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Notice/Disclaimer 
 
The U.S. Environmental Protection Agency, through its Office of Research and Development, 
funded and conducted the research described herein under an approved Quality Assurance 
Project Plan (Quality Assurance Identification Number G-STD-0013882-QP-1-3). It has been 
subjected to the Agency’s peer and administrative review and has been approved for publication 
as an EPA document. Mention of trade names or commercial products does not constitute 
endorsement or recommendation for use.   
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Foreword 
 
The U.S. Environmental Protection Agency (US EPA) is charged by Congress with protecting 
the Nation's land, air, and water resources. Under a mandate of national environmental laws, the 
Agency strives to formulate and implement actions leading to a compatible balance between 
human activities and the ability of natural systems to support and nurture life. To meet this 
mandate, US EPA's research program is providing data and technical support for solving 
environmental problems today and building a science knowledge base necessary to manage our 
ecological resources wisely, understand how pollutants affect our health, and prevent or reduce 
environmental risks in the future. 
 
The Center for Computational Toxicology & Exposure (CCTE) is a scientific organization 
working to support Agency decisions by providing solutions-driven research to rapidly evaluate 
the potential human health and environmental risks due to exposures to environmental chemicals 
and ensure the integrity of the freshwater environment and its capacity to support human well-
being. To do this, CCTE research strives to: 

 
• Reduce the time required to thoroughly test chemicals and other emerging materials for 

human health and ecological toxicity from years to months.    
• Expand our understanding of quantitative human and ecological exposures for thousands 

of chemical substances and emerging materials. 
• Develop a comprehensive information system that contains relevant actionable chemical 

safety and ecological data with the software tools to integrate them for a range of human 
health and environmental decisions. 

• Reduce the time required to characterize freshwater ecosystems and project the future 
state of ecological condition and ecosystem services from decades to years. 

• Demonstrate translation of CCTE data, models, and tools into regulatory decisions by 
EPA Program Offices, EPA Regions, and States to protect human health and the 
environment. 
 

Using the knowledge and tools developed from this research, CCTE performs rapid chemical 
screening and evaluation that allows thousands of chemicals to be evaluated for potential risk in 
a very short amount of time. The data and tools produced by CCTE researchers can then be 
leveraged to help Region and Program Offices, states, tribes, and communities make decisions to 
sustain a healthy society and environment. 
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Abstract 
 
This guide provides an introduction to QSAR (Quantitative Structure Activity Relationship) 
models, a detailed description of the QSAR methodologies in T.E.S.T. (Toxicity Estimation 
Software Tool), a description of the experimental datasets, a detailed analysis of the validation 
results for the external test sets, and step-by-step instructions for using the software. 
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1. USING THE SOFTWARE 
 

1.1. Importing chemicals in single chemical mode 
 
A compound can be imported into the software using the following methods: 

• Using the provided molecular structure drawing tool 
• Importing from an MDL molfile 
• Searching by CAS number, SMILES string, or name 

 
1.1.1. Drawing a molecule using the structure drawing tool 

• First, add any rings present in the molecule using the ring template buttons    
    (click on a button and then click somewhere in the document). 

• You can undo any unwanted drawing by clicking Ctrl z.  
• Next, add any chains using the  button.  
• Next, add double or triple bonds by using  again and clicking on the bonds to make 

them double or triple bonds. You can use  and  to make existing bonds wedge 
bonds or you can draw wedge bonds directly.  

• Next, any hetero atoms (non-carbon atoms) need to be set. Use one of the element 
symbol buttons and then click on an atom to change it to this symbol. Alternatively, you 

can use the periodic table  to choose an element and then click on an atom in the 
drawing box to change it to that element. 

• Finally, the charge can changed by right clicking on an atom and selecting Charge from 
the pop up menu. 

 
1.1.2. Importing a molecule from an MDL molfile 

The structure for a test compound can be imported from an MDL molfile (V2000)[1]. To import 

a structure using a MDL molfile, click the  toolbar button.  Click on the location of the file, 
select the file name, and click open. 
 
1.1.3. Importing by identifier 

To import a structure by identifier (either CAS number, SMILES string, chemical name, InChi, 
InChiKey, or DTXSID) in the search field and click Search (or press Enter): 
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 The molecule will load in the structure window on the right. 
 

1.2. Importing multiple compounds (batch import) 
To switch to batch mode, click on the Switch to Batch Mode button in the bottom right hand 
corner or select Switch to Batch Mode from the File menu. 
 
Multiple compounds can be imported simultaneously several different ways: 

• Using the batch search box 
• Importing from a MDL SDfile 
• Importing from a list of CAS numbers 
• Importing from a list of SMILES strings 
• Importing one of the training or prediction sets 
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1.2.1. Using the batch search box 

To import structures from the structure database, enter a series of identifiers (either CAS number, 
SMILES string, chemical name, InChI, InChiKey, or DTXSID) with one identifier on each line 
in the Search field and click Search: 
 

 
 
Note: If desired, a custom ID can also be added on each line (separated by a tab character). For 
example, if searching by smiles: 
 
c1ccccc1 Chemical1 
 
1.2.2. Importing from a MDL SDfile 

To import multiple structures from an MDL SDfile select Batch import from MDL .mol/.sdf 
file from the File menu. 
 
For best results, one should use SDfiles with a “CAS” field included to uniquely identify each 
chemical in the file. If the CAS field is not present, the software will attempt to retrieve a match 
in the database using the molecular structure. 
 
For example, a sample from an SDfile including formaldehyde would be as follows: 
 
Formaldehyde 
csChFnd80/07260508122D 
 
 2 1 0 0 0 0 0 0 0 0999 V2000 
 0.0000 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0 
 1.4000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0 
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 1 2 2 0 0 0 0 
M END 
 
> <CAS> 
50-00-0 
 
$$$$ 
 
After importing the desired set of chemicals, you can edit an individual chemical in the list by 
double clicking on its row in the list, which will bring you to the structure drawing tool where 
you can edit the structure. An example of an imported batch list is as follows: 
 

 
 
 
1.2.3. Importing from a file containing list of CAS numbers 

To import multiple structures from a list of CAS numbers (in a text file), select Batch import 
from text file containing CAS numbers from the File menu. 
 
For example, to import benzene and formaldehyde, the contents of the text file should be as 
follows: 
 
71-43-2 
50-00-0 
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1.2.4. Importing from a file containing list of SMILES strings 

To import multiple structures from a list of SMILES strings (in a text file), select Batch import 
from text file containing SMILES strings from the File menu. 
 
The text file should contain the SMILES string and, if desired, a unique identifier on each line. A 
tab should separate the SMILES string and the identifier. The text file should not container a 
header line. 
 
For example, to import benzene and formaldehyde, the contents of the text file should be as 
follows: 
 
c1ccccc1 71-43-2 
C=O 50-00-0 
 
If no identifier is present, the software will attempt to retrieve the CAS number based on the 
molecular structure given by the smiles string.  
 
1.2.5. Importing from training and prediction sets 

The training and prediction sets for each endpoint can be loaded in batch mode by going to the 
File menu and selecting a set from Batch import of toxicity training/test sets or Batch import 
of physical property training/test sets: 
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1.2.6. Adding chemicals to the batch list 

To add chemicals to the list, search using the batch search box or add a chemical by clicking on 
the Draw chemical button. 
 
1.2.7. Deleting chemicals from the batch list 

To delete chemicals from the list, select one or more rows in the batch list and click the Delete 
selected button (or press the Delete key on the keyboard). 
 
1.2.8. Returning to Single Chemical Mode 

To return to the single chemical mode, click on the blue Switch to Single Mode button. 
 

1.3. Performing toxicity predictions 
Select a toxicity endpoint using the drop-down list provided (the fathead minnow LC50 is 
selected by default).  
 
Select a QSAR toxicity estimation method using the drop-down list provided (the hierarchical 
clustering method is chosen by default). The methodologies are described in detail in the Theory 
section. 
 
