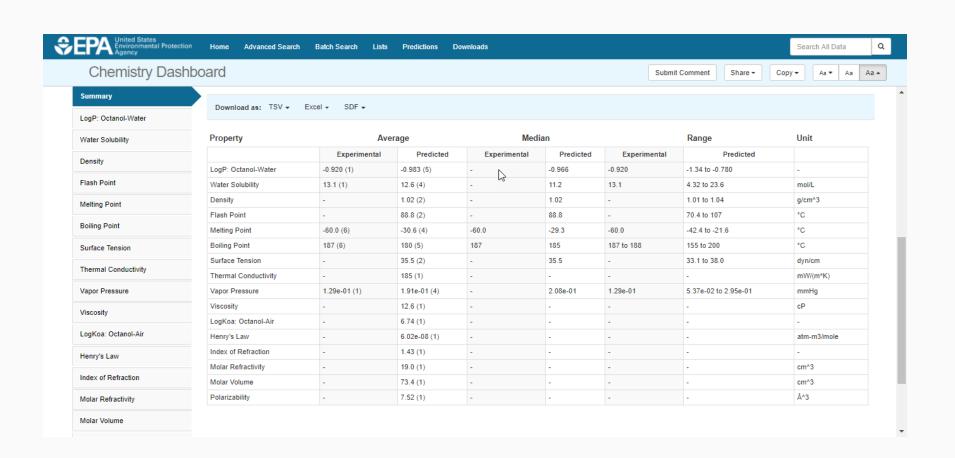
- ~3000 chemicals added since last release
- Additional experimental physchem data from literature added
- T.E.S.T predictions made across all data physicochemical predictions
- Human and Ecological hazard data added and curated (always ongoing)
- Production volume data added


Detailed Chemical Pages


Presence in Lists


Data Quality


The Executive Summary (NEW)


The Executive Summary (NEW)

Properties, Fate and Transport

Properties, Fate and Transport

When we don't have experimental data we predict it...

Property	Average						
	Experimental	Predicted					
Soil Adsorp. Coeff.	2.29 (1)	1.94 (2)					
Atmos. Hydroxylation Rate	1.20e-11 (1)	1.30e-11 (1)					
Biodeg. Half-Life	-	4.28 (1)					
Fish Biotrans. Half-Life (Km)	-	8.30e-02 (1)					
Bioaccumulation Factor	-	8.96e-01 (1)					
Bioconcentration Factor	-	2.13 (5)					

OPERA: OPEN Data and OPEN Models

7

Mansouri et al. J Cheminform (2018) 10:10 https://doi.org/10.1186/s13321-018-0263-1 Journal of Cheminformatics

RESEARCH ARTICLE

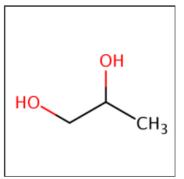
Open Access

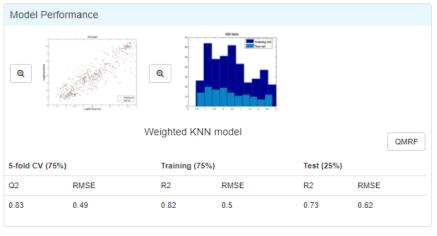
OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri^{1,2,3*}, Chris M. Grulke¹, Richard S. Judson¹ and Antony J. Williams¹

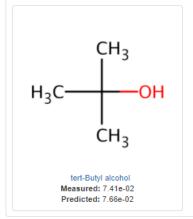
Model Performance Details

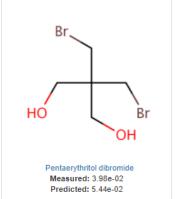
(Redesigned display)

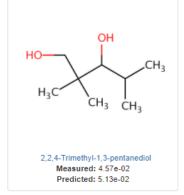

Save PDF

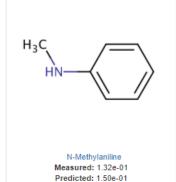

OPERA Models: Fish Biotrans. Half-Life (Km)

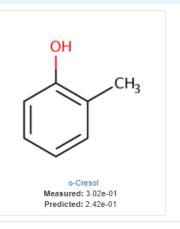
1,2-Propylene glycol


57-55-6 | DTXSID0021206

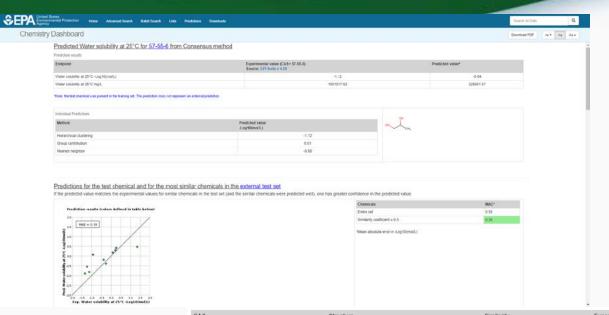






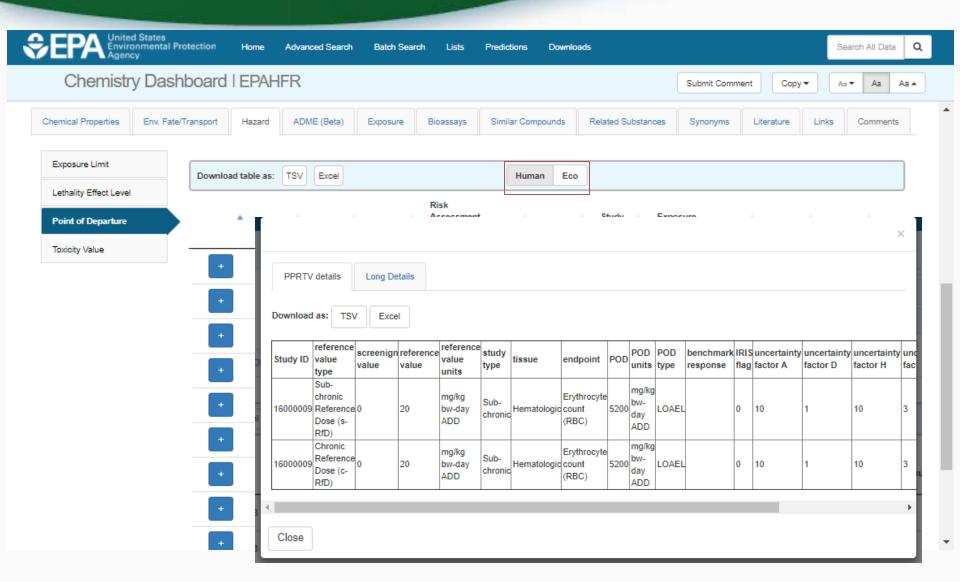

Nearest Neighbors from the Training Set

T.E.S.T Models



- Predictions made for the whole database
- Includes detailed calculation reports