Sometimes predictions for a given chemical cannot be made because the model(s) violate the 
fragment constraint. The fragment constraint says that in order for a prediction to be made using 
a given model, the chemicals used in the construction of the model must possess at least one 
example of each molecular fragment present in the test compound. This constraint can be relaxed 
by checking the Relax fragment constraint checkbox. The fragment constraint is described in 
the Theory section. 
 
Select the output folder by clicking the Browse… button in the bottom left hand corner. Note: if 
“MyToxicity” is not present in the folder name, a “MyToxicity” folder will be appended to the 
path. 
 
To generate detailed reports in single chemical mode, make sure the Create detailed reports 
checkbox is checked.  
 
To able to save reports in batch chemical mode, make sure the Create reports checkbox is 
checked.  
 
Once the desired options have been selected, the toxicity estimation calculations can be started 
by clicking the green Calculate! button in the bottom right hand corner.  This button will change 
to a red Stop button while the calculations are processing.  
 
To abort the currently running calculations, click on the red Stop button. 
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1.4. Interpretation of QSAR prediction report 
After performing the toxicity estimation calculations using the Calculate! button, a QSAR 
prediction report is generated, which displays the results in the default web browser. The results 
for 87-60-5 (for the Tetrahymena pyriformis IGC50 endpoint and the Consensus method) are 
provided in Table 1.4.1.  The predicted toxicity is 72.24 mg/L and the experimental value is 
59.03 mg/L. The prediction is flagged in this example because the chemical was part of the 
external test set. The predicted toxicity from the consensus method represents the average of the 
predicted toxicities from all the different QSAR methods incorporated into the TEST software. 
The individual predictions are displayed below the table for the consensus method results.  The 
average of the values from all the different QSAR methods is 3.29, which is close to the 
experimental value of 3.38 (in units of -Log(mol/L)).  
 

Table 1.4.1. Prediction results from the consensus method for 87-60-5 
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The software provides predictions for similar chemicals from the test set (see Figure 1.4.1).  The 
MAE (mean absolute error) for similar chemicals (0.30) was slightly lower than the value for the 
entire test set (0.33), indicating increased confidence in the predicted value.  The structures for 
the similar chemicals in the test set are provided by the software and shown in Table 1.4.2.  
 

 
 

Figure 1.4.1. Predictions for similar chemicals from the test set   
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Table 1.4.2. Structures for the similar chemicals in the test set 

CAS Structure Similarity 
Coefficient 

Experimental value 
-Log10(mol/L) 

Predicted value 
-Log10(mol/L) 

87-60-5 
(test chemical) 

 

 3.38 3.29 

108-42-9 

 

0.84 3.22 2.95 

626-43-7 

 

0.80 3.71 3.90 

95-81-8 

 

0.77 3.20 3.35 

… … … … … 
 

The most similar chemicals are very similar to the test chemical (benzenes substituted with 
chloro and amino groups) and were accurately predicted, indicating increased confidence in the 
predicted value.  The program lists the similar chemicals in the training set (see Table 1.4.3).  As 
shown by the fairly large similarity coefficients, there are very similar chemicals in the training 
set (the only difference is the substitution pattern). This indicates increased confidence in the 
predicted value because similar chemicals were used to build the QSAR models.   
 
 
 
  

https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID0024761
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID7030307
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID0074554
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=24815
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=24761
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=30307
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=74554
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Table 1.4.3. Structures for the similar chemicals in the training set 

CAS Structure Similarity 
Coefficient 

Experimental value 
-Log10(mol/L) 

Predicted value 
-Log10(mol/L) 

87-60-5 
(test chemical) 

 

 3.38 3.29 

95-74-9 

 

0.89 3.39 3.47 

87-59-2 

 

0.85 2.57 2.77 

95-79-4 

 

0.84 3.50 3.38 

… … … … … 
 

The details of the predictions for the different QSAR methods can be viewed by clicking on the 
predicted value for each method. Note: in order to view the details for each QSAR method used 
in the consensus prediction, the Create detailed reports checkbox must be checked. 
 
  

https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID0020286
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID3026304
https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID5020287
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=24815
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=20286
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=26304
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=20287
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For example, for the Hierarchical clustering method for T. pyriformis IGC50 for 87-60-5, the 
main prediction table is shown in Table 1.4.4.  The prediction interval (90% confidence interval) 
is 48.78 ≤ Tox ≤ 75.30. The experimental value falls within the prediction interval. 
 

Table 1.4.4. Prediction from the hierarchical clustering method. 
Prediction results 

Endpoint 
Experimental value 
(CAS= 87-60-5) 
Source: TETRATOX 

Predicted 
valuea Prediction interval 

T. pyriformis IGC50 (48 hr) -
Log10(mol/L) 3.38 3.37 3.27 ≤ Tox ≤ 3.46 

T. pyriformis IGC50 (48 hr) 
mg/L 59.03 60.61 48.78 ≤ Tox ≤ 75.30 

aNote: the test chemical was present in the external test set. 
 

Cluster model predictions and statistics 

Cluster 
model 

Test 
chemical  
descriptor 

values 

Prediction 
interval 

-Log10(mol/L) 
r2 q2 #chemicals Applicability 

Domain 

2362 Descriptors 3.31 ± 0.25 0.909 0.834 7 OK 
2481 Descriptors 3.48 ± 0.21 0.926 0.861 10 OK 
2562 Descriptors 3.40 ± 0.23 0.911 0.834 17 OK 
2621 Descriptors 3.24 ± 0.28 0.884 0.796 28 OK 
… … … … … … … 

 

 

 
The predictions from the different clusters were all very similar.  The predictions from the 
different clusters were all very similar.  
  

http://www.vet.utk.edu/TETRATOX/index.php
https://comptox.epa.gov/dashboard/dsstoxdb/show_image?source=24815
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One can click on the link for each model (in the Cluster model column) to display its statistics, 
regression plot, parameters, and chemical descriptor values. For example, for model #2481, the 
details are given in Figure 1.4.2.  
 

 
Figure 1.4.2. Details for model # 2481 
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1.5. Generation of environmental transformation products via CTS 
In single chemical mode, one can generate predicted environmental transformation products by 
checking the “Run CTS” checkbox and selecting the desired transformation library (hydrolysis, 
abiotic reduction, and human metabolism). The software will make a call to the CTS webservice. 
If likely transformation products are generated, the toxicity (or physical properties) will be 
displayed as a table in the output. If no transformation products are generated, the output for the 
only the selected chemical will be displayed. 
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1.6. Batch prediction from the command line 
To run batch calculations from the command line, utilize the following format: 
 

 java -cp WebTEST.jar 
ToxPredictor.Application.Calculations.RunFromCommandLine -i inputFilePath -o 
outputFilePath -e endpointAbbreviation -m methodAbbreviation 

 
The input file format can be MDL V2000 (use .sdf or .mol extension), a list of SMILES strings 
(use .smi extension), or a list of CAS numbers (use .txt extension). 
 
For example, to estimate 96 hour fathead minnow LC50 using the hierarchical clustering method 
use the following text in a Windows .bat file: 
 
set "TEST_Installation=C:/Users/UserName/AppData/Local/Programs/TEST 5.1.0.0/" 
set Java_Path="%TEST_Installation%jre/bin/java.exe" 
set "folder=C:/Users/UserName/Documents/InputFolderName/"  
set input="%folder%caslist.txt" 
set output="%folder%caslist.xlsx" 
set endpoint="LC50" 
set method="consensus" 
set class=ToxPredictor.Application.Calculations.RunFromCommandLine 
cd %TEST_Installation% 
%Java_Path% -cp WebTEST.jar %class% -i %input% -o %output% -e %endpoint% -m 
%method% 
pause 
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There are three types of input formats accepted: 
 

Input format File extension 
List of CAS numbers .txt 
List of SMILES strings .smi 
MDL structure data format .sdf 

 
The type of output returned depends on the file extension for the output file: 
 

Report type File extension 
Comma separated file .csv 
Excel .xlsx 
Web pages .html 

 
The endpoint abbreviations are as follows: 
 