T.E.S.T Calculation Reports



CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
57-55-6 (test chemical)	ОН СН3		-1.12	-0.64
78-92-2	H ₃ C CH ₃	0.96	-0.39	-0.18
64-17-5	HO CH ₃	0.95	-1.34	-0.91
584-02-1	H ₃ C HO————————————————————————————————————	0.92	0.23	0.30
353-36-6	H ₃ CF	0.91	1.35	0.48
109-86-4	0—Сн,	0.90	-1.12	-0.82
75 50 5		0.00	n ne	0.20

Access to Chemical Hazard Data



In Vitro Bioassay Screening

ToxCast and Tox21

Detailed Assay Description as PDF (limited number of assays)

NVS NR hFXR Antagonist

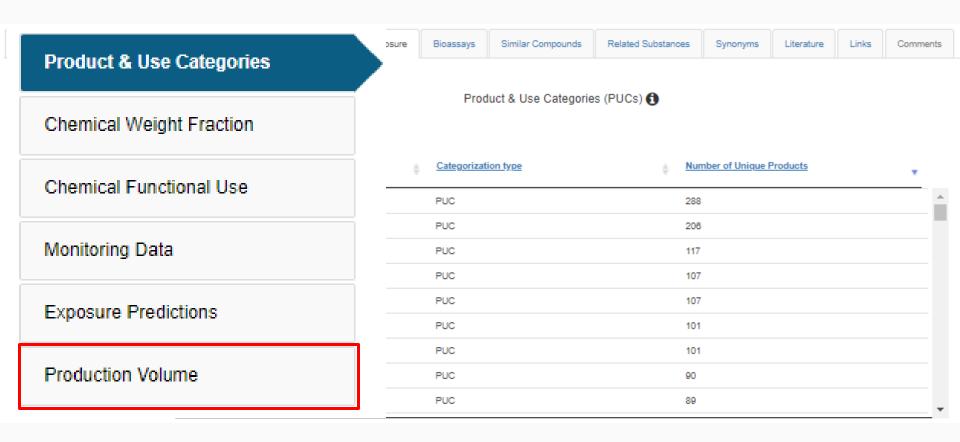
Assay Title: NovaScreen Human Farnesoid x Receptor Alpha (FXR) Ligand-Binding Antagonist Screening Assay

Assay Descriptions

1.1. Overview

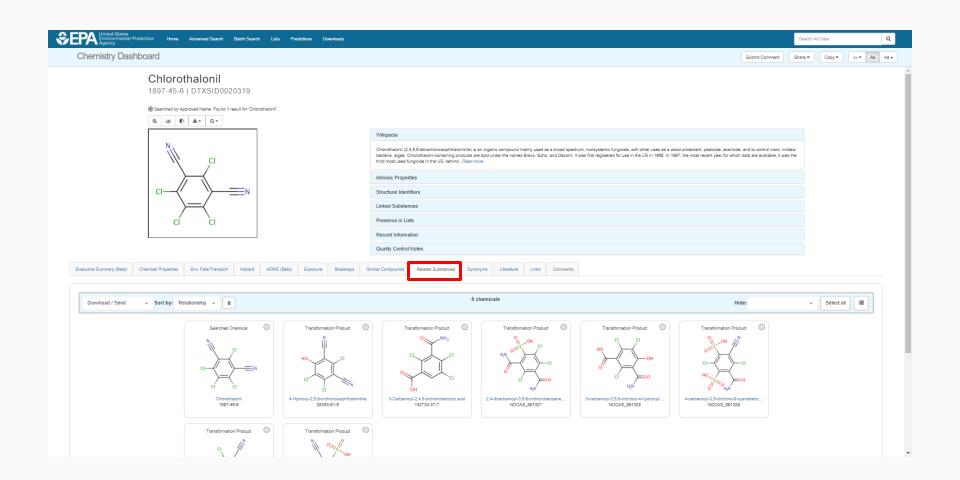
Assay Summary:

High-throughput screening of in vitro chemical-target interactions across a wide variety of compounds through a broad range of biochemical interactions will help describe the chemical-assay bioactivity space for chemicals with limited available information. There exists a large number of environmental chemicals for which there is little information about the potential for bioactivity. The NVS NR human farnesoid x receptor (FXR, NR1H4) agonist assay format allows for an efficient screening of thousands of chemicals for the ability to competitively bind to the ligand-binding domain of a xenobiotic sensing nuclear receptor. This assay was developed to screen the ToxCast chemical library for potential farnesoid x receptor ligand-binding activity using a TR-FRET competitive displacement assay and a known FXR receptor agonist (Chenodeoxycholic Acid, CDCA) as a reference compound. Biochemical high-throughput screening offers preliminary evidence for chemical targets in a cell or tissues which, when combined with information from literature or targeted in vivo studies, can indicate potential pathways for toxicity. This assay was run for a test duration of 1 hour in a 384-well plate.

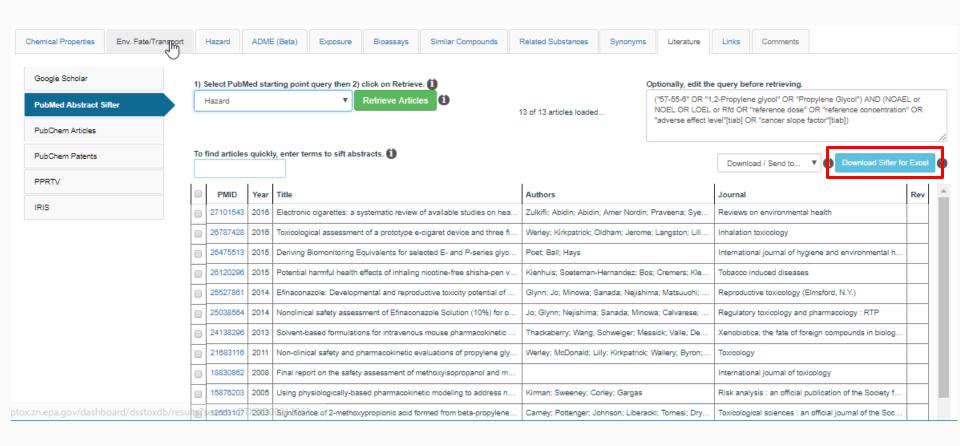

1.2. Assay Definition

Assay Throughput:

Human FXR ligand-binding domain (LBD) incubated in 384-well microtiter plates for 1 hour prior to measuring ligand dependent binding of cofactor to the receptor using TR-FRET.


Sources of Exposure to Chemicals

Related Substances Mappings to Transformation Products


Identifiers to Support Searches

Chemical Properties	Env. Fate/Transport	Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Syn		
Found 78 synonyms										
		L	egend: Valid		Good Synonyms	Other Synonyms	r Copy all Synonyms			
,2-Propylene glycol										
ropane-1,2-diol										
,2-Propanediol										
7-55-6 Active CAS-RN										
Ipha-Propylene glycol										
+/-) 1,2-Propanediol										
RS)-1,2-Propanediol										
I-Propylene glycol										
-01-00-02142 Belistein R	egistry Number									
,2-Propanediol										
+)-1,2-Propanediol										
+)-Propylene glycol										
,2-(RS)-Propanediol										
,2-DIHYDROXYPROPA	NE									
.2-PROPANDIOL										

Literature Searches and Links

Abstract Sifter for Excel

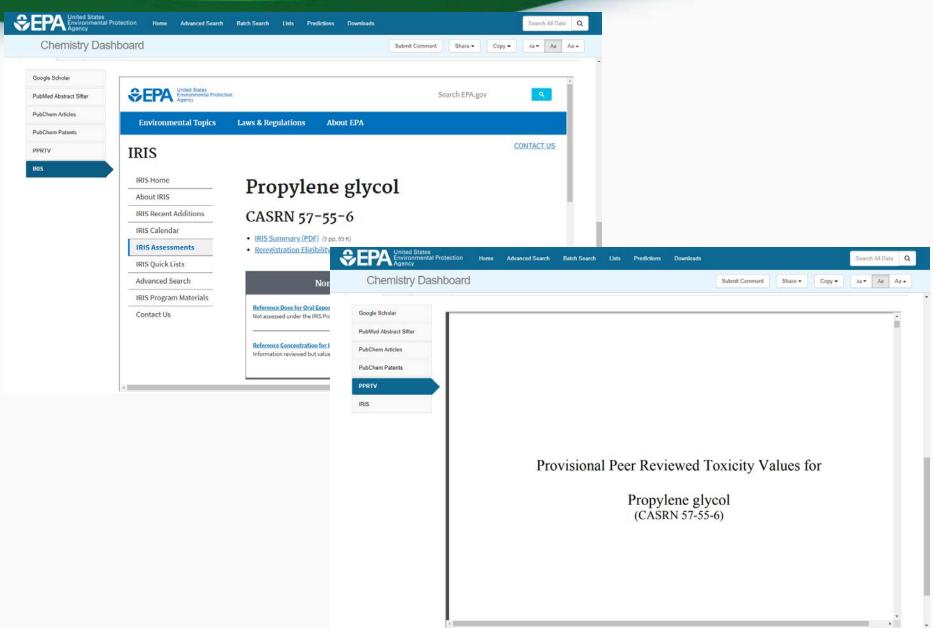
https://f1000research.com/articles/6-2164/v1

F1000Research

F1000Research 2017, 6(Chem Inf Sci):2164 Last updated: 06 FEB 2018

SOFTWARE TOOL ARTICLE

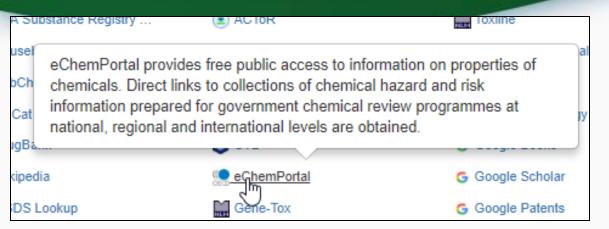
Abstract Sifter: a comprehensive front-end system to PubMed [version 1; referees: 2 approved]

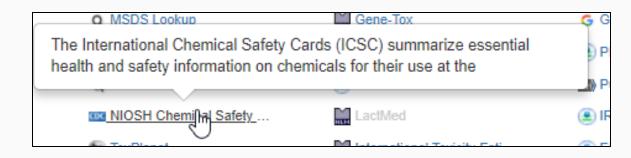

Nancy Baker ¹, Thomas Knudsen², Antony Williams ²

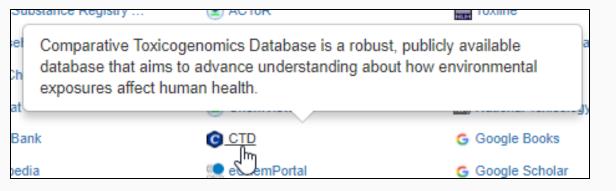
¹Leidos, Research Triangle Park, NC, USA