Endpoint Abbreviation 
Fathead minnow LC50 (96 hr) LC50 
Daphnia magna LC50 (48 hr) LC50DM 
T. pyriformis IGC50 (48 hr) IGC50 
Oral rat LD50 LD50 
Bioconcentration factor BCF 
Developmental Toxicity DevTox 
Mutagenicity Mutagenicity 
Normal boiling point BP 
Vapor pressure at 25°C VP 
Melting point MP 
Flash point FP 
Density Density 
Surface tension at 25°C ST 
Thermal conductivity at 25°C TC 
Viscosity at 25°C Viscosity 
Water solubility at 25°C WS 
Molecular descriptors Descriptors 

 
The method abbreviations are as follows: 
 

Method Abbreviation 
Hierarchical clustering hc 
Single model sm 
Nearest neighbor nn 
Group contribution gc 
Consensus consensus 
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2. Introduction 
Quantitative Structure Activity Relationships (QSARs) are mathematical models that are used to 
predict measures of toxicity from physical characteristics of the structure of chemicals (known as 
molecular descriptors). Acute toxicity levels (such as the concentration at which 50% of exposed 
fish die) are one example of toxicity measures, which may be predicted from QSARs. Simple 
QSAR models calculate the toxicity of chemicals using a simple linear function of molecular 
descriptors: 
 

cbxaxToxicity ++= 21  
 
where x1 and x2 are the independent descriptor variables and a, b, and c are fitted parameters. The 
molecular weight and the octanol-water partition coefficient are examples of molecular 
descriptors. 
 
QSAR toxicity predictions may be used to screen untested compounds to establish priorities for 
expensive and time-consuming traditional bioassays designed to determine toxicity levels. When 
conditions do not permit traditional bioassays, QSARs provide a method for estimating toxicity. 
Additionally, QSAR models are useful for estimating toxicities needed for green process design 
algorithms such as the Waste Reduction Algorithm [2]. 
 
The Toxicity Estimation Software Tool (T.E.S.T.) has been developed to allow users to easily 
estimate toxicity using a variety of QSAR methodologies, without requiring any external 
programs. Users can input a chemical to be evaluated by drawing it in an included chemical 
sketcher window, entering a CAS, SMILES, or name, entering a structure text file, or importing 
it from an included database of structures. Once a chemical has been entered, its toxicity can be 
estimated using one of several advanced QSAR methodologies. The program does not require 
molecular descriptors from external software packages (the required descriptors are calculated 
within T.E.S.T.). 
 

2.1. Toxicity Endpoints 
T.E.S.T. allows you to estimate the value for several toxicity endpoints: 
 

1. 96 hour fathead minnow LC50 (concentration of the test chemical in water in mg/L that is 
lethal to 50% of exposed fathead minnows after 96 hours) 

2. 48 hour Daphnia magna LC50 (concentration of the test chemical in water in mg/L that is 
lethal to 50% of exposed Daphnia magna after 48 hours) 

3. 48 hour Tetrahymena pyriformis IGC50 (concentration of the test chemical in water in 
mg/L that results in 50% growth inhibition to Tetrahymena pyriformis after 48 hours) 

4. Oral rat LD50 (amount of chemical in mg/kg body weight that is lethal to 50% of rats 
after oral ingestion) 

5. Bioaccumulation factor (ratio of the chemical concentration in fish to that in water at 
steady state) 

6. Developmental toxicity (binary indication of whether or not a chemical can interfere with 
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normal development of humans or animals) 
7. Ames mutagenicity (a compound is positive for mutagenicity if it induces revertant 

colony growth in any strain of Salmonella typhimurium) 
 
T.E.S.T. allows you estimate several physical properties: 

1. Normal boiling point (the temperature in °C at which a chemical boils at atmospheric 
pressure) 

2. Density (the density in g/cm³) 
3. Flash point (the lowest temperature in °C at which a chemical can vaporize to form an 

ignitable mixture in air) 
4. Thermal conductivity (the property of a material in units of mW/mK reflecting its ability 

to conduct heat)  
5. Viscosity (a measure of the resistance of a fluid to flow in cP, defined as the 

proportionality constant between shear rate and shear stress) 
6. Surface tension (a property of the surface in dyn/cm of a liquid that allows it to resist an 

external force) 
7. Water solubility (the amount of a chemical in mg/L that will dissolve in liquid water to 

form a homogeneous solution) 
8. Vapor pressure (the pressure of a vapor in mmHg in thermodynamic equilibrium with its 

condensed phases in a closed system) 
9. Melting point (the temperature in °C at which a chemical in a solid state changes to a 

liquid state) 

2.2. QSAR Methodologies 
T.E.S.T allows you to estimate toxicity values using several different advanced QSAR 
methodologies [3]: 
 

• Hierarchical clustering method: The toxicity for a given query compound is estimated 
using the weighted average of the predictions from several different models. The 
different models are obtained by using Ward’s method to divide the training set into a 
series of structurally similar clusters. A genetic algorithm-based technique is used to 
generate models for each cluster. The models are generated prior to runtime. 

• Single model method: Predictions are made using a multilinear regression model that is 
fit to the training set (using molecular descriptors as independent variables) using a 
genetic algorithm-based approach. The regression model is generated prior to runtime. 

• Group contribution method: Predictions are made using a multilinear regression model 
that is fit to the training set (using molecular fragment counts as independent variables). 
The regression model is generated prior to runtime. 

• Nearest neighbor method: The predicted toxicity is estimated by taking an average of 
the 3 chemicals in the training set that are most similar to the test chemical.  

• Consensus method: The predicted toxicity is estimated by taking an average of the 
predicted toxicities from the above QSAR methods (provided the predictions are within 
the respective applicability domains). 

 
T.E.S.T provides multiple prediction methodologies so users can have greater confidence in the 
predicted toxicities if the predictions from different methods are similar. In addition, some 
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researchers may have more confidence in particular QSAR approaches based on personal 
experience. The QSAR methodologies above are described in more detail in the Theory section. 
The advantages and disadvantages of the different QSAR methods are presented in Table 2.2.1. 
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Table 2.2.1. Advantages and disadvantages of the QSAR methods in T.E.S.T. 
 

Method Advantages Disadvantages 
Hierarchical 
clustering 

• Can produce more reliable 
predictions since predictions are 
made from multiple models 

• Cannot provide external estimates of 
toxicity for compounds in the training 
set 

Single model • Single transparent model can be 
easily viewed/exported 

• The model does not need to rely 
on clustering the chemicals 
correctly 

 

• Since the model is fit to the entire 
dataset it may incorrectly predict the 
trends in toxicity for certain chemical 
classes 

• Cannot provide external estimates of 
toxicity for compounds in the training 
set 

Group contribution • Single transparent model can be 
easily viewed/exported 

• Estimates of toxicity can be 
made without using a computer 
program 

 

• The model doesn’t correct for the 
interactions of adjacent fragments  

• Since the model is fit to the entire 
dataset it may incorrectly predict the 
trends in toxicity for certain chemical 
classes 

• Cannot provide external estimates of 
toxicity for compounds in the training 
set 

Nearest neighbor • Provides a quick estimate of 
toxicity 

• Allows one to determine 
structural analogs for a given test 
compound 

• Always provides an external 
prediction of toxicity 

• It does not use a QSAR model to 
correlate the differences between the 
test compound and the nearest 
neighbors 

• Was shown to achieve the worst 
prediction results during external 
validation 

Consensus • Was shown to achieve the best 
prediction results during external 
validation 

• Cannot provide external estimates of 
toxicity for compounds in the training 
set 
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3. THEORY 
3.1. Molecular Descriptors 
Molecular descriptors are physical characteristics of the structure of chemicals such as the 
molecular weight or the number of benzene rings. The overall pool of descriptors in the software 
contains 797 2-dimensional descriptors. The descriptors include the following classes of 
descriptors: E-state values and E-state counts, constitutional descriptors, topological descriptors, 
walk and path counts, connectivity, information content, 2d autocorrelation, Burden eigenvalue, 
molecular property (such as the octanol-water partition coefficient), Kappa, hydrogen bond 
acceptor/donor counts, molecular distance edge, and molecular fragment counts. The complete 
list of descriptors and their sources from the literature are described in the Molecular 
Descriptors Guide. 
 