²National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

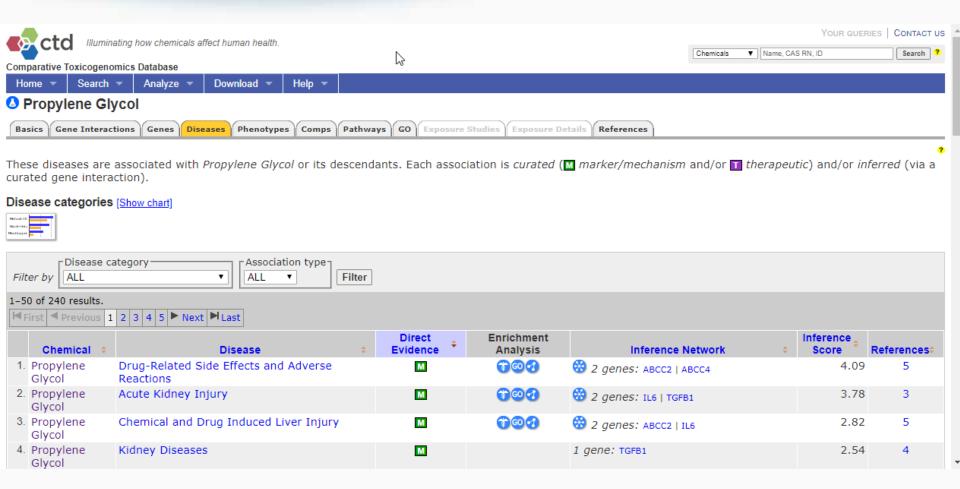
Links to PPRTV and IRIS


External Links to Data and Services

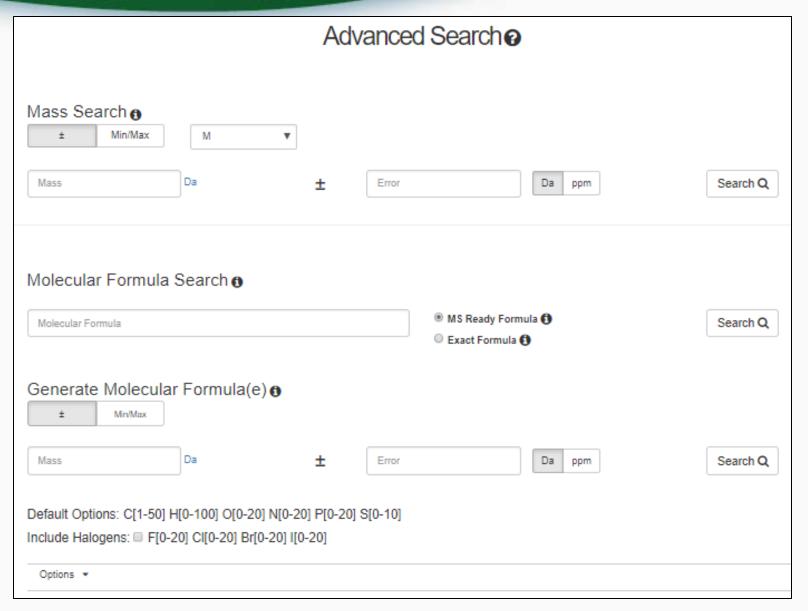



NZ										
Chemical Properties	Env. Fate/Transport	Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Synonyms	Literature	Links
General	Toxicol	ogy		Publications		Analytical	F	Prediction		
	jistry 📵 ACT	ōR		Toxline		C RSC Analytic	al Abstracts	🐧 2D NMR HSQC	C/HMBC Pr	
	Data • Drug	gPortal		Environment	al Health Per	A Tox21 Analyti	cal Data	Carbon-13 NMI	R Prediction	
PubChem	CCF	เเร		NIEHS		MONA: Mass	Bank North	🐧 Proton NMR Pr	ediction	
CPCat	Che	mView		Mational Tox	icology Progr	NIST IR Spec	etrum •	ChemRTP Pred	dictor	
DrugBank	© СТЕ)		G Google Book	(S	NIST MIST MS Spe	ectrum			
w Wikipedia	🥌 eCh	emPortal		G Google Scho	olar					
Q MSDS Lookup	Gen	e-Tox		G Google Pate	nts					
(iii) ChEMBL	HSE)B		PPRTVWEB						
Q Chemical Vendors	♠ Tox	Cast Dashboa	rd 2	PubMed						
III NIOSH Chemical Sa	afety Lact	Med		IRIS Assess	ments					
ToxPlanet	Inter	rnational Toxic	ity Esti	EPA HERO						
ACS Reagent Chem	nicals 🕝 ATS	DR Toxic Sub	stances	C RSC Publica	tions					
W Wikidata	ACT	oR PDF Repo	ort	BioCaddie D	ataMed					
ChemHat: Hazards	and A CRE	ST		Springer Ma	terials					
🜞 Wolfram Alpha				Federal Reg	ister					

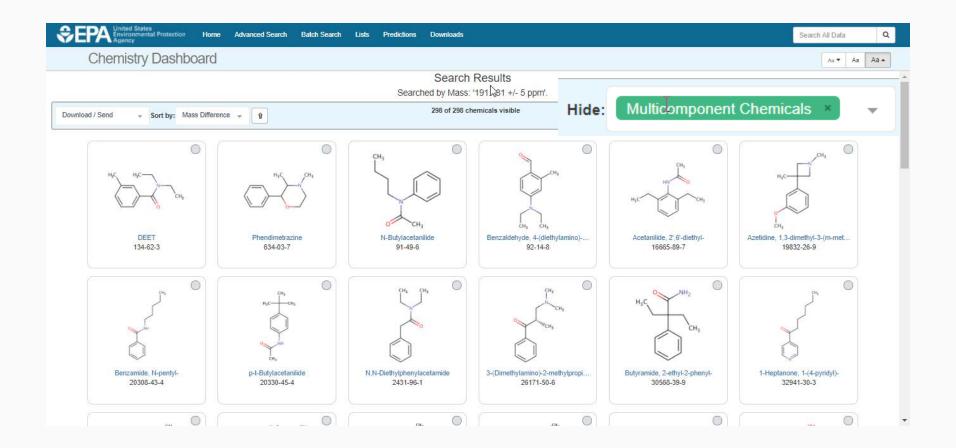
Integrated Linkouts



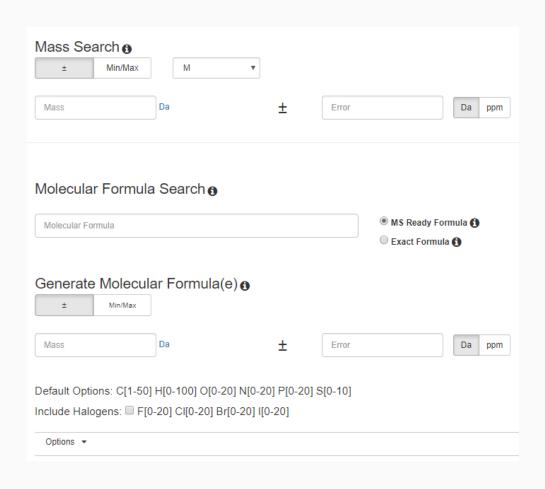
Integrated Linkouts


Comparative Toxicogenomics DB

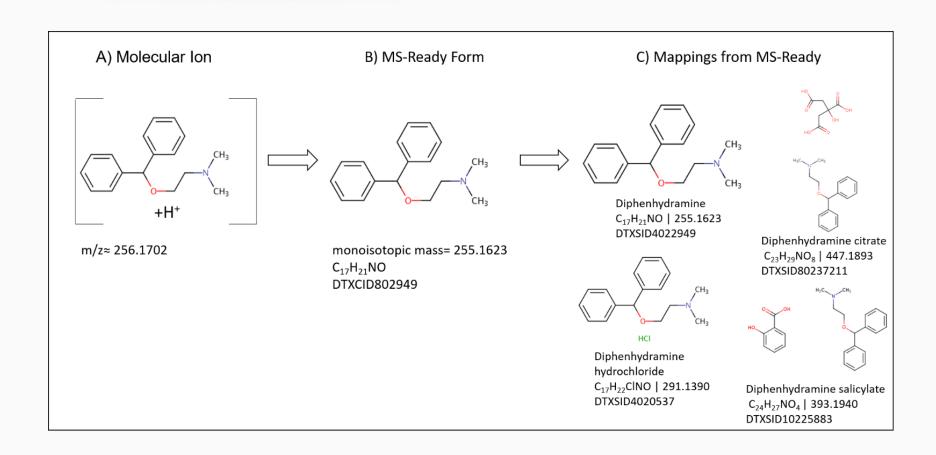
Advanced Searches


Advanced Searches Mass Based Search

± Min/Max M ▼		
404 404 Pa	b 0	\Box
191.131 Da ± 5	Search Q	


Advanced Searches

The Dashboard to Support MS-Analysis

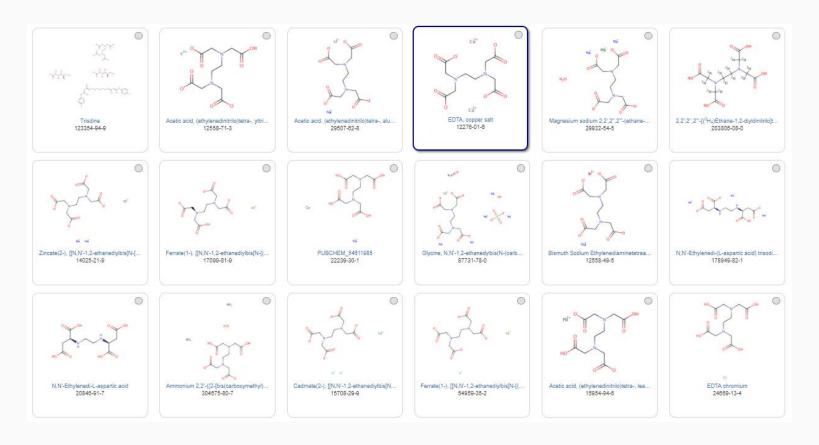


MS-Ready Structures Underpin Analysis

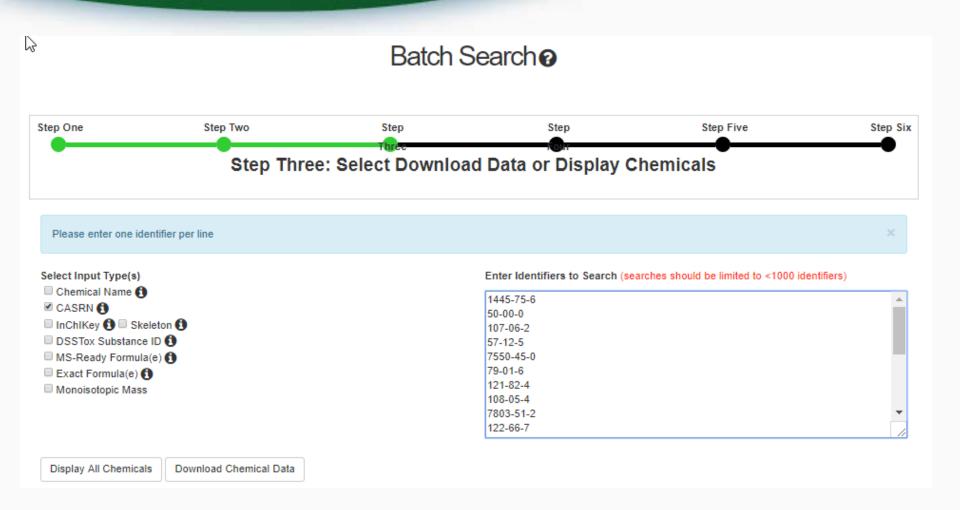
Specific Data-Mappings "MS-Ready Structures"

MS-Ready Mappings

- Input Formula: C10H16N2O8
- EXACT Formula Search: 3 Chemicals



MS-Ready Mappings

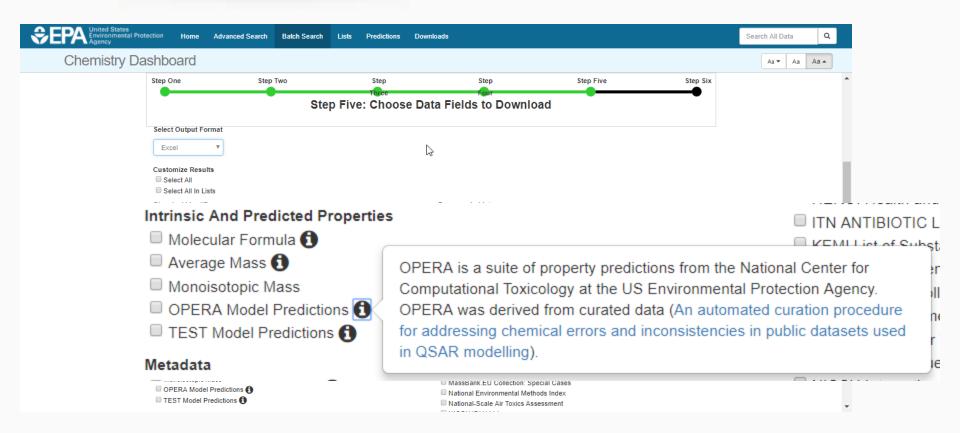


- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 88 Chemicals

Batch Searches

Batch Search

Intrinsic And Predicted Properties


- Molecular Formula 6
- Average Mass 6
- Monoisotopic Mass
- OPERA Model Predictions 6
- TEST Model Predictions

Metadata

- Curation Level Details 6
- Data Sources 6
- Assay Hit Count <a>1
- Include links to ACToR reports SLOW! (BETA)
- Include ToxVal Data Availability 6
- Number of PubMed Articles <a>6
- Abstract Sifter Input File (Beta) 6
- MetFrag Input File(Beta)
- IRIS
- PPRTV
- PubChem Data Sources

OPERA and TEST in Batch

Batch Search

Select Output Format

Customize Results

- Select All
- Select All In Lists

Chemical Identifiers

- ☑ DTXSID
 ⑥
- Chemical Name 6
- CAS-RN 6
- InChlKey 6
- IUPAC Name 6
- Synonyms and Identifiers

Structures.

- Mol File
- ✓ SMILES

 ⑤
- InChl String < ↑</p>

Intrinsic And Predicted Properties

- ✓ OPERA Model Predictions 6
- TEST Model Predictions 6

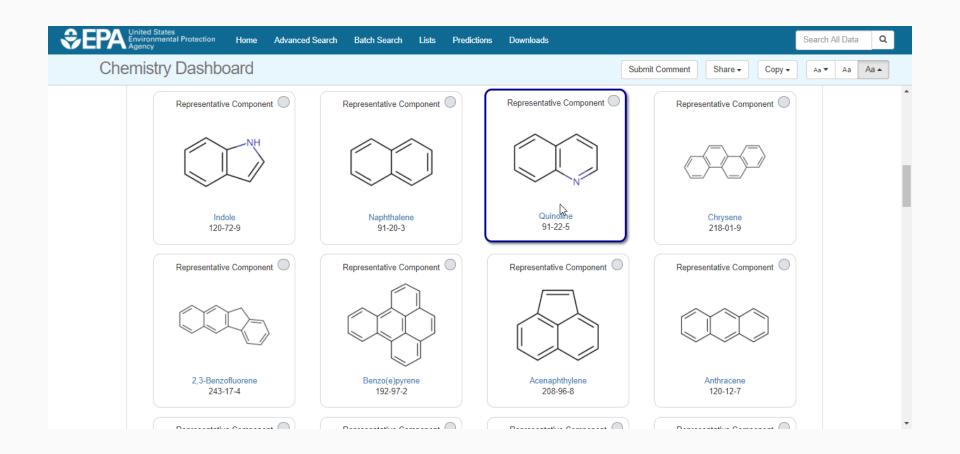
Metadata.

- Curation Level Details (1)
- ✓ Data Sources <a>6
- Assay Hit Count 6
- Include links to ACToR reports SLOW! (BETA)
- NHANES/Predicted Exposure 6
- Include ToxVal Data Availability 6
- Number of PubMed Articles 6
- Abstract Sifter Input File (Beta) 6
- ☐ MetFrag Input File(Beta)
- IRIS
- PPRTV
- PubChem Data Sources