The descriptors were calculated using computer code written in Java. The basis of the molecular 
calculations was the Chemistry Development Kit (CDK) [4]. The CDK is a Java library for 
structural chemo- and bioinformatics [5]. The descriptor values were validated using MDL 
QSAR [6], Dragon [7], and Molconn-z [8]. The descriptor values were generally in good 
agreement (aside from small differences in the descriptor definitions for descriptors such as the 
number of hydrogen bond acceptors). 
 

3.2. QSAR Methodologies 
3.2.1. Hierarchical Clustering 

The hierarchical clustering method utilizes a variation of Ward’s Method [9] to produce a series 
of clusters from the training set. Clusters are subsets of chemicals from the overall set, which 
possess similar properties. An example of a hierarchical clustering for a hypothetical training set 
with five chemicals is provided in Figure 3.2.1. 
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Figure 3.2.1. Hierarchical clustering with five chemicals 
 
For a training set of n chemicals, initially there will be n clusters (each cluster contains one 
chemical). The overall variance in the system at a given step l is defined to be the sum of the 
variances of the individual clusters: 
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where ( )lkv ,  is the variance (in terms of the molecular descriptors) for cluster k at step l: 
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where kn is the number of chemicals in the kth cluster, d is the number of descriptors in the 

overall descriptor pool, ijx is the normalized descriptor j for chemical i, and jC  is the centroid or 
average value for descriptor j for cluster k: 

∑
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Each step of the method adds two of the clusters together into one cluster so that the increase in 
variance over all clusters in the system is minimized: 

),(),()1,()()1()1(min 21 lkvlkvlkvlVlVlV −−+′=−+≡+∆ (4) 
 
where clusters 1k  and 2k  join together at step l  to make cluster k ′  at step 1+l . The process of 
combining clusters continues until all of the chemicals are lumped into a single cluster.  
After the clustering is complete, each cluster is analyzed to determine whether an acceptable 
QSAR can be developed. Each cluster undergoes evaluation using a genetic algorithm technique 
to determine an optimal descriptor set for characterizing the toxicity values of the chemicals 

1 2 3 4 Step 1 

7 3 4 
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within that cluster. The maximum number of descriptors allowed for a given cluster will be 
5/kn  because the recommended ratio of compounds to variables should be at least 5 [10, 11] for 

reasonably small probability for chance correlations. The genetic algorithm was taken from the 
Weka statistical package, version 3.5.1 [12, 13]. 
 
 The genetic algorithm is used to maximize the adjusted fivefold leave many out cross-validation 
coefficient ( 2

,LMOadjq ): 
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where iŷ  and iyexp,  are the predicted and experimental toxicity values for chemical i, expy is the 
average experimental toxicity for the chemicals in the cluster, and p is the number of parameters 
in the model. The predicted toxicity values are calculated by dividing the dataset into five folds 
(a fold is a subset of the training set). The toxicities of the chemicals in each fold ( iŷ ) are 
predicted using a multiple linear regression model fit to the chemicals in the other folds. The 
five-fold q2 was used instead of the traditional q2 LOO (leave-one-out) inside the genetic 
algorithm because it yields a significant degree of computational savings for large cluster sizes. 
The 1−− pnk  term penalizes models that include extra parameters that do not significantly 

increase the predictive power of the model (by decreasing the value of 2
,LMOadjq ). 

 
 During the optimization process the models are checked for outliers. A chemical is determined to 
be an outlier if at least two statistical tests (e.g., DFFITS, leverage, Cook’s distance, or 
covariance ratio) indicate that the chemical represents an influential data point and if the 
chemical represents an outlier in terms of the studentized deleted residual [14]. If a chemical is 
determined to be an outlier, the chemical is deleted from the cluster and the genetic algorithm 
descriptor selection is repeated. The process of model building via the genetic algorithm and 
outlier removal is repeated until no outliers are detected in the optimized model. For binary 
endpoints such as Ames mutagenicity, outliers were not removed because this had the potential 
to produce clusters with all positive or all negative chemicals. The outlier statistical tests 
described above may not be applicable to binary endpoints. 
 
 Once the iteration for the optimum model has been completed, the q2 LOO value for the model is 
calculated. If the q2 LOO is greater than or equal to 0.5, then the model is considered to be valid 
(see pg 67 of Erikkson et al. [15]). If the q2 LOO is less than 0.5, then the model from the cluster 
is not used to make predictions for test compounds. For binary endpoints, the validity of a model 
is determined from the concordance LOO instead of the q2 LOO. Concordance is the fraction of 
all compounds that are predicted correctly (i.e., experimentally active compounds that are 
predicted to be active and experimentally inactive compounds that are predicted to be inactive). 
If the concordance LOO is greater than or equal to 0.8, then the model is considered to be valid. 
Additionally, both the LOO sensitivity and specificity must be at least 0.5 to avoid models that 
are heavily biased to predict either active or inactive scores. Sensitivity is the fraction of 
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experimentally active compounds that are predicted to be active. Specificity is the fraction of 
experimentally inactive compounds that are predicted to be inactive. 
 
 The predicted toxicity ( ŷ ) for a test chemical is given by the weighted average for all the valid 
predictions [16]: 
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where jŷ  and wj are the prediction and weight, respectively, for the jth model and nvc is the 
number of valid cluster model predictions. If the mean toxicity is given by the maximum 
likelihood estimator of the mean of the probability distributions, the weight values are given by 
[16] 
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where sej is the standard error for the jth prediction given by 
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where nj is the number of chemicals in cluster model j and pj is the number of model parameters 
for model j. The leverage for the test chemical, h00, is given by 
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where X0 is the vector of model descriptor values for the test compound. For binary endpoints 
such as Ames mutagenicity, the predictions were made using equal weighting of the individual 
predictions (i.e. wj = 1 in equation 6) because weighting by the standard error (see equation 7) 
did not improve the external prediction accuracy. 
 
 The square of the standard deviation for the prediction from multiple models ( 2

µσ ) can be 
approximated as 
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The uncertainty ( û ) in the overall prediction for the test chemical is given by  
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 (12) 
where t is the t-statistic, α  = 0.1 (significance level for a 90% confidence interval), and sej is the 
standard error for the jth prediction. The prediction interval is obtained by adding and subtracting 
the uncertainty from the predicted toxicity: 

uyToxicityuy ˆˆˆ +≤≤−  (13) 
The prediction interval indicates 90% confidence that the actual toxicity is between uy ˆˆ −  and

uy ˆˆ + .  
 
 The prediction uncertainty for a given cluster model is given by [17] 

( )00
2

1 /2,-1 1 htu pnj j
+= −− σα  (14) 

The uncertainty is a function of the quality of the regression model (from the 2σ  parameter) and 
the distance (in the descriptor space of the model) between the test chemical and the chemicals in 
the cluster used to build the model (from the h00 parameter). 
 
 Before any cluster model can be used to make a prediction for a test chemical, it must be 
determined whether the test chemical falls within the domain of applicability for the model. The 
applicability domain is defined using several different constraints. The first constraint, the model 
ellipsoid constraint, checks whether the test chemical is within the multidimensional ellipsoid 
defined by the ranges of descriptor values for the chemicals in the cluster (for the descriptors 
appearing in the cluster model). The model ellipsoid constraint is satisfied if the leverage of the 
test compound (h00) is less than the maximum leverage value for all the compounds used in the 
model [17]. The second constraint, the Rmax constraint, checks whether the distance from the 
test chemical to the centroid of the cluster is less than the maximum distance of any chemical in 
the cluster to the cluster centroid. The distance is defined in terms of the entire pool of 
descriptors (instead of just the descriptors appearing in the model): 
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where distancei is the distance of chemical i to the centroid of the cluster. 
 The last constraint, the fragment constraint, requires that the compounds in the cluster have at 
least one example of each of the fragments contained in the test chemical. For example, if trying 
to make a prediction for ethanol, the cluster must contain at least one compound with a methyl 
fragment (-CH3 [aliphatic attach]), one compound with a methylene fragment (-CH2 [aliphatic 
attach]), and one compound with a hydroxyl fragment (-OH [aliphatic attach]). This constraint 
was added to avoid situations in which a chemical might have a similar backbone structure to the 
chemicals in a given cluster but has a different functional group attached. For example, if a given 
cluster contained only short-chained aliphatic amines one would not want to use it to predict the 
toxicity of ethanol. If a chemical contains a fragment that is not present in the training set, the 
toxicity cannot be predicted. The fragment constraint can be removed by checking the Relax 
fragment constraint checkbox. For binary endpoints such as Ames mutagenicity, the fragment 
constraint was not used because it did not improve the external prediction accuracy and 
decreased the prediction coverage. 
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 In the current version of the software, the predictions are made using the closest cluster from 
each step in the hierarchical clustering (in terms of the distance of the chemical to the centroid of 
the cluster defined above). The rationale behind this approach is that the best model is selected 
from each step of the hierarchical clustering process. For the prediction from the model to be 
used, it must be statistically valid and meet the constraints defined above. If the closest cluster 
for a given step does not have a statistically valid model (or violates any of the constraints), no 
prediction is used from that step. If the closest cluster for a given step in the clustering process is 
the same as the closest cluster from a previous step, it is not used again in the prediction of 
toxicity. 
 