Excel Output

/_	Α	В	С	D	Е	F	G	Н
1	INPUT	FOUND_BY	DTXSID	PREFERRED_NAME	EXPOCAS	EXPOCAS	NHANES	TOXVAL_D
2	1445-75-6	CAS-RN	DTXSID5024051	Diisopropyl methylpho:	2.09e-08	Υ	-	Υ
3	50-00-0	CAS-RN	DTXSID7020637	Formaldehyde	1.32e-06	Υ	-	Υ
4	107-06-2	CAS-RN	DTXSID6020438	1,2-Dichloroethane	4.9e-06	Υ	-	Υ
5	57-12-5	CAS-RN	DTXSID6023991	Cyanide	-	-	-	Υ
6	7550-45-0	CAS-RN	DTXSID8042476	Titanium tetrachloride	_	-	-	Υ
7	79-01-6	CAS-RN	DTXSID0021383	-	7.27e-06	Υ	-	Υ
8	121-82-4	CAS-RN	DTXSID9024142	,	6.72e-08	Υ	-	Υ
9	108-05-4	CAS-RN	DTXSID3021431	Vinyl acetate	8.3e-05	Υ	-	Υ
10	7803-51-2	CAS-RN	DTXSID2021157	Phosphine	_	-	-	Υ
11	122-66-7	CAS-RN	DTXSID7020710	1,2-Diphenylhydrazine		Υ	-	Υ
12	101-77-9	CAS-RN	DTXSID6022422	4,4'-Methylenedianiline	6.08e-06	Υ	-	Υ
13	14017-34-6	CAS-RN	DTXSID90161250	Selenium difluoride	-	-	-	-
14	75-44-5	CAS-RN	DTXSID0024260	Phosgene	-	-	-	Υ
15	621-64-7	CAS-RN	DTXSID6021032	N-Nitrosodipropylamine	4.55e-07	Υ	-	Υ
16	75-09-2	CAS-RN	DTXSID0020868	Dichloromethane	2.02e-06	Υ	-	Υ
17	100-41-4	CAS-RN	DTXSID3020596	Ethylbenzene	8.32e-05	Υ	-	Υ
18	7440-28-0	CAS-RN	DTXSID2036035	Thallium	-	-	-	Υ
19	108-88-3	CAS-RN	DTXSID7021360	Toluene	8.61e-05	Υ	-	Υ
20	111-44-4	CAS-RN	DTXSID9020168	Bis(2-chloroethyl) ethe	2.82e-07	Υ	-	Υ
21	7440-42-8	CAS-RN	DTXSID3023922	Boron	-	-	-	Υ
22	7440-29-1	CAS-RN	DTXSID6049800	Thorium	-	-	-	Υ

Searching Families of chemicals



Families of chemicals of interest

- Polychlorinated biphenyls (PCBs)
- Polybrominated diphenyl ethers (PBDEs)
- Polyaromatic hydrocarbons (PAHs)

Searching Families of chemicals Polyaromatic Hydrocarbons

Surfacing Lists of Chemicals

- Specific subsets of chemicals, "lists", can be displayed on the dashboard
- If there are chemicals that map together then these link to existing:
 - Property data
 - Hazard data
 - Exposure data
 - In vitro bioassay data
 - Documents and Literature

A List of Lists of Chemicals

https://comptox.epa.gov/dashboard/chemical_lists

Home

Advanced Search

Batch Search

Lists

Predictions

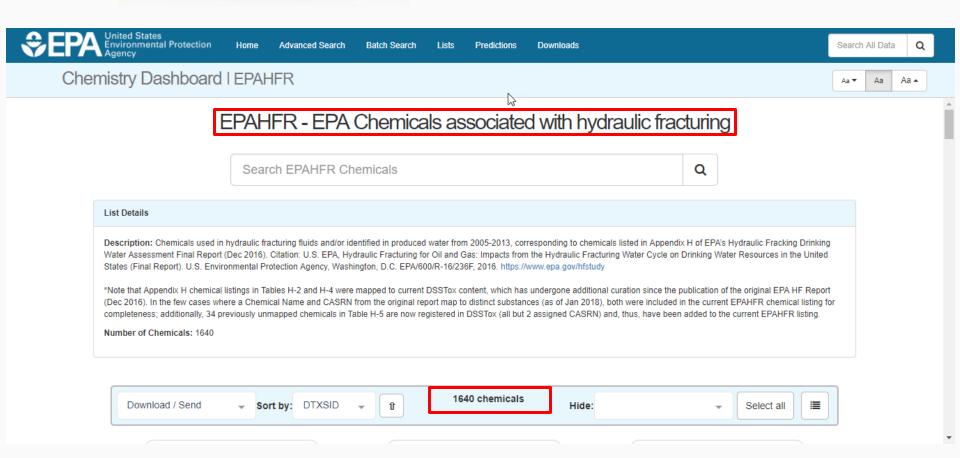
Downloads

Search All Da Q

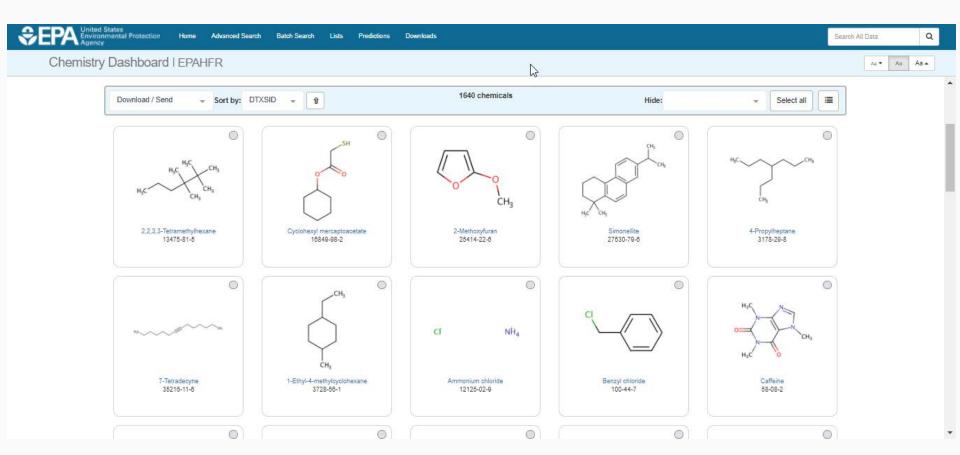
Aa ▼

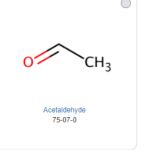
Aa 🔺

Chemistry Dashboard



List Name	A	Number of Chemicals	List Description
40CFR355	3	354	Extremely Hazardous Substance List and Threshold Planning Quantities; Emergency Planning and Release Notification Requirements; Final Rule. (52 FR 13378)
Algal Toxins	5	54	A set of algal toxins of interest
Androgen Receptor Chemicals	1	110	The list of chemicals used to identify references with in vitro AR binding . From Kleinstrauer et al http://pubs.acs.org/doi/abs/10.1021/acs.chemrestox.6b00347
ATSDR Toxic Substances Portal Chemical List	2	200	The Agency for Toxic Substances and Disease Registry (ATSDR) is a federal public health agency of the U.S. Department of Health and Human Services.
Bisphenol Compounds	5	52	This list represents a collection of Bisphenol Compounds
California Office of Environmental Health Hazard Assessment	9	972	The OEHHA Chemical Database is a compilation of health hazard information including reference exposure levels, California public health goals, child-specific reference doses, Propos. 65 safe harbor numbers, soil-screening levels, and fish advisories
Chemicals with interesting names	1	17	This is a list of chemicals with interesting and fun names
EPA Integrated Risk Information System (IRIS)	5	510	EPA's IRIS Program identifies and characterizes the health hazards of chemicals found in the environment. Each IRIS assessment can cover a chemical, a group of related chemicals, or a complex mixture.
EPAHFR - EPA Chemicals associated with hydraulic fracturing	1	1640	EPAHFR lists chemicals associated with hydraulic fracturing from 2005-20013, as reported in EPA's Hydraulic Fracturing Drinking Water Assessment Final Report (Dec 2016)
EU Cosmetic Ingredients Inventory (Combined 2000/2006)	2	2878	EUCOSMETICS contains the Combined Inventory of Ingredients Employed in Cosmetic Products (2000, SCCNFP/0389/00 Final) and Revised Inventory (2006, Decision 2006/257/EC), prepared for NORMAN by P. von der Ohe (UBA) and R. Aalizadeh (Uni. Athens).
EU Toxrisk Dataset	2	230	Compounds of interest to the EU-ToxRisk Case Studies.
French Monitoring List	1	1171	FRENCHLIST contains substances for prospective monitoring activities in France, developed in cooperation with the NORMAN Network Working Group 1 on Prioritization. Provided by Valeria Dulio, INERIS, France. Further details on the website.


The EPA List of Hydraulic Fracturing Chemicals


The List as "Structures"

Many Hydraulic Fracturing Chemicals are "Complex"

0 related chemical structures with this substance

Amines, dicoco alkyl 61789-76-2 0 related chemical structures with this substance

Amines, coco alkyldimethyl 61788-93-0 1 related chemical structure with this substance

Cristobalite 14464-46-1 Cu T

Copper(I) iodide
7681-65-4

0 related chemical structures with this substance

Alcohols, C12-13, ethoxylated 66455-14-9 1 related chemical structure with this substance

Alcohols, C12-15, ethoxylated 68131-39-5 0 related chemical structures with this substance

Alcohols, C14-15, ethoxylated 68951-67-7 Fe

Iron 7439-89-6 Acetyltriethyl citrate
77-89-4

CH₃
H

(4aS,8aR)-4a-Methyloctahydronaphthal...
938-06-7

Ca²⁺ O Ca²⁺
O Ca²⁺
Dicalcium silicate
10034-77-2

0 related chemical structures with this substance

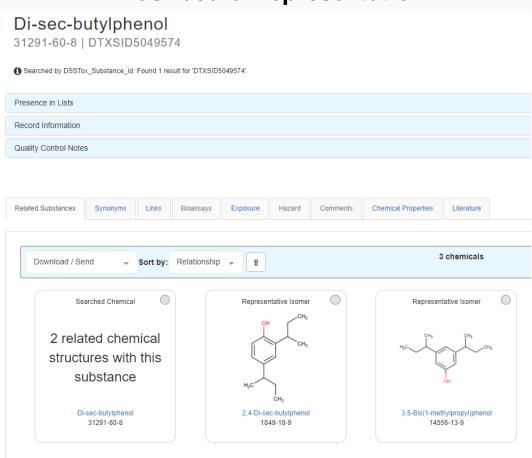
Diethylenetriamine reaction product wit... 68647-57-4 2 related chemical structures with this substance

Di-sec-butylphenol 31291-60-8

Not all chemicals are "structures"

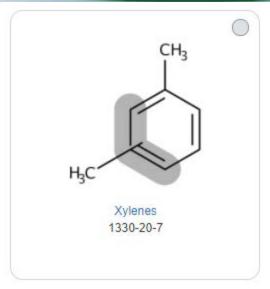
- UVCBs are chemical substances of unknown or variable composition, complex reaction products and biological materials
 - Surfactants (C11-14 linear alkyl sulfonates)
 - Reaction mass of p-t-butylphenyldiphenyl phosphate and bis(p-t-butylphenyl)phenyl phosphate and triphenyl phosphate
 - Almond Oil

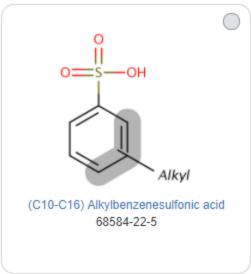
Di-sec-butylphenol

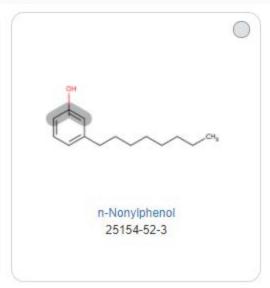

CAS Representation

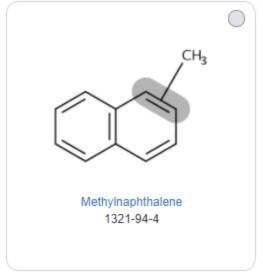
C₁₄ H₂₂ O

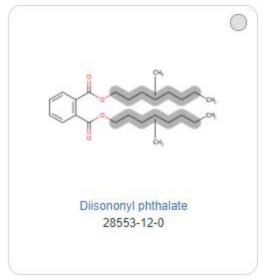
Phenol, bis(1-methylpropyl)-

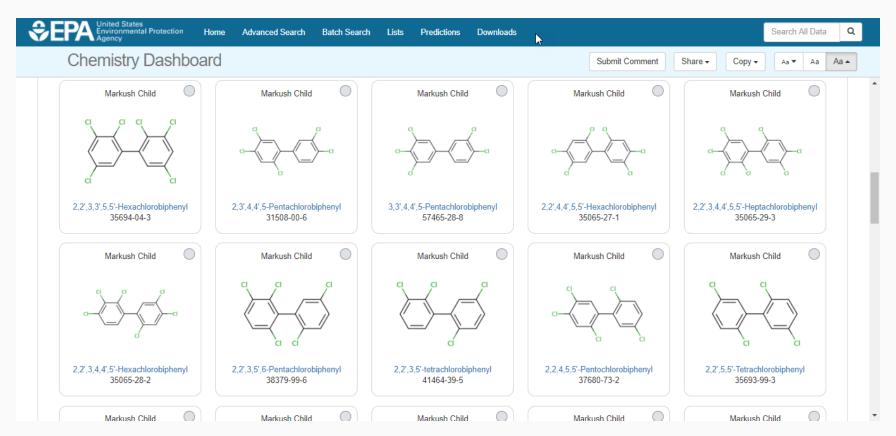

Dashboard Representation




"Markush Structures"


https://en.wikipedia.org/wiki/Markush_structure

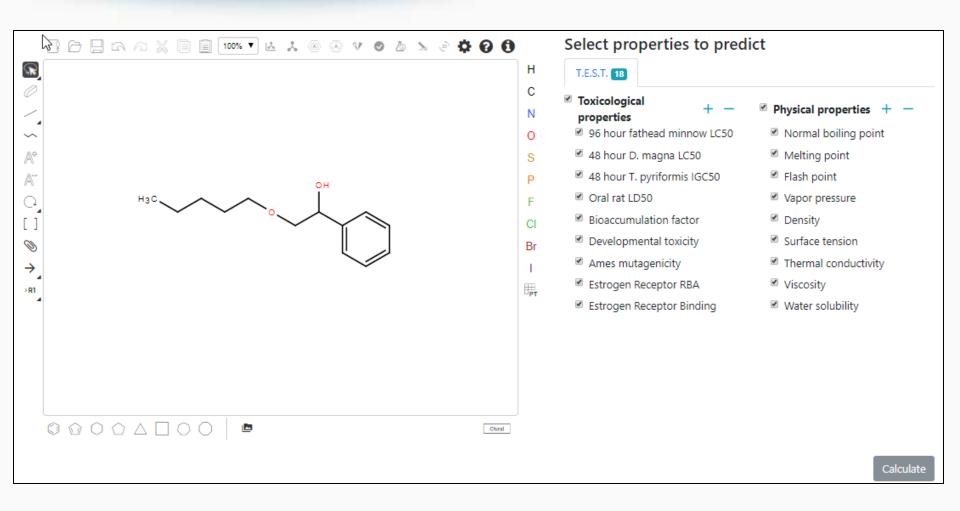




Enumeration of Markush

Markush structures can be enumerated into chemical families

Real Time Predictions



- Over 10 years of QSAR modeling at the desktop installable Java module (from National Risk Management Research Laboratory)
- Now 750,000 chemicals predicted and real time predictions are available