3.2.2. Single model 

 In the single model approach, a single multiple linear regression model is fit to the entire training 
set. The model is generated using techniques and constraints similar to those for the hierarchical 
clustering method (except that the training cluster contains the entire training set). The advantage 
of this approach is that a simple transparent model can be developed, which does not rely on 
clustering the chemicals correctly. The disadvantage of this approach is that sometimes an 
overall model cannot correctly correlate the toxicity for every chemical class [18]. For example, 
the single model might be able to correctly describe the trend of linearly increasing toxicity for a 
series of normal alcohols (i.e. 1-propanol, 1-butanol,1-pentanol, …), but it may incorrectly 
describe the trend for a series of normal acids (i.e. propanoic acid, butanoic acid, pentanoic acid, 
…) that does not increase linearly. 
 
3.2.3. Group contribution 

The group contribution method is based on the group contribution approach of Martin and 
Young [19]. Fragment counts (such as the number of methyl and hydroxyl groups in a 
compound) are used to fit a multiple linear regression model to the entire data set. A genetic 
algorithm approach is not used to reduce the number of parameters in the model because the 
approach tries to characterize the contribution from all the fragments appearing in the training 
set. The only constraint on the fragments appearing in the final model is that there must be at 
least three molecules in the training set that contain each fragment. If a fragment appears less 
than three times in the training set, it is deleted from the list of fragments and all the chemicals 
containing this fragment are removed from the training set. After the multiple linear regression is 
performed, the model is checked for outliers. If outliers are detected, they are removed and the 
regression is performed again. The process is repeated until no more outliers are found. Similar 
to the hierarchical clustering methodology, predictions are made using the model ellipse and 
fragment constraints. 
  
The advantage of this approach is that a single transparent model can be developed whose 
descriptors can be determined from visual inspection of the molecular structure of the test 
compound. The disadvantage of this approach is that it assumes that the contribution of each 
fragment does not depend on the presence of nearby fragments in the molecule. 
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3.2.4. Nearest neighbor 

In the nearest neighbor approach, the predicted toxicity is simply the average of the toxicities of 
the three most similar chemicals (structural analogs) in the training set. To make a prediction, 
each of the structural analogs must exceed a certain minimum cosine similarity coefficient 
(SCmin): 
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where xij is the value of the jth normalized descriptor for chemical i (normalized with respect to 
all the chemicals in the original training set) and xkj is the value of the jth descriptor for chemical 
k. SCmin was set at 0.5 so that the prediction coverage was similar to the other QSAR methods 
[3]. The nearest neighbor method provides a quick external estimate of toxicity (the test chemical 
is never present in the selected set of analogs). The disadvantage of the nearest neighbor method 
is that the structural differences between the test chemical and its structural analogs are not 
accounted for. 
 
3.2.5. Mode of action 

In the mode of action (MOA) method, the toxicity is predicted using a two-step process [20, 21]. 
In the first step, the MOA is predicted using a series of linear discriminant analysis (LDA) 
models. The predicted MOA is given by the LDA model, which yields the highest score. In order 
for a predicted MOA to be valid, the maximum score must be at least 0.5. In addition, the model 
ellipsoid and Rmax constraints must be satisfied. In the second step, the toxicity is predicted 
using the multilinear regression model, which corresponds to the predicted MOA. Again, the 
model ellipsoid and Rmax constraints must be satisfied for the toxicity model for a prediction to 
be within the domain of applicability. The fragment constraint is not employed for the MOA 
method. The advantage of the MOA method is that it provides a more biologically relevant 
estimate of acute aquatic toxicity, which can greater confidence in the prediction for 
toxicologists. The disadvantages of this method are that the size of the training set is reduced 
(which reduces the chemical space covered by the model) and that the prediction error may be 
compounded by the fact that the mode of action must be predicted correctly. Note: for the mode 
of action method, the training and prediction sets for 96 hour fathead minnow toxicity do 
not match those for the other QSAR methods. 
 
3.2.6. Consensus 

In the consensus method, the predicted toxicity is simply the average of the predicted toxicities 
from the other QSAR methodologies (taking into account the applicability domain of each 
method)[22]. If only a single QSAR methodology can make a prediction, the predicted value is 
deemed unreliable and not used. The consensus method typically provides the highest prediction 
accuracy because errant predictions are dampened by the predictions from the other methods. 
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Additionally, this method provides the highest prediction coverage because several methods with 
slightly different applicability domains are used to make a prediction. 
 

3.3. Validation Methods 
 
3.3.1. Statistical external validation 

 
The predictive ability of each of the QSAR methodologies was evaluated using statistical 
external validation [23]. In version 2.0 of the TEST software, the data set was divided into 
training and test sets using the Kennard-Stone rational design algorithm [24-27]. Starting in 
version 3.0, random selection was used to develop the training and test sets because the Kennard-
Stone method may yield an overly optimistic estimate of predictive ability because the test 
compounds are always within the model calibration domain. For the developmental toxicity 
endpoint, however, the training and test sets were taken from the datasets used in CAESAR [28]. 
This was done for comparison purposes. 
 
A QSAR model is considered to have acceptable predictive power if the following conditions are 
satisfied [29]: 

;5.02 >q  (17) 
;6.02 >R  (18) 
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RR o  and 0.85 ≤ k ≤ 1.15 (19) 

where q2 is the leave one out correlation coefficient for the training set, R2 is the correlation 
coefficient between the observed and predicted toxicities for the test set, 2

oR  is the correlation 
coefficient between the observed and predicted toxicities for the test set with the Y-intercept set 
to zero (where the regression line is given by Y=kX). 
 
The prediction accuracy is evaluated in terms of equations 18 and 19. Additionally, the accuracy 
is evaluated in terms of the RMSE (root mean square error), and the MAE (mean absolute error) 
for the test set. It has been demonstrated that q2 (the LOO correlation coefficient for the training 
set) is not correlated with R2 for the test set [30]. The prediction coverage (fraction of chemicals 
predicted) must be considered because the prediction accuracy (in terms of R2 and RMSE) can 
sometimes be improved at the sacrifice of the prediction coverage.  
 
For binary (active/inactive) toxicity endpoints such as developmental toxicity, the prediction 
accuracy is evaluated in terms of the fraction of compounds that are predicted accurately. The 
prediction accuracy is evaluated in terms of three different statistics: concordance, sensitivity, 
and specificity. Concordance is the fraction of all compounds that are predicted correctly (i.e., 
experimentally active compounds that are predicted to be active and experimentally inactive 
compounds that are predicted to be inactive). Sensitivity is the fraction of experimentally active 
compounds that are predicted to be active. Specificity is the fraction of experimentally inactive 
compounds that are predicted to be inactive. 
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3.4. Prediction of activity and endpoint values 
If the endpoint is binary (e.g., mutagenicity or developmental toxicity), the calculated activity is 
defined as follows: 
 
if calculated score < 0.5, then activity = negative 
else if calculated score ≥ 0.5, then activity = positive. 
 
For the continuous endpoints, the QSAR models were fit to experimental values with the 
following units: 
  
Endpoint Units 
Fathead minnow LC50 (96 hr) 
Daphnia magna LC50 (48 hr) 
T. pyriformis IGC50 (48 hr) 
Water solubility at 25°C 

-Log10 (mol/L) 

Oral rat LD50 -Log10 (mol/kg) 
Bioconcentration factor Log10 
Viscosity at 25°C Log10 (cP) 
Vapor pressure at 25°C Log10 (mmHg) 
Normal boiling point 
Melting point 
Flash point 

°C 

Density g/cm³ 
Surface tension dyn/cm 
Thermal conductivity mW/mK 

 

3.5. Generation of transformation products using CTS 
T.E.S.T. has the capability to generate transformation products using the CTS (Chemical 
Transformation Simulator)[31]. CTS is a web-based tool for predicting environmental and 
biological transformation pathways and physicochemical properties of organic chemicals. CTS 
can determine transformation products via hydrolysis, abiotic reduction, and human metabolism 
reaction pathways. T.E.S.T. will estimate toxicity values (or physical properties) for the likely  
transformation products for the selected chemical. 
 

4. EXPERIMENTAL DATA SETS 
 

4.1. 96 hour fathead minnow LC50 data set 
The fathead minnow LC50 endpoint represents the concentration in water that is lethal to half of 
exposed fathead minnows (Pimephales promelas) in 4 days (96 hours). The data set for this 
endpoint was obtained by downloading the ECOTOX aquatic toxicity database[32]. 



 

36 
 

 
The database was then filtered using the following criteria: 

• The ECOTOX “Media Type” field = “FW” (fresh water) 
• The ECOTOX “Test Location” field = “Lab” (laboratory) 
• The ECOTOX “Conc 1 Op (ug/L)” field cannot be <, >, or ~ (i.e., use only discrete LC50 

values) 
• The ECOTOX “Effect” field = “Mor” (mortality) 
• The ECOTOX “Effect Measurement” field = “MORT” (mortality) 
• The ECOTOX “Exposure Duration” field = “4” (4 days or 96 hours) 
• Compounds can only contain the following element symbols: C, H, O, N, F, Cl, Br, I, S, 

P, Si, As 
• Compounds must represent a single pure component (salts, undefined isomeric mixtures, 

polymers, or mixtures were removed) 
 
The LC50 values were taken from the “Conc 1 (ug/L)” field in ECOTOX. For chemicals with 
multiple LC50 values, the median value was used. 
 
In version 2.0 of T.E.S.T., 10 compounds in this dataset possessed 2d isomers (the structures 
were equivalent in terms of their molecular connectivity). In version 3.0, only one isomer was 
kept, using the average toxicity value. In version 4.0 onwards, all isomers were kept because the 
presence of the isomers had negligible impact on the external prediction statistics. The final 
fathead minnow LC50 data set contained 823 chemicals. For use in QSAR modeling, the 
experimental values in µg/L were converted to –Log10 (LC50 mol/L). 
For the Hierarchical Clustering, Single Model, Group Contribution, Nearest Neighbor, and 
Consensus methods, the data set was divided randomly into a training set (80% of the overall set) 
and a test set (20% of the overall set). 
 

4.2. 48 hour Daphnia magna LC50 data set 
The Daphnia magna LC50 endpoint represents the concentration in water that is lethal to half of 
exposed D. magna (a water flea) in 48 hours. The data set for this endpoint was obtained from 
the ECOTOX aquatic toxicity database[32]. The database was filtered using the same criteria as 
those for the 96 hour fathead minnow LC50. The final D. magna LC50 data set contained 541 
chemicals. The modeled endpoint was –Log10 (LC50 mol/L). 
 

4.3. 40 hour Tetrahymena pyriformis IGC50 data set 
The Tetrahymena pyriformis IGC50 endpoint represents the 50% growth inhibitory concentration 
for T. pyriformis (a protozoan ciliate) after 40 hours. The IGC50 training set was obtained from 
Schultz and coworkers [22, 33-70]. The final T. pyriformis IGC50 data set contained 1792 
chemicals. The modeled endpoint was –Log10 (IGC50 mol/L). 
 

4.4. Oral rat LD50 data set 
The oral rat LD50 endpoint represents the amount of the chemical (mass of the chemical in mg 
per body weight of the rat in kg) which when orally ingested is lethal to half of the rats. The 



 

37 
 

dataset for this endpoint was obtained by downloading records from the ChemIDplus database 
[71], from which 13548 records were obtained by using the following search criteria: 

• “Test” = LD50 
• “Species” = rat 
• “Route” = oral 

 
The list of chemicals was filtered using the following criteria: 

• Only chemicals with discrete LD50 values were used (i.e., chemicals with LD50 values 
with “>” or “<” were removed) 

• Compounds can only contain the following element symbols: C, H, O, N, F, Cl, Br, I, S, 
P, Si, or As 

• Compounds must represent a single pure component (salts, undefined isomeric mixtures, 
polymers, or mixtures were removed) 

 
In version 2.0 of T.E.S.T., the final dataset consisted of 7392 chemicals. 87 compounds in this 
dataset possessed 106 2d isomers. In version 3.0, only one isomer was kept, using the average 
toxicity value. In version 4.0 and greater, all isomers were kept because the presence of the 
isomers had negligible impact on the external prediction statistics. The final oral rat LD50 data set 
contained 7413 chemicals. The modeled endpoint was the –Log10 (LD50 mol/kg). 
 

4.5. Bioconcentration factor data set 
The bioconcentration factor (BCF) is defined as the ratio of the chemical concentration in biota 
as a result of absorption via the respiratory surface to that in water at steady state [72]. Data were 
compiled from several different databases [73-76]. The final dataset consists of 676 chemicals 
(after removing salts, mixtures, and ambiguous compounds). The modeled endpoint was the 
Log10(BCF). 
 

4.6. Developmental toxicity data set 
The developmental toxicity endpoint is defined by whether a chemical is associated with 
developmental toxicity outcomes in humans and/or animals. Developmental toxicity includes 
any interference with normal development, both before and after birth. A dataset of 293 
chemicals was created by Arena and Coworkers [77, 78] by combining data from the Teratogen 
Information System (TERIS) [79] and FDA guidelines [80]. The developmental toxicity values 
were taken from the revised binary toxicity values developed for the CAESAR project [28]. One 
chemical, Azatguiorube, was removed because structural information could not be found for this 
chemical. The final dataset consists of 285 chemicals (after removing salts, mixtures, and 
ambiguous compounds). 
 

4.7. Ames mutagenicity data set 
In the Ames test, frame-shift mutations or base-pair substitutions can be detected by exposure of 
histidine-dependent strains of Salmonella typhimurium to a test compound. When these strains 
are exposed to a mutagen, reverse mutations that restore the functional capability of the bacteria 
to synthesize histidine enable bacterial colony growth on a medium deficient in histidine 
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(revertant colonies). A compound is classified as Ames positive if it significantly induces 
revertant colony growth in at least one of out of five strains. A dataset of 6512 chemicals was 
compiled by Hansen and coworkers from several different sources [81, 82]. The final dataset 
consists of 5743 chemicals (after removing salts, mixtures, ambiguous compounds, and 
compounds without CAS numbers). 
 
 

4.8. Normal boiling point 
The normal boiling point is defined as the temperature at which a chemical boils at atmospheric 
pressure. The data set for this endpoint was obtained from the boiling point data contained in EPI 
Suite [83]. Forty-one chemicals were removed from the data set because they were previously 
shown to be poorly predicted and had experimental values that were significantly different 
(>50K) from other sources such as NIST[84] and LookChem [85]. The final data set contained 
5759 chemicals. The modeled property was the boiling point in °C. 
 

4.9. Density 
The density is defined as mass per unit volume. The data set for this endpoint was obtained from 
the density data contained in LookChem [85]. The data set was restricted to chemicals with 
boiling points greater than 25°C (or the boiling point was unavailable). The data set was further 
restricted to chemicals with densities > 0.5 and < 5 g/cm3. The final dataset consisted of 8909 
chemicals. Data from LookChem are not peer reviewed but the set is very large and thus 
provides a large degree of structural diversity. The modeled property was density in g/cm3. 
 