Real-Time Predictions

Real-Time Predictions

			Prediction					
	Property	Experimental Value	Consensus	Hierarchical clustering	Single model	Group contribution	Nearest neighbor	
V	96 hour fathead minnow LC50		4.477 -Log10(mol/L) 6.954 mg/L	4.195 -Log10(mol/L) 13.288 mg/L	3.994 -Log10(mol/L) 21.110 mg/L	3.478 -Log10(mol/L) 69.224 mg/L	6.238 -Log10(mol/L) 0.120 mg/L	
	48 hour D. magna LC50		4.398 -Log10(mol/L) 8.328 mg/L	3.877 -Log10(mol/L) 27.677 mg/L	4.039 -Log10(mol/L) 19.026 mg/L	4.084 -Log10(mol/L) 17.173 mg/L	5.593 -Log10(mol/L) 0.532 mg/L	
	48 hour T. pyriformis IGC50		4.063 -Log10(mol/L) 18.039 mg/L	3.731 -Log10(mol/L) 38.668 mg/L		3.386 -Log10(mol/L) 85.610 mg/L	5.070 -Log10(mol/L) 1.773 mg/L	
	Oral rat LD50		1.758 -Log10(mol/kg) 3640.950 mg/kg	1.982 -Log10(mol/kg) 2172.756 mg/kg			1.533 -Log10(mol/kg) 6101.245 mg/kg	
	Bioaccumulation factor		1.797 Log10 62.700	2.202 Log10 159.310	1.287 Log10 19.346	1.181 Log10 15.157	2.520 Log10 330.834	
	Developmental toxicity		false	false	false		true	
	Ames mutagenicity		false	false			false	
	Estrogen Receptor RBA		-3.075 Log10 8.418*10 ⁻⁴	-3.078 Log10 8.356*10 ⁻⁴	-3.720 Log10 1.907*10 ⁻⁴		-2.427 Log10 0.004	
	Estrogen Receptor Binding		true	true	true	false	true	

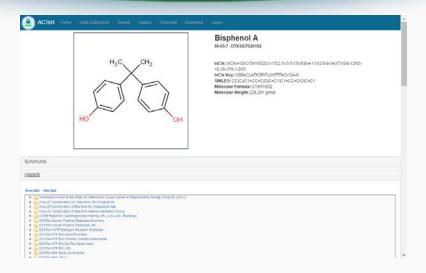
Work in Progress

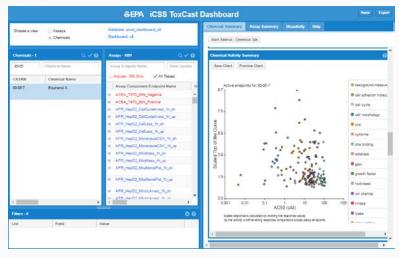
- Present work in development
 - Real time OPERA predictions TEST predictions done

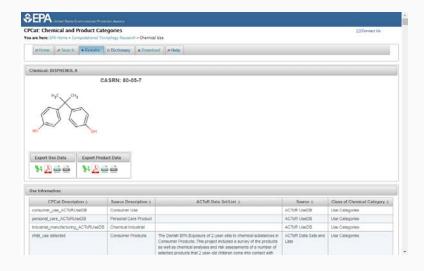
Work in Progress

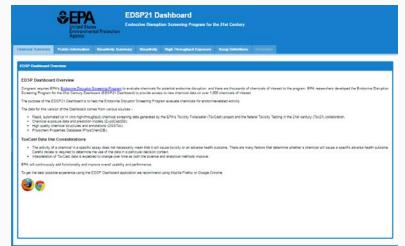
- Present work in development
 - Real time OPERA prediction
 - Structure/substructure/similarity search

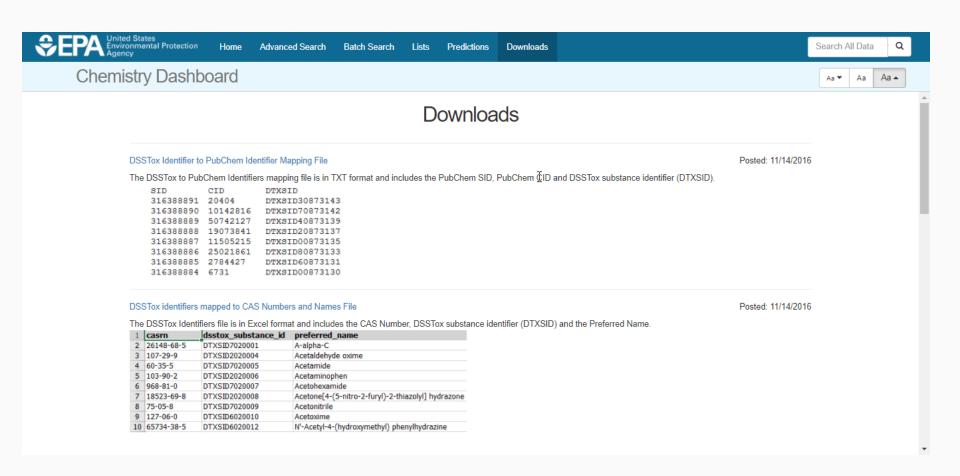
Prototype Development


Work in Progress




- Present work in development
 - Real time OPERA prediction
 - Structure/substructure/similarity search
 - Merging in other NCCT dashboard capabilities


Earlier Dashboard Applications



Downloadable Data

Conclusion

- The CompTox Chemistry Dashboard provides access to data for ~760,000 chemicals
- An expanding list of data types and sources has been integrated
- The chemical lists of interest grows with each release
- Real time prediction models rollout has started

Exciting array of additional searches in development

April 1st is the 2nd birthday

Acknowledgments

- The NCCT CompTox Chemistry Dashboard Development Team
- The NCCT Team of Scientists
- NERL scientists Mass Spectrometry
- Kamel Mansouri OPERA models
- Todd Martin TEST predictions

Antony Williams

US EPA Office of Research and Development National Center for Computational Toxicology (NCCT)

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821