4.10.  Flash point 
The flash point is defined as the lowest temperature at which a chemical can vaporize to form an 
ignitable mixture in air. A dataset of 8362 chemicals was compiled from LookChem [85]. 
Chemicals with flash points greater than 1000°C were omitted from the data set. The modeled 
property was the flash point in °C. 
 

4.11.  Thermal conductivity 
Thermal conductivity is defined as the ability of a material to conduct heat. The thermal 
conductivity values at 25°C for 442 chemicals were obtained from Jamieson and Vargaftik [86, 
87] as follows: 

• If a value was available at 25°C, then this value was used. 
• If an experimental value was not available, then a value was extrapolated to 25°C (as 

long as the closest data point was within 10°C of 25°C). 
• If the temperature coefficient was not available (or only a single data point was 

available), then the thermal conductivity of the nearest data point was used (as long as the 
closest data point was within 10°C of 25°C). 

• Only data with a quality grade of A or B (preferably grade A) in Jamieson were used. The 
thermal conductivities for the chemicals in common between Jamieson and Vargaftik 
agreed rather well (R2 = 0.95 for 381 compounds). The modeled property was the 
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thermal conductivity in mW/mK. 
  

4.12.  Viscosity 
Viscosity is a measure of the resistance of a fluid to flow in cP defined as the proportionality 
constant between shear rate and shear stress). Viscosity data at 25°C for 557 chemicals were 
obtained from Viswanath and Riddick [88, 89] as follows: 

1. If a value was available at 25°C, then this value was used. 
2. If an experimental value was not available, then a value was extrapolated to 25°C (as 

long as the closest data point is within 10°C of 25°C) using the following empirical 
correlation: 

log10 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴 + 𝐵𝐵/𝑇𝑇 
Extrapolation was used to expand the size of the overall dataset. The modeled property was 
log10(viscosity cP). 
 

4.13.  Surface tension 
Surface tension is a property of the surface of a liquid that allows it to resist an external force. 
The surface tension at 25°C for 1416 chemicals was obtained from the data compilation of Jaspar 
[90]. The experimental values (at 25°C) are estimated using an empirical correlation, which is fit 
to experimental data from Jaspar: 

surface tension = 𝐴𝐴 − 𝐵𝐵𝑇𝑇 
The estimated experimental surface tension value is only used if the closest experimental data 
point is within 10°C of 25°C. The modeled property was the surface tension in dyn/cm. 
 

4.14.  Water solubility 
Water solubility is defined as the amount of chemical that will dissolve in liquid water to form a 
homogeneous solution. A dataset of 5020 chemicals was compiled from the database in EPI 
Suite [83]. Chemicals with water solubilities exceeding 1,000,000 mg/L were omitted from the 
overall dataset. Additionally, data were limited to data points that are within 10°C of 25°C. 
Water solubility is an important property because sometimes the predicted LC50 values for 
aquatic species can exceed the water solubility. The modeled property was −Log10(water 
solubility mol/L). 
 

4.15.  Vapor pressure 
Vapor pressure is defined as the pressure of a vapor in mmHg in thermodynamic equilibrium 
with its condensed phases in a closed system. The vapor pressure at 25°C for 2511 chemicals 
was obtained from the database in EPI Suite [83]. The modeled property was Log10(vapor 
pressure mmHg). 
 
4.16. Melting point 
Melting point is the temperature, in °C, at which a chemical in a solid state changes to a liquid 
state. The melting points for 9385 chemicals were obtained from the database in EPI Suite [83]. 
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The modeled property was Log10(vapor pressure mmHg). 
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5. VALIDATION RESULTS 
 

5.1. 96 hour fathead minnow LC50 

The consensus approach achieved the best results in terms of all the prediction statistics (see 
Table 4.1.1). The hierarchical method achieved the best results of any of the individual QSAR 
methods. Statistics highlighted in pink represent predictions for which a condition in equation 18 
or 19 was not met. Models that do not meet these conditions are not invalid, per se, but should be 
used with caution. The predicted values for the test set for the fathead minnow LC50 endpoint 
for the consensus method are shown in Figure 5.1.1. 
 

Table 5.1.1. Prediction results for the fathead minnow LC50 test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.710 0.075 0.966 0.801 0.574 0.951 
Single Model 0.704 0.134 0.960 0.803 0.605 0.945 
Group contribution 0.686 0.123 0.949 0.811 0.579 0.872 
Nearest neighbor 0.667 0.080 1.000 0.877 0.649 0.939 
Consensus 0.729 0.115 0.966 0.767 0.551 0.951 

 
Figure 5.1.1. Experimental vs predicted values for the fathead minnow LC50 test set 
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5.2. 48 hour Daphnia magna LC50 

The consensus method yielded comparable results to the hierarchical clustering method (see 
Table 5.2.1). The prediction results for the consensus method are provided in Figure 5.2.1. 
 
 

Table 5.2.1. Prediction results for the D. magna LC50 test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.630 0.232 0.954 1.018 0.759 0.982 
Single Model 0.530 0.250 0.979 1.191 0.913 0.982 
Group contribution 0.476 0.413 0.963 1.152 0.879 0.853 
Nearest neighbor 0.642 0.122 0.966 1.010 0.724 0.899 
Consensus 0.616 0.233 0.969 1.042 0.786 0.982 
       

 

 
Figure 5.2.1. Experimental vs predicted values for the Daphnia magna LC50 test set 
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5.3. Tetrahymena pyriformis 50% growth inhibitory concentration 
(IGC50) 

Again, the consensus method achieved the best results (see Table 4.3.1). The prediction results 
for the consensus method are shown in Figure 5.3.1. 

 
Table 5.3.1. Prediction results for the T. pyriformis IGC50 test set 

 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.718 0.023 0.978 0.540 0.358 0.933 
Group contribution 0.682 0.066 0.994 0.576 0.411 0.955 
Nearest neighbor 0.600 0.170 0.976 0.638 0.451 0.986 
Consensus 0.739 0.070 0.983 0.505 0.355 0.966 

 
Figure 5.3.1. Experimental vs predicted values for the T. pyriformis IGC50 test set 
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5.4. Oral rat LD50 dataset 
It was not possible to develop a single model or a group contribution model that fit the entire 
training set (see Table 5.4.1). The consensus method achieved the best results in terms of both 
prediction accuracy and prediction coverage. The prediction statistics for this endpoint were not 
as good as those for the other endpoints. This finding is not surprising because this endpoint has 
a higher degree of experimental uncertainty and has been shown to be more difficult to model 
than other endpoints [91]. The prediction results for the consensus method are shown in Figure 
5.4.1. 
  

Table 5.4.1. Prediction results for the oral rat LD50 test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.578 0.184 0.969 0.650 0.460 0.875 
Nearest neighbor 0.557 0.243 0.961 0.656 0.477 0.993 
Consensus 0.633 0.188 0.968 0.595 0.436 0.875 

 

 
Figure 5.4.1. Experimental vs predicted values for the oral rat LD50 test set 
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5.5. Bioconcentration factor (BCF) 
Again, the consensus method yielded the best statistics if one considers both prediction accuracy 
and coverage (see Table 5.5.1.). The prediction results for the consensus method are shown in 
Figure 5.5.1. 

Table 5.5.1. Prediction results for the BCF test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.735 0.019 0.888 0.712 0.541 0.926 
Single Model 0.742 0.082 0.901 0.684 0.542 0.926 
Group contribution 0.675 0.187 0.888 0.761 0.623 0.874 
Nearest neighbor 0.609 0.099 0.931 0.884 0.604 0.948 
Consensus 0.754 0.076 0.898 0.670 0.523 0.926 

 

 
Figure 5.5.1. Experimental vs predicted values for the BCF test set 

 
The BCFBAF (bioconcentration factor bioaccumulation factor) module (v. 3.00) of US EPA’s 
EPI Suite software package [83] yielded an R2 value of 0.766 and MAE of 0.50 (for the same 
chemicals that were able to be predicted by the consensus method). Thus, the predictions for the 
consensus method are comparable to those from EPI Suite. However, this may not be a fair 
comparison because some of the chemicals in the prediction set may have appeared in the 
training set for the BCF model in EPI Suite. 
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5.6. Developmental toxicity 
The consensus method achieved the best results for the EPA-developed QSAR methods (in terms 
of prediction accuracy and coverage) (see Table 5.6.1). All of the methods achieved appreciably 
higher prediction sensitivities than specificities. This is acceptable for regulatory applications 
because reducing the proportion of false negatives is more crucial than reducing the proportion 
of false positives.  
 

Table 5.6.1. Prediction results for the reproductive toxicity test set 
 

Method Concordance Sensitivity Specificity Coverage 
Hierarchical clustering 0.724 0.829 0.471 1.000 
Single Model 0.732 0.850 0.438 0.966 
Nearest neighbor 0.795 0.844 0.667 0.759 
Consensus 0.772 0.900 0.471 0.983 

 

5.7. Ames mutagenicity 
Again, the consensus method achieved the best prediction accuracy (concordance) and prediction 
coverage (see Table 5.7.1). The single model and group contribution methods could not be 
applied to this endpoint. All of the methods achieved a nice balance of prediction sensitivity and 
specificity. 
 

Table 5.7.1. Prediction results for the Ames mutagenicity test set 
 

Method Concordance Sensitivity Specificity Coverage 
Hierarchical clustering 0.763 0.776 0.746 0.956 
Nearest neighbor 0.770 0.783 0.753 0.990 
Consensus 0.777 0.794 0.755 0.948 

 

5.8. Normal boiling point 
The consensus method achieved the best statistics in terms of both prediction accuracy and 
coverage (see Table 5.8.1. In general, the prediction statistics for the physical properties were 
excellent. The prediction results for the consensus method are shown in Figure 5.8.1. 
 

Table 5.8.1. Prediction results for the normal boiling point test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.950 0.001 0.991 18.690 10.592 0.935 
Group contribution 0.897 0.002 0.997 27.554 17.001 0.977 
Nearest neighbor 0.877 0.005 0.968 29.967 19.754 0.988 
Consensus 0.940 0.003 0.986 20.547 12.488 0.977 
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Figure 5.8.1. Experimental vs predicted values for the normal boiling point test set 
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5.9. Density 
For this property, the hierarchical clustering and FDA methods gave a slightly higher R2 value 
than the consensus method (see Table 5.9.1). However, the consensus method yielded a near 
100% prediction coverage. The prediction results for the consensus method are shown in Figure 
5.9.1. 
 

Table 5.91 Prediction results for the density test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.972 0.001 0.997 0.053 0.026 0.942 
Group contribution 0.872 0.005 0.997 0.116 0.071 0.992 
Nearest neighbor 0.858 0.021 0.979 0.121 0.073 0.997 
Consensus 0.938 0.006 0.990 0.080 0.046 0.992 

 

 
Figure 5.9.1. Experimental vs predicted values for the density test set 
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5.10. Flash point 
For this property, the consensus method produces the best results in terms of prediction accuracy 
and coverage (see Table 5.10.1). The prediction results for the consensus method are provided in 
Figure 5.10.1. 
 

Table 5.10.1. Prediction results for the flash point test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.870 0.008 0.961 28.911 16.753 0.924 
Group contribution 0.834 0.009 0.968 33.630 20.426 0.987 
Nearest neighbor 0.801 0.018 0.925 36.833 23.832 0.993 
Consensus 0.873 0.010 0.953 29.064 17.571 0.987 

 

 
Figure 5.10.1. Experimental vs predicted values for the flash point test set 
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5.11. Thermal conductivity 
For this property, the hierarchical clustering method produces similar results to the consensus 
method (see Table 5.11.1). The prediction results for the consensus method are provided in 
Figure 5.11.1. 
 

Table 5.11.1. Prediction results for the thermal conductivity test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.905 0.025 0.996 11.062 6.771 0.956 
Single Model 0.890 0.031 0.992 11.864 8.524 0.956 
Group contribution 0.803 0.088 0.979 15.898 9.825 0.911 
Nearest neighbor 0.884 0.021 1.004 12.832 8.449 0.978 
Consensus 0.913 0.042 0.993 10.936 6.802 0.956 

 

 
Figure 5.11.1. Experimental vs predicted values for the thermal conductivity test set 
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5.12. Viscosity 
For this property, the consensus method produces the best results if you consider both prediction 
accuracy and coverage (see Table 5.12.1). The low k values for this endpoint can be attributed to 
the two possible outliers in the test set that fall below the Y=X line. The prediction results for the 
consensus method are shown in Figure 5.12.1. 
 

Table 5.12.1. Prediction results for the viscosity test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.867 0.001 0.808 0.215 0.131 0.929 
Single Model 0.642 0.011 0.624 0.347 0.218 0.929 
Group contribution 0.888 0.002 0.830 0.200 0.113 0.814 
Nearest neighbor 0.757 0.009 0.725 0.289 0.194 0.920 
Consensus 0.864 0.005 0.751 0.228 0.133 0.929 

 

 
Figure 5.12.1. Experimental vs predicted values for the viscosity test set 
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5.13. Surface tension 
For this property, the consensus method produces the best results in terms of prediction accuracy 
and coverage (see Table 5.13.1). The prediction results for the consensus method are shown in 
Figure 5.13.1. 
 

Table 5.13.1. Prediction results for the surface tension test set 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.929 0.016 0.989 1.792 1.038 0.919 
Group contribution 0.794 0.044 0.986 2.933 2.114 0.926 
Nearest neighbor 0.759 0.068 0.973 3.317 1.923 0.936 
Consensus 0.889 0.033 0.985 2.245 1.414 0.926 

 

 
Figure 5.13.1. Experimental vs predicted values for the surface tension test set 
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5.14. Water solubility 
For this property, the consensus method produces the best statistics in terms of prediction 
accuracy and coverage (see Table 5.14.1). The prediction results for the consensus method are 
shown in Figure 5.14.1. 
 

Table 5.14.1. Prediction results for the water solubility test set 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.835 0.015 0.943 0.900 0.600 0.934 
Group contribution 0.766 0.039 0.933 1.074 0.798 0.982 
Nearest neighbor 0.791 0.022 0.950 1.024 0.735 0.985 
Consensus 0.844 0.025 0.941 0.872 0.617 0.980 

 

 
Figure 5.14.1. Experimental vs predicted values for the water solubility test set  
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5.15. Vapor pressure 
The prediction statistics were excellent and again the consensus method achieved the best results 
(see Table 5.15.1). The prediction results for the consensus method are provided in Figure 
5.15.1. 
 

Table 5.15.1. Prediction results for the vapor pressure test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.955 0.001 0.976 0.754 0.460 0.940 
Group contribution 0.929 0.001 1.020 0.999 0.608 0.968 
Nearest neighbor 0.878 0.001 0.937 1.251 0.824 0.980 
Consensus 0.948 0.001 0.978 0.818 0.500 0.970 

 

 
Figure 5.15.1. Experimental vs predicted values for the vapor pressure test set  
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5.16. Melting point 
The prediction statistics were very good and the again the consensus method achieved the best 
results (see Table 5.16.1.). The prediction results for the consensus method are shown in Figure 
5.16.1. 
 

Table 5.16.1. Prediction results for the water solubility test set 
 

Method R2 𝑹𝑹𝟐𝟐 − 𝑹𝑹𝟎𝟎𝟐𝟐

𝑹𝑹𝟐𝟐
 k RMSE MAE Coverage 

Hierarchical clustering 0.809 0.011 0.891 44.509 31.480 0.932 
Group contribution 0.704 0.065 0.837 54.947 41.274 0.997 
Nearest neighbor 0.738 0.017 0.850 52.092 37.832 0.998 
Consensus 0.813 0.026 0.858 43.771 31.888 0.998 

 

 
Figure 5.16.1. Experimental vs predicted values for the melting point test set 
